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Low-temperature properties of quantum Heisenberg helimagnets
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Low-temperature properties of the body-centered-tetragonal Heisenberg helimagnet are investi-
gated by use of temperature-dependent spin waves. The calculation of the spin waves takes into
account magnon-magnon interactions via a random-phase approximation. A quantum correction
to the classical ground state, and the temperature dependence of the turn angle Q and of the
basal-plane magnetization are shown.

I. INTRODUCTION

Magnetic properties and phase transitions in helimag-
nets have been extensively studied for nearly three de-
cades. Since the pioneer theoretical works by Yoshimori'
and Villain, there has been a large number of studies
dealing with the helimagnets. In a previous paper, the
nature of the helical transition in a body-centered-
tetragonal (bct) lattice with classical XY and Heisenberg
spins has been investigated. It was found that for A'Y
spins the transition associated with the loss of helical or-
dering is of first order and it is followed by a second-order
transition associated with the breaking of basal-plane or-
dering. For Heisenberg spins, only a second-order transi-
tion was found.

In this paper, we are interested in the low-temperature
behaviors of bct helimagnets with quantum Heisenberg
spins. It is known that low-temperature properties of
magnetic materials are governed by spin-wave (SW) exci-
tations. In a first approximation, the free SW spectrum at
temperature T 0 is often used to calculate physical
quantities such as magnetization and free energy at finite
T. Recently, Rastelli, Reatto, and Tassis studied the
effect of magnon-magnon interaction at T 0 via a per-
turbation calculation. For 6nite T, twenty years ago
Nagai proposed a method to take into account these in-
teractions via a random-phase-approximation (RPA)
decoupling scheme for antiferromagnets. This method
has been used by Harada and Motizuki to calculate the
SW at finite T in a general helical structure. We shall ap-
ply this method to a bct Heisenberg helimagnet.

In Sec. II the method is briefly reviewed. Results for
the bct helimagnet are shown and discussed in Sec. III.
Concluding remarks are given in Sec. IV.

II. METHOD

The Hamiltonian is written as

H —g J(R~J)S; S~,

where 5; is a quantum Heisenberg spin of the magnitude
S at the lattice site R; and J(R;J ) is the exchange integral
between pairs of spins at distance R;J R; —R~.

In this paper, we take J(R;J) Ji ()0 or (0) be-

where Qo is the angle between spins belonging to two ad-
jacent basal planes (spins in each plane are parallel) given
by

cos(Qo) —Ji/J2 . (3)

In the following, we choose a particular spin configuration
in which spin S; is quantized along the g; axis in the basal
plane. The g; axis is taken in the basal plane and is per-
pendicular to the g; axis and the tl; axis is taken in such a
way as to form a direct trihedron (g;,g;, tl;) (see Fig. 1).
For numerical convenience, we introduce a very small sta-
bilizing field which acts along each local quantization
axis. The Zeeman energy is given by

—h gS;t. (4)

We use this stabilizing field instead of an easy-plane an-
isotropy to avoid the Goldstone mode at wave vector k 0
for numerical iteration input. The classical ground state
is not affected by h. The effects of h and an easy-plane
anisotropy on the SW will be considered.

The calculations are done with the following steps:
(i) H is written in the local coordinates and the

Holstein-Primakoff transformation is used with operators
a and a t to expand H up to four-operator terms:
H Ho+ H ) +H2+H3+ H4+ . , where Hp contains
the nonoperator terms and H~ (i 1-4) are i-operator
terms. H~ vanishes by inversion symmetry.

(ii) Fourier transforms and the RPA decoupling
scheme are used. H3 vanishes in this scheme while H4
becomes two operator terms which modify H2.

(iii) The resulting Hamiltonian is diagonalized by the
Bogoliubov transformation with new operators a and a~.

For details of the calculations, the reader is referred to
Ref. 8. The result is

H Ho+ H2,

where HrI (the nonoperator terms) and H2 are given by

tween nearest neighbors (NN's) in the (111)directions of
a bct lattice and J(R;~ ) J2 ( & 0) between NN along the
c axis (Fig. 1). The classical ground-state energy per spin
is given by

Uo —4J~ cos(Qp) —J2cos(2Qp),
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Hp —J(g)NS(S+1) —(S/2)g JA((k, g, T)+Az(k, g, T)+&aktak&[A~(k, g, T)+A2(k, g, T)]
k

+&ap a —p & [8 ) (k, Q, T)+82 (k, Q, T)],
H2 (S/2)g grok(Q, T)(ajak+akak) (S/2)g hrok(Q, T)+Sg prof, (Q, T)aktak,

k k k

(5)

(6)

where the last equality follows from the commutation relation between operators and N is the number of spins. In Eq.
(5), a constant has been omitted and Q is the value of the turn angle at T. Other notations are

Aro (Q T) [&'(k,g, T) —8 (k Q T)]' '
& (k, Q, T) =Ap(k, g)+& ) (k, g, T)+&2(k, Q, T),
8(k, g, T) =Bp(k, g)+8)(k, g, T)+82(k, g, T),
Ap(k, g) 2J(Q) —J(k) —

p [J(k+Q)+J(k —Q)]+6/S,
Bp(k, g) J(k) ——' [J(k+g)+J(k —g)l,
A)(k, g, T) = —(I/NS)g[Ap(k, g)+Ap(q, g) 2J(Q)+ J(k —q+Q)+ J(k —

q
—Q)]&avtaq&,

A2(k, Q, T) —(1/NS)+[0.58p(k, g)+Bp(q, g)]&ava
q

8)(k, g, T) = —(I/NS)+[0. 58p(q, g)+Bp(k, g)]&a~ta~&,

82(k, Q, T) —(I/NS)+[0. 5[Ap(k, g)+Ap(q, g)] —2J(Q)+ J(k —q+Q)+ J(k —
q

—Q)]&avta t
v&,

q

&aq~aq& (&nv&+ 2 )A(q, g, T)/1'trov(Q, T)

&a,tat
q& (&nv&+— 2 )8(q, g, T)/bros(Q, T),

&n~& - [exp[Shoo~(g, T)/ks Tl —I}

[the minus sign of (9h) was missing in Ref. 8]. The Fourier transform J(k) for the bct model studied here is

(8a)

(8b)

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

(9g)

(9h)

(9i)

J(k) 8J(c so(k„)c so(ky)c so(k, )+2J czo(2sk, ) 4J2[ —4cosgpcos(k„)cos(ky)cos(k, )+2J2cos(2k, )], (10)

where Eq. (3) has been used. For convenience, the lattice
constant has been taken equal to 2 and the following nota-
tions have been used in the above equations: k (k„,
k~, k, ), Qp (0,0,gp, ), and Q (O, O, Q, ) (only the z
component of Q is taken in our approximation which is
reasonable because of the in-plane stabilizing field). At
this stage, it is noted that without magnon-magnon in-

teraction the SW spectrum is given by

n~'(g) -[~'(k g) —8'(k g)]'"
At a given T, one has to solve in a self-consistent way Eqs.
(7)-(9), even at T 0 where &n~& in Eq. (9) is zero, to ob-
tain the SW spectrum for each value of Q (Q is allowed to
vary around Qp). Once this is done, the free energy is cal-
culated from the following formula:

F-Hp+ (S/2)g h, roI, (Q, T)
k

+ksT+In [1 —exp[ —SA rok(Q, T)/ksT] j,
where ks is the Boltzmann constant. The value of Q cor-
responding to the minimum of F at a given T, which will
be denoted as Q, below, indicates the most stable state.
The local magnetization is then calculated from

nt S —(1/N)+&a~~a~& .
q

(13)

FIG. 1. bct lattice with interactions J] and J2 along diagonal
and vertical (c-axis) directions, respectively. Local frame
(g, g, rl) is indicated.

III. RKSUI.TS AND DISCUSSION

We show here two examples where J~ & 0 and J~ & 0
(J2 (0) with S 2. For the former, we choose Qp 60'
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FIG. 2. (a) Free energy F vs Q (in degrees) for Qp 60 at
T 0, 4, and 5 (from above) with h 0.04. (b) F vs Q for
Qp 120' at T 0, 3, and 5 (from above) with h 0.02. Ar-
rows indicate minimum F.

( —J~/J2 0.5) and for the latter, Qp 120' (—Ji/
Jz —0.5). Quantities such as h, F, Itrok, and T will be
measured in units of ( Jz ~

and k8 1. Note that self-
consistent SW's are obtained up to a certain temperature
above which the iterations do not converge. The reader is
referred to Ref. 7 for detailed discussion about this point.
Figure 2 shows F vs Q for various T obtained with self-
consistent SW. The number of points in the first Bri]]ouin
zone was taken to be 40 and five iterations are sufficient
at high T with an accuracy of about 10 4. Some remarks
about Fig. 2 are in order. (i) For Qo 60', Q, is 63'30'
at T 0 and slowly increases to 64'30' at T 5. No self-
consistent solution is found for T)6. (ii) For Qo 120',
Q, is 118' at T 0 and remains so with increasing T and
slowly decreases only just before no more self-consistent
solution is found for T)6.

The local magnetization m for Qo 60 is displayed in
Fig. 3 as a function of T, where results obtained by replac-
ing A and 8, in Eqs. (9g) and (9h), with Ao and Bo are
also shown for comparison. This approximation gives re-
sults at high T contrary to the self-consistent calculation.

0
I

4 6

FIG. 3. Local magnetization m (at minimum F) vs T for
Qp 60 and h 0.04 obtained from self-consistent SW (solid
circles). No more self-consistent SW found for T)6. Results
from a first approximation (see text) are shown by crosses for
comparison.

The zero-point spin contractions are 3.5 and 6% for
Qo 60' and 120', respectively.

In order to see the effects of different terms in Eq. (12),
we show in Table I the case of Qo 60' at T 1 and 5.
All the terms are insensitive to Q, except the SW energy
Esw [second term of Eq. (12)] which decreases with in-
creasing Q, making the minimum of F to move to higher
Q. At higher T the entropy term becomes important and
its decrease with increasing Q makes Q, larger. The same
is found for Qo 120' except Esw increases with increas-
ing Q, making Q, lower.

Let us show now the temperature dependence of the
SW spectrum for Qo 60' and h 0.02 in Fig. 4, where
the free SW spectrum is also presented for comparison.
hroi, (Q) is zero at k 0 and k Q for h 0. However,
ftnik(Q, T) is positive definite at and around Qo, as can be
seen by expanding (7) in the vicinity of Qp at low temper-
atures. This allows the SW to be excited at and around

TABLE I. Contributions of various terms in F for Qp 60 and h -0.04, E~ is the first term of Hp
[see Eq. (5)], E2 are the first two terms in the curly brackets, and E& are the remaining terms of Hp,
Esw and E, are the second and third terms of F [Eq. (12)], respectively. Upper and lower parts are re-
sults for T 1 and 5, respectively. See text for comments.

61
62
63
64
65
66

E]
—17.9940
—17.9776
—17.9492
—17.9088
—17.8563
—17.7912

E2

—0.1145
—0.1197
—0.1250
—0.1304
—0.1360
—0.1418

E3

0.0032
0.0046
0.0060
0.0074
0.0088
0.0101

Esw

5.7051
5.6763
5.6433
5.6058
5.5640
5.5175

—0.0058
—0.0058
—0.0058
—0.0058
—0.0058
—0.0058

—12.4064
—12.4221
—12.4306
—12.4318
—12.4254
—12.4112

61
62
63
64
65
66

0.3229
0.3180
0.3135
0.3094
0.3056
0.3022

—0.0404
—0.0402
—0.0402
—0.0403
—0.0406
—0.0409

5.3463
5.3188
5.2866
5.2497
5.2080
5.1612

—0.9893
—0.9904
—0.9933
—0.9981
—1.0050
—1.0140

—13.3550
—13.3714
—13.3825
—13.3882
—13.3882
—13.3827
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tions done at T 0 show that this is of the order of 10
too small to affect Acok(Q, T). Even at T=1 where more
SW are excited, it is of the order to 10, while the con-
tribution of H4 is of the order of 10

The eA'ect of h at T 0 is not significant. For h
=0.002, 0.01, 0.02, and 0.04 the zero-point spin contrac-
tions are all 3.5%. However, Q, does not vary
significantly with increasing T for very small h. Besides,
one notices that at T 0, the correction Q, —

Qo is positive
or negative. We conjecture that it depends on the sign of
Ji.

Finally, let us mention that the results shown above are
without anisotropy and the inclusion in the self-consistent
calculation of an easy-plane anisotropy of the type DS;„,
where D & 0 (see additional terms given in Ref. 8) yields
no change in the value of Q„at least for values we have
taken D 0.01 and 0.02 (in units of

~ J2 ( ).
FIG. 4. SW spectrum for k„=k» =0 at Q =60' in the case

go=60' with h 0.02. Note that k, is shown here in degrees
(to recover the original k, in radians, a conversion factor is
needed). Dashed and solid lines are self-consistent SW at T=0
and T=6, respectively. Dotted line shows free SW using Eq.
(11).

Qo, driving the minimum of F elsewhere, as seen above.
Recently, Rastelli et al. have found that at T 0 the turn
angle of the classical ground state does not change with
quantum corrections, which include corrections due to
first-order perturbation of four-operator terms and
second-order perturbation of three-operator terms. It was
shown numerically that the former and the latter cancel
out leaving the turn angle of the classical ground state un-
changed in a simple-cubic helical model. However, it is
not clear to us whether this results form the fact that the
bilinear (two-operator) terms are first diagonalized and
higher-order terms are considered as perturbations. In or-
der to estimate the effects of H3 we calculated the
second-order perturbation of H3 as follows (the expression
of H3 has been given in Ref. 8): transforming the opera-
tors a and a t into a and a t and using the eigenstates of a
and a, one obtains the second-order contribution of H3
which is too long to write down here. Numerical calcula-

IV. CONCLUDING REMARKS

We have shown that quantum correction to the classical
ground state is important within our approximation in
disagreement with Rastelli et al. This problem, there-
fore, remains open for future investigations. Within our
approximation, the turn angle is found to be rather insens-
itive to T, in agreement with experiments on VF2 which
has the same lattice structure studied here. Experiments
on rare-earth metals Tb, Dy, and Ho (Ref. 10) show, on
the other hand, that Q decreases with decreasing T. This
is probably due to the fact that these elements have a fer-
romagnetic ordering at temperatures below the helical
phase; Q decreases due to the enhancement of ferromag-
netic interaction at low T. Therefore, the variation of Q
depends on the interactions in the system.
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