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Multifractal wave functions on a Fibonacci lattice
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Wave functions on a Fibonacci lattice are analyzed from the multifractal point of view. An en-
tropy function [f(a)] which represents the distribution of a particle probability density is ob-
tained exactly for the state at the center of the spectrum. Numerical calculations for other states
are also presented. A finite-size scaling analysis shows that the ordered critical wave functions
are multifractals.

The energy spectrum of a Schrodinger operator is
classified into three types: absolutely continuous, singular
continuous, and dense point. ' Extended states correspond
to an absolutely continuous spectrum and localized states
correspond to a dense-point spectrum. For a periodic sys-
tem all states are extended due to the Bloch theorem. Ex-
tended and localized states can exist for random systems.
The localization problem in random systems is still one of
the most important problems in condensed-matter phys-
ics. 2 However, as far as we know, there is no random sys-
tem with a purely singular continuous spectrum. It is im-
portant to understand properties of wave functions which
correspond to a singular continuous spectrum.

The one-dimensional tight-binding model or discrete
Schrodinger equation on a Fibonacci lattice which allows
an exact renormalization-group (RG) equation was pro-
posed by Kohmoto, Kadanoff, and Tangs and Ostlund et
al. It is a quasiperiodic system. Although there is no
rigorous proof, it is conjectured to have a purely singular
continuous spectrum. This rather remarkable property is
con6rmed by various studies. 5 9 The energy spectrum is a
self-similar Cantor set with zero Lebesgue measure. It
was shown that the spectrum is a fractal with continuous
scaling indices. 9 The wave functions are expected to be
neither localized nor extended in a standard manner and
we call them critical. Wave functions of this type are fur-
ther classified into two types: self-similar and non-self-
similar. It was shown9 that a wave function which corre-
sponds to a cycle of the RG map is self-similar. On the
other hand, a wave function which corresponds to a
bounded chaotic orbit is not self-similar. The purpose of
this paper is to understand the critical wave functions
quantitatively from the multifractal point of view. '

We study the off-diagonal version of the Fibonacci
model:

tj+ i y~+ i+ tjy~ ~ Ey~,

where tj's (J' l, 2, . . . ) take two values t~ and ttt ar-
ranged in a Fibonacci sequence T which is defined as the

f(a) -S(a)/e,
where

(2)

e lim a„—lim (1/n) lnl„ lnr.
pf~ oo pf~ oo

So one has a relation Q(a)-'1 f('). ' The entropy func-
tion or f(a) is calculated from the partition function as

Z. (q) - Z I yj I"-Z pj's Z exp( qnaIe„), —
j 1 j 1 j 1

and

G„(q) (1/n ) lnZ„(q),

S„(a)-G„(q)+qe„a,
f„(a)-S„(a)/e,
where a —(I/e„)(d/dq)G„(q) and

f(a) lim f„(a) .

limit of a recursion T„+t T„T„ t with T~ {AJ and
T2 {AB). So one has Ts {ABA), T4 {ABAABI, and
so on. In order to investigate the infinite system, we take a
series of finite systems T„whose number of sites is a Fi-
bonacci number F„defined by F„+t F„—t+F„with
Fo Ii& 1. For a 6nite system T„we take pl I tlrI I

which is normalized by QI-"&pl 1 as a probability mea-
sure and l 1„1/F„asa Lebesgue measure of each site.
An exponent aj is de6ned by pl l" which represents the
singularity of the probability measure. Now the distribu-
tion A„(a) characterizes the wave function, where
Q„(a)da is the number of sites whose value of aI lies be-
tween a and a+da. Since the number of sites F„ in-
creases exponentially as n is increased {F„—r" [(J5
+ I )/2] "J, so does Q„(a). Then the fundamental quanti-
ty to characterize the wave function is the entropy func-
tion defined by"

S(a) lim S„(a) lim (1/n) lnQ„(a)
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An entropy function or f(a) is useful to characterize a
wave function. An extended wave function does not have
a singular probability measure and p-/, so f(a) is
de6ned at a single point by f(a 1) l. On the other
hand, a localized wave function has a nonvanishing proba-
bility only on a finite number of sites (Lebesgue measure
zero). These sites have a 0 and the other sites with
probability zero have a ~. So one has f(a -0) -0 and
f(a ~) l. It is extremely important to perform a
careful extrapolation for 6nite systems. ' '6 Since, if one
simply tries to calculate f(a) for a single 6nite system,
one does not get the above behavior but obtains a mislead-
ing result of a smooth f(a) even for a localized or an ex-
tended state. We shall show that the wave functions on
the Fibonacci lattice indeed have a smooth f(a) and con-
sequently are neither extended nor localized in a standard
manner.

In order to investigate the wave functions on the Fi-
bonacci lattice, (1) is written as +J M(tj+~, tj)%'~
with

and a transfer matrix

A wave function is obtained by multiplying 0 0 by transfer
matrices successively once the energy is taken in the
spectrum. There are three types of transfer matrices
M(t~, t~), M(t~, tg), and M(tg, tg) (note that there is no
successive 8's in the Fibonacci sequence). Denote the
product of the 6rst F„ transfer matrices by M~"~, then we
have a RG map

M"+' Mn 'M", (5)

with M~'1 8 M(tg, tg), and M A M(t~, tg)
XM(tq, t~). ' ' Let us define „xTr M[~"9 2/, then the
energy spectrum of a periodic system consisting of T„'s is
determined by a condition ~x„~ (1. It can be shown
that x„obeys a trace map

&n+ 1 2xn&n —] Xn —2 ~

The energy E enters in the initial condition and those
which give bounded orbits determine the spectrum. In

particular, the center of the spectrum has a six-cycle and
the outermost edge of the spectrum has a two-cycle.
Most of the bounded orbits, however, are chaotic. We
shall analyze the wave functions corresponding to the
above types of orbits. Note that we need a solution of the
full RG map (5) to determine the wave functions.

and

A M(t~, tg)M(tg, tg)
—R 0

O —I/~

with R tz/tz. This remarkable property allows us to
determine f(a) exactly. Consider a finite system T3k+/
which consists of the 6rst F3k+ ) sites of the Fibonacci lat-
tice. The wave function is determined by O'J M1%'0
where MJ is a product of A's and 8's following the Fi-
bonacci sequence and the bond j (between sites j and
j+1) is always of type A. Since two successive 8's are
not allowed, these @J's are enough to determine the wave
function y~ on all the sites. If one takes +0 (~'), the ab-
solute values of %1 is of the form (~, ) where s is an in-
teger. Denote the number of such O'J as N~(s, k) [or
Ng(s, k)] if the last matrix in MJ is A (or 8). Then the
partition function (3) is written as

2'(R v, k)+ng(R v, k)
7

[2fgg(/ k)+egg(/2 k)]& '

where

ng(x, k) - g Ng(s, k)x

ng(x, k) - g Ng(s, k)x

and the denominator is the normalization factor of the
wave function (QJ-"(') y1 ( )v. It can be shown that, if
the next system T3~k+~~+& with F3~k+&~+& sites is con-
sidered, N~ and Ng obey a recursion relation

Wave function at the center of the spectrum

When E 0, not only the trace map (6) but also the full
RG map (5) has a six-cycle starting from

I

Ng(s, k+ I ) Ng( —s+2, k)+Ng(s+ l, k)+N~(s, k)+Nq( s, k)+Nq(s ——l,k),

Ng(s, k+ I) Nq(s+2, k)+N~( —s,k)+Ng( —s —l,k),
which leads to

ng (x,k+ 1)

ng (x ',k+ 1)
ng(x, k+1)

,ng(x ', k+1),

x+1 x x ' 1

x x '+1 1 x ng(x ',k)
0 x ng(xk)

x 2 x ' 0 nz(x ', k),
The maximum eigenvalue of the above matrix

Z(x) -(I/2x)[(x+1) + [(x+1) +4x'] ' '] (lo)
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FIG. 1. f„(a) for the wave function at the center of the spec-
trum with R ta/tg 2 (n 3k+ 1,k-3,4, . . . , 12). The exact
f(a) is also shown.

FIG. 2. f, (a) for the wave function at the edge of the spec-
trum with R ts/t~ 2 (n 2k+ l,k 5,6, . . . , 12). The limit-
ing f(a) is also shown.

dominates the partition function (7) as k ~, so the
free energy defined in (4) is calculated as G (q)

—,
' In{i(R v)/[A, (R )]q]. The exact form of f(a) is ob-

tained from (4) as

and

f( )- 1

3 lni
ink(R s) —q ink(R q)

dq

1a
3 ln~

in~(R ') — In~(R'&),
dq

(12)

Wave function at the edge of the spectrum

The edge of the spectrum corresponds to a two-cycle of
the trace map (6). Although the trace follows the two-
cycle, the matrix M(") which determines the wave func-
tion does not. Instead the matrix elements grow in the full
RG map (5). We determine f(a) numerically, since an
analytical calculation of f(a) seems to be hard. When
R ttt/tg 2, one has E 2.83396 at the edge. In deter-
mining f(a) from (3) and (4), we expect the finite-size
correction of f„(a) to be of the order 1/n. This is checked
numerically under linear extrapolation for this wave func-
tion as well as the exact wave function at the center of the
spectrum. This behavior of the 6nite-size correction is
consistent with the formal analogy between the present

where r is the golden mean (VS+I)/2. The functions
f„(a) and f(a) are plotted in Fig. 1. The range of
a where f(a) is defined is given by [a;„,a,„]
{1/(31nr) [in', (R ) —lnR ~], 1/(31nr) [Ink(R2)+ lnR2](,
and f(a) 0 for both am;„and a,„. The minimum value
a;„corresponds to the largest square amplitude of the
wave function and am, „corresponds to the smallest one.
The maximum value of f(a) gives the Hausdorff dimen-
sion of the support of the wave function. 'o" This is one
as it should be since the support is an interval [0,1] in our
formulation. '2 The maximum occurs at a Ink, (R )/
3lnz. It is not difficult to prove that f(a) is symmetric
about the maximum as is seen in Fig. 1.

multifractal analysis and the canonical ensemble formal-
ism of statistical mechanics (n corresponds to the volume
of a statistical-mechanical system).

The limiting f(a) curve is shown in Fig. 2. In particu-
lar, we find f 0.633 at a;„0.817 and f 0 at a,„

3.29. Notice that f(a;„) is not zero and this property
is at variance with the previous wave function at E 0. It
seems that f(a;,)WO and f(a,„) 0 are general proper-
ties of the critical wave function [the wave function at
E 0 which has f(a;„) f(a,„) 0 may be an excep-
tional one].

Non-self-similar wave function

The energy spectrum is a Cantor set and has a hierarch-
ical structure. At each step of the hierarchy it is divided
into three subclusters. Hence an energy in the spectrum is
represented by an infinite series of 1, 0, and 1, where 1

corresponds to the upper subcluster, 0 to the middle one,
and 1 to the lower one at each level of the hierarchy. For
example, the center of the spectrum is represented by
{0,0,0,0,0, . . . / and the upper edge of the spectrum is
represented by {1,1, 1, 1,1, . . . J. The earlier part of a
series governs the local (or fine) structure of the wave
function and the later part governs the global structure.
A series of 1, 0, and 1 represents an orbit of a certain sym-
bolic dynamical system of the trace map (6). Periodic or-
bits are rather rare and most of the allowed energy corre-
sponds to a bounded chaotic orbit of the trace map. The
existence of the chaotic orbits and the Cantor set spec-
trum can be explained by the Smale horseshoe structure
or equivalently the existence of the homoclinic point of the
trace map. A wave function corresponding to a chaotic
orbit does not seem to be self-similar. 9 We numerically
investigate the scaling properties of wave function
{1,0, 1, 1,0, 1,0, 1, 1] as an example of such states. The en-
ergy is E 2.67029 for R ttt/tz 2. The wave function
and its f„(a) are shown in Figs. 3(a) and 3(b). Com-
pared with the previous self-similar wave functions (see
Figs. 1 and 2), f„(a) does not show a monotonic conver-
gence as n is increased. At this level of numerical data
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FIG. 4. Examples of the finite-size-scaling analysis of a;„.
The system size is F„, where F, is a Fibonacci number defined

by F„+~ F„&+F„wit-h Fo F~ l. (a) Wave function at the
edge of the spectrum jl, l, l, l, . . . j; (b) non-self-similar wave
function i1,0, 1, 1,0, 1,0, 1,lj.

1

(b)
f(~)

f5

''1 '

2

FIG. 3. (a) A non-self-similar wave function of the state
ll, O, I,T,0, 1,0, 1, 1j with R ts/t~ 2. (b) f„(a) of the state
fl,0, 1,1,0, 1,0, 1, 1j with R ts/tg 2 (n 11-21).

(the maximum number of sites is N 17711) we do not
see the convergence of f(tt) yet. This is easily seen from
the 1/n dependence of am;„shown in Fig. 4. Whether a
limiting f(a) exists for this type of wave function is still
an unsolved problem.

In summary, we studied the critical wave functions on
the Fibonacci lattice. An exact f(a) is obtained for the
wave function at the center of the spectrum. This is one of
the few examples in which an exact f(a) is calculated for
a nontrivial and interesting case. For the self-similar

wave function at the outermost edge of the spectrum
which corresponds to a two-cycle of the trace map (6),
f(a) is numerically determined to be a smooth curve by a
careful analysis with finite-size scaling. It is clearly dis-
tinguished from localized states and extended states in
which f(a) is defined only at finite points. So, we have a
strong evidence that the ordered critical wave functions
which correspond to cycles of the trace map have a
smooth f(a). For non-self-similar wave functions which
correspond to a chaotic orbit, the understanding of the
scaling and the multifractal behavior is still an unsolved
problem. This is a rather important one since the wave
function of a disordered system at the mobility edge may
have some similarities to this type of wave function.

Note added. After submission of the paper, A. Siito (to
appear in J. Stat. Phys), following S. Kotani (unpublished
work), proved rigorously that the energy spectrum is
singular continuous on a Fibonacci lattice. We also re-
ceived a copy of an unpublished work by G. Ananthakr-
ishna and V. Kumar in which a multifractal analysis of
wave functions on a Fibonacci lattice is reported.
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