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1lf noise, distribution of lifetimes, and a pile of sand
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A connection between the distribution of lifetimes and the power spectrum is derived. It is
shown that the flow of sand down the slope in the cellular automaton model, considered recently
by Bak, Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987)], has a 1/f power spectrum in

one and two dimensions. The Bow over the rim of the system behaves similar to the transport in

a real sand pile as measured by Jaeger, Liu, and Nagel [Phys. Rev. Lett. 62, 40 (1989)].

Recently Bak, Tang, and Wiesenfeld' introduced a new
very appealing concept which they denoted self-organized
criticality Som.e dissipative many-body systems are be-
lieved to evolve into a self-organized critical state with no
characteristic time or length scales. It is expected that
due to scaling of certain lifetime distribution functions the
dynamics of the critical state exhibits 1/f power spectra.
Bak, Tang, and Wiesenfeld used a cellular automaton to
illustrate the basic idea of self-organized criticality. This
simple numerical model was believed to describe qualita-
tively the flow of avalanches in a pile of sand. Hence, the
applicability of the concept of self-organized criticality
became somewhat unclear ' when Jaeger, Liu, and
Nagel reported an experiment on the flow of a sand pile
in which they did not 6nd power-law distributions or 1/f
noise.

In this Rapid Communication we give a detailed discus-
sion of the connection between the distribution of a set of
random signals and the power spectrum of the total signal
obtained by linear superposition of the elementary signals.
We 6nd that the so-called distribution of weighted life-
times used by Bak, Tang, and Wiesenfeld is irrelevant for
the power spectrum of the sand flow and should be re-
placed by another distribution function, given below,
which has no simple power-law behavior.

We further note that it is important to distinguish be-
tween the flow of sand down the slope of the sand pile and
flow of sand over the rim of the system. The flrst signal
has a Lorentzian power spectrum in the model of Bak,
Tang, and Wiesenfeld. This signal was not considered in
the experiment by Jaeger, Liu, and Nagel. We demon-
strate that the flow over the rim in the numerical model
has a power spectrum similar to the one measured in the
sand-pile experiment.

Lifetimes and power spectra. Consider a set of un-
correlated time signals (labeled by the index a) with time
pro61es given by f,(t). Let F(t) be the signal produced
by a superposition of the signals f (t) started at random
times with a total rate v. The probability that a signal f,
is started in a time interval dt is constant and given by
P(a)dt. Using the notation from Ref. 5 we can write

F(t) -g g f.(t —t, )p, ,
a tr

where p„' is 1 or 0, depending on whether an elementary
signal f,(t ) was started in the time interval [t„,t, +b]. By
a straightforward generalization of Campbell's theorem5
we obtain the autocorrelation function eF of the total sig-
nal F(t)

@F(z)-v daP(a)I, (z),
where (2)

ItF(z) -v dT dSP(S, » — (T—
I z I ), (4)~o T

where P(S,T) is the joint probability distribution. Partial
integration of the Wiener-Khintchine theorem

S(f) 2„dz%'F(z)cos(2tzfz) (5)

gives the following expression for the power spectrum

S(f)-, dzG(z)sin'(trfz),
ttf 2" o

where

G(T) 2 „dSP(S,T)S (7)

A form like G(T) cs: T'exp( —T/To) in an interval
T 6 [to, eo] will in the region f 6 [I/To, I/to] give a power
spectrum

f +') when a & —1,S(f)~ f when a ) —1.

I.(z)-„, dtf. (t)f.(t+ I zI ).
In the case of the sand pile f,(t) is the amount of sand

sliding at time t in an avalanche labeled by a. The precise
pro61e f,(t) differs from avalanche to avalanche but is
well approximated by a box function

S/T if 0&t& T,
fs, T(t) -'() (3)

where S is the total time-integrated amount of sliding dur-
ing the lifetime T of the avalanche. This form of fs T(t)
leads through Eq. (2) to an autocorrelation function
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For f( 1/To the power spectrum becomes constant and
S(f) falls off like 1/f for f) I/to.

Cellular automaton Let .us now analyze the cellular
automaton used by Bak, Tang, and Wiesenfeld. To be
specific we consider the open-boundary model where
"sand" can leave the system over the right edge. s We first

FIG. 1. Semilog plot of the distribution function G(T)
defined in Eq. (7) for three different system sizes: dotted 20x 20,
dashed 50x 50, and solid 75x75.

consider flow down the slope of the pile, i.e., F(t) is the
total number of slides at time t. In one dimension the
model can easily be solved analytically. The distribution
G(T) is constant ( 1/L, where L is the size of the sys-
tem) for T G [Q,L] and zero outside this interval. Hence,
sand randomly (white noise) added on to the system will
give rise to a 1/f power spectrum of the flow down the

'

slope. In the two- and three-dimensional case we have to
measure P(S,T), and calculate the weighted distribution
G(T) from Eq. (7). We show in Fig. 1 G(T) for two-
dimensional systems of different sizes. This semilog plot
shows that G(T) approximately decreases exponentially
with To=12, 39, and 51 for size 20&&20, 50X50, and
75x75, respectively; indicating a linear increase in To
with the linear size of the system. A pure exponential
form of G(T) will, according to Eq. (6), produce a
Lorentzian power spectrum S(f) 2vT)/(I + (2xTaf) ].

Figure 2(a) shows the power spectrum of F(r), where
F(r) is obtained according to Eq. (1), by linear superim-
posing signals from individual avalanches started at ran-
dom times. Figure 2(b) shows the spectrum obtained by
inserting the measured G(T) into Eq. (6). The small de-

0.2

3—
V)
C)

2
O

(a)

0.1—
C5

0.0
30

0.1—

0.0
100

3—
V)

CO

cp 2—
O

—2

iog Z(&)
2—

V)
1—

O
0—

t

—3
I

—2

iog„o(&)
I-3 I

—2

log )O(f)
FIG. 2. (a) Power spectrum of the flow down the slope. Indi-

vidual avalanche signals started at random times are superim-
posed linearly and the resulting time sequence is Fourier
transformed. (b) Power spectrum obtained by inserting the
measured G(T) from Fig. 1 into Eq. (6). The rate v is equal to
0.5. The dotted, the dashed, and the solid curves are for system
size 20&20, 50x 50, and 75 x 75, respectively.

FIG. 3. Distribution of the intervals ht between avalanches
(dashed line) and the duration of avalanches r (solid line) for
the flow (a) over the rim and (b) down the slope, in a continu-
ously driven automaton. The probability for adding sand at-a
site is 0.05 per time step. The associated power spectra are
shown in (c). Solid line corresponds to flow over the rim (the
data are multiplied by 102), dashed line to flow down the slope.
The straight line indicates 1/f behavior. The arrow locates the
frequency 2x/51 the —characteristic frequency in the Lorentzi-
an corresponding to G(T) in Fig. 1.
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viation between the two figures is probably due to numeri-
cal inaccuracies in using the discrete Fourier transform.
The slight enhancement of S(f) in Fig. 2 at high frequen-
cies is due to aliasing.

F/ow over the rim. As our final topic we demonstrate
that the power spectrum of the flow over the rim in the nu-
merical model under consideration behaves qualitatively
similar to the flow measured in a real sand pile. 4 Instead
of linearly superimposing individual avalanche signals we
simply continuously add sand randomly (in time and
space) at a constant rate and let the model evolve accord-
ing to the updating algorithm. The flow down the slope as
well as the flow over the rim is analyzed. Once in a while
the addition of sand leads to slides. The time interval be-
tween two pulses, ht, and the duration of these pulses, r,
are monitored. We show in Fig. 3(a) the distributions of
the two quantities for the flow over the rim and in Fig.
3(b) the same distributions for the flow down the slope.

The power spectra of the flow signals are shown in Fig.
3(c). The spectrum for the flow down the slope is identi-
cal to those obtained above. The spectrum and distribu-

tion of ht and r for the flow over the rim should be com-
pared to the corresponding quantities measured in the ex-
periment by Jaeger, Liu, and Nagel. One notices that
the distribution of ht and r in both cases are narrow. The
power spectrum of the numerical model is qualitatively
similar to the one measured experimentally when a vibra-
tion is applied to the system.

In conclusion, we have shown that the power spectrum
of the cellular automaton model, discussed by Bak, Tang,
and Wiesenfeld, ' behaves as I/f in one and two dimen-
sions. Furthermore, we have discussed the diff'erence be-
tween flow down the slope of a sand pile and flow over the
rim of the system. Comparison of the second signal can
be made between the numerical model and the experiment
of Jaeger, Liu, and Nagel. One finds qualitative agree-
ment. As far as we know, the power spectrum of the flow
down the slope of a sand pile has not been measured yet.
Hence, it is still an open question to what extent the
power-law behavior predicted from the cellular automaton
model exists in real sand piles.
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sThe model is defined in Ref. 1(b). Sand is "added" by use of
Eq. (3.1) in this paper. Updating is done by Eq. (3.2) and the
boundary conditions are Eq. (3.12) and z(O,j) z(i, O) 0.

The ratio between the number of additions and the number of
resulting excitations on the open rim sites is on average equal
to 2 . Balance between in and out flow is obtained if we inter-
pret the addition rule as representing the addition of two
grains of sand to the system and the rule for updating the
open rim sites as representing 3 grains leaving the system.
This somewhat artificial bookkeeping has its origin in the use
of a "scalar slope" Ref. 1, a more realistic description should
make use of a real gradient [Leo P. KadanoF, Sidney R.
Nagel, Lei Wu, and Su-min Zhou, Phys. Rev. A 39, 6524
(1989)].

In Ref. 1(b) it is stated that the resulting sand flow has a 1/fo
spectrum. This is the spectrum of the flow over the rim of the
one-dimensional system.


