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The solution of a three-body Schrodinger equation (for two holes and a spin flip) shows that in

the U ~ Hubbard model the saturated ferromagnetic state with two holes is unstable (in a finite
volume and for periodic boundary conditions). The ground state carries a finite momentum, and
becomes degenerate with the Nagaoka state in the thermodynamic limit. This is in agreement
with exact diagonalization results for small lattices where, in addition, we 6nd that the true two-

hole ground state is a singlet. As a result, our notions of ferromagnetism in the Hubbard model

might need revision.

The Hubbard model was proposed twenty years ago as
the simplest model expected to incorporate the essential
features of strong correlations. In spite of the great
amount of effort in solving this model, very few precise re-
sults are available, except in one dimension (1D) where
many properties are accessible through the exact Bethe-
ansatz solution. Most recently, the Hubbard model has
received renewed attention especially motivated by
Anderson's' suggestion that superconductivity in the
high-T, oxides can be understood already within this sim-
plest model. In this Rapid Communication we do not ad-
dress the possibility of superconductivity (which is still a.
highly debated question). Rather, we would like to
present new results concerning ferromagnetism, one of the
original motivations for the introduction of the model.

Much of the early work on the subject was based on
weak-coupling mean-6eld theory and predicted Stoner-
like ferromagnetism for U greater than or equal to the
bandwidth, 8'. More recent slave-boson mean-field
theories and variational Monte Carlo-Gutzwiller calcu-
lations suggest that if ferromagnetism exists in the Hub-
bard model it must be restricted to very large values of
U(»W). We note that the latter results are consistent
with the absence of ferromagnetism in intermediate-
coupling Monte Carlo simulations. Unfortunately, the
only exactly known limits are restricted to U vo. In par-
ticular, for one single hole and U ~, Nagaoka proved
that the ground state of a 6nite (but arbitrary size) bipar-
tite lattice is a saturated ferromagnet. Also, by working
from the paramagnetic, high-hole-density limit, Kana-
mori showed that a ferromagnetic phase could exist with
decreasing hole concentration 8, starting around quarter
filling. It is amusing that the slave-boson mean-field
theory leads to conclusions consistent with these results.

The above discussion suggests that if ferromagnetism
exists at all in the Hubbard model it originates as a con-
tinuation of the Nagaoka state to a finite hole concentra-
tion and 6nite values of U. In this paper we will consider
the stability of the fully polarized U ~ state with

I +) 2 N(n, li, 12)S„ct,lct, l I F) .
n, l 1,I2

(2)

n, l~, l2 represent the positions of the spin flip and two
holes, respectively; and S„c„lc„t.The wave function
@(n,li, l2) is antisymmetric with respect to the inter-
change of I i and l z, in addition, it satis6es the "hard-core"
constraint @(n,n, l ) 2@(n,li, n) 0, which prohibits a
hole and the spin flip from occupying the same site. The

respect to a single spin fiip. We first consider the already
nontrivial case of two holes in two dimensions (2D), and
then comment on the results of simple variational calcula-
tions for the ground state of a single spin fiip in the pres-
ence of a 6nite hole concentration. Exact diagonalization
results for more than one spin flip, and more than two
holes will also be discussed.

We begin with the U ~ Hubbard Hamiltonian, writ-
ten in terms of composite creation and annihilation opera-
tors, c;t~ c;t(1 —n; ) and c;, respectively, which al-
ready contain the constraint of no double occupancy,

H t g Ci+h~icr i
i,h, cr

where h is a vector pointing in the direction of the nearest
neighbors with a magnitude a equal to the lattice spacing,
t is the nearest-neighbor hopping matrix element, and
cr ~1 denotes up and down spin components. Two
holes in the fully polarized state act as spinless fermions:
The bottom of the two-particle band, Eit -—2t [3
+cos(2tra/L)], corresponds to occupying the lowest two
single-particle states on a size L lattice. One may expect
that by modifying the spin background one can reduce the
effect of Fermi statistics and regain part of the kinetic en-
ergy lost through the antisymmetrization. This is indeed
true, as we will now demonstrate by considering the case
of a single spin flip.

Starting from the saturated ferromagnetic state (polar-
ized along the +z direction), ( F), the most general two-
hole single-spin-flip wave function can be written as
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relevant Schrodinger equation is easily derived from Eqs. (1) and (2) and reads,

E@(n,l~, lz) tg [@(n,l~+h, l2)(1 —
b~, „)+@(n,l~, l2+h)(1 bi, ,n)]+tg[@(l~,n, l2)&l„n+h+@(l2, ll, n)bl, ,n+h] ~

h h

The flrst two terms on the right-hand side describe the hopping of two independent holes, while the last two describe the
interchange of a hole and the spin flip on nearest-neighbor sites.

It is easiest to proceed in momentum space, where Eq. (3) becomes

Here

[E—t (k)) —t (k2)]%(k ),k2, Q) —
g t (Q —k )

—k2 —k') bb(k', k2, Q) @—(k', k) ,Q).]
k'

+ g [b(k', k2 Q) —@(k' ki Q)]
k'

@(k),k2, Q) =Zn, i, ,i, exp[ —i[k(l(+k212+(Q —k~ k2)—n]j@(n,l~, l )z,

and t(q) 2t[cos(q„a)+cos(q~a)]. In (4) we have al-
ready used the antisymmetry with respect to interchang-
ing the two holes; also, we have introduced a 6ctitious
repulsion g which is to be taken to in6nity to enforce the
hard-core constraint, gkk(k', k;Q) 0. The solution is
further simplifled by rewriting (4) as a SL2XSL matrix
equation for the 6ve quantities,

e(k;Q) -g„k(k', k;Q),
e'(k;Q) g„cos(k,'a)e(k', k;Q),

and

e,'(k;Q) gk. sin(k,'a)4(k', k;Q) (a x,y) .

In addition to solving (4) numerically, we have also stud-
ied the low-lying states by a Lanczos exact diagonaliza-
tion method. s In both cases we used periodic boundary
conditions.

Our results are summarized in Tables I and II. For the
4X4 lattice (Table I) we compare the eigenvalues for all

Q calculated from (4) with those obtained by exact diago-
nalization. Note that all eigenvalues lie below the bottom
of the two-hole band in the Nagaoka state (—6 in units in
which t 1), and form a very narrow band. The agree-
ment between the two methods required a value of g of at
most 10 . The lowest eigenvalue is threefold degenerate
[the degeneracy between (0,0) and (O, x) is a special
feature of the 4&4 lattice, while the remaining degenera-
cy follows trivially from n/2 rotations]. For larger sizes
(N 36, 64, and 100) the ground state is twofold degen-
erate and carries momentum (O, n) or (n, O). The
ground-state energy for the 6X6 lattice is —7.08876 and

I

for the 10&10 lattice, —7.62400. Our two-dimensional
results do not appear to follow a simple (i.e., linear in
1/L ) scaling law.

As a simple check of our calculation, we note that,
when applied to an even-site one-dimensional Hubbard
chain (again in the case of two holes and one spin flip),
Eq. (3) leads to a ground state with Q x and
E —4t(1 —rr /2L ), —2tx /L lower than the fully
spin-polarized state, in exact agreement with the Bethe-
ansatz results. ' As explained in Ref. 10, in 1D the exact
decoupling of spin and charge allows one to remove the
node in the two-hole wave function, by absorbing the an-
tisymmetry of the hole wave function into a crystal
momentum x for the spin Hip. This is equivalent to turn-
ing the holes into hard-core bosons, resulting in a lowering
of the kinetic energy. There is no similar argument in 2D
since there is no simple decoupling of spin and charge de-
grees of freedom. As already hinted above, it is appealing
to interpret the instability of the Nagaoka state (in the
6nite system) as a result of decreasing the effect of the
Fermi statistics through the presence of the spin flip. We
believe that, in 2D, the frustration of the spin background
arises as a result of the increased degeneracy of the low-
lying states available to holes in the presence of the spin
flip. At the moment it is not clear to us whether the ap-
parent (discrete) symmetry breaking suggested by a
ground state with momentum (O, n) or (x,O) is a special
feature of the two-hole problem or whether it is a more

TABLE II. Ground-state energy and momentum for an 8&8
lattice (g 10 ). We show all points along directions [0,1] and
[1,1] with energy below the bottom of the two-hole band,
Eg —7.41440. The error is in the last digit.

Lanczos

—6.278 08
—6.140 16
—6.211 84

Schrodinger equation

—6.27808
-6.14016
—6.21184

(o,o),(0,~),(~,0)
(+ a/2, +'a/2), (m, x)
(0, ~ x/2), (+' x/2, 0),
(+ m/2, n), (x, ~x/2)

TABLE I. Ground-state energy and momentum for a 4x4
lattice using the exact diagonalization method (Lanczos) and
the three-body Schrodinger equation with g 106. The error is
in the last digit.

(o,o)
(~/4, ~/4)
(x/2, x/2)

(3x/4, 3x/4)
(m, m)

(o,z/2)
(o, 3~/4)

(0,~)

Energy

—7.41696
—7.418 24
—7.425 28
—7.41952
—7.41568
—7.431 68
—7.438 72
—7.44000
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general phenomenon. We also mention that our results
are consistent with the work of Hashimoto, "who showed
that in the thermodynamic limit there exists a spin-
density-wave state [with momentum (O, x) or (z,O)1 de-
generate with the Nagaoka state.

Although our calculation proves the instability of the
Nagaoka state in the case of two holes, we do not yet
know the exact ground state in this case. Our Lanczos di-
agonalization for the 4X4 lattice shows that for two holes
further spin flips (we have considered so far at most three
spin flips) lower the ground-state energy. This suggests
that for two holes the true ground state is a singlet, as we
in fact find for eight- and ten-site lattices, in agreement
with early numerical indications on very small lattices due
to Takahashi. ' ' Also, this is consistent with the notion
that the minimum cost of antisymmetrization is achieved
in the spin background with highest degeneracy. (As ex-
pected, we have found numerically that the ground state
remains a singlet for 6nite U.) It is, in fact, easy to see
how to construct a singlet state with energy lower than
those given in Table I, if one starts from the minimum
(S 2 ) spin sector of a single hole in the Heisenberg an-
tiferromagnet (at J 0). ' ' This state is fourfold degen-
erate and a singlet state of two holes can thus be con-
structed by occupying two of the four possible states (at
+' x/2, + n/2), '6 with little energy cost in antisymmetri-
zation due to the orthogonality of these states. This im-
plies that the ground state carries either momentum close
to (0,0) or (O, x), (x,O) and only degenerate perturbation

I

theory starting from the fourfold degenerate single-hole
ground states can select the correct two-hole ground state.

Our quantitative results for more than two holes are
very limited. For a 4X4 lattice we 6nd that the fully po-
larized state is also unstable with respect to a single spin
flip for three and four holes. In addition, for an eight-site
lattice we also found that the ground state for two or more
holes carries the minimum total spin (S 0 or S
for an even or odd number of holes, respectively). Quali-
tatively, since the fourfold degeneracy of the single-hole
ground state in the minimum spin sector can accommo-
date up to four holes, we 6nd it plausible that the ground
state for three and four holes carries minimum spin. We
cannot, however, rule out the possibility that for more
holes the ground-state magnetization increases or even os-
cillates.

Of course, ultimately one hopes to build a mean-field
theory of magnetism in the large-U Hubbard model for
finite 611ing on the basis of the physics learned from sim-
ple but nontrivial few-body problems. To this end, we
have attempted to study the problem of one spin flip and a
6nite concentration of holes in the otherwise fully polar-
ized state by using the systematic formulation of the
many-body theory for composite operators (such as the
c; ) proposed by two of these authors. Within the sim-
plest conserving approximation' (analogous to the Har-
tree-Fock approximation of conventional perturbative ap-
proaches) the quasiparticle energy of a down-spin electron
can be written as

EgJ (1 —
n~ )t(k) + —gnz

&

t(k') +—g t (k+k' —k")nz-~
1 1, 1

1 —
n~ N g' (5)

where nI, ~
is the free-electron distribution function

describing the up spins, and n ~ is the up-spin concentra-
tion. ' It is remarkable that at zero temperature the same
result follows from the Gutzwiller wave function' (with
the exact calculation of the kinetic energy) and thus the
(k 0) ground-state energy obtained from (5), after add-
ing the contribution from the free up-spin Fermi sea, is a
variational bound. ' ' ' An expression identical to (5)
can also be derived from a more conventional, perturba-
tive approach which treats three-particle correlations (be-
tween the down-spin electron and one-particle hole pair of
the up-spin Fermi sea) by solving analytically the three-
body Fadeev equations in the infinite U limit. ' 's

Gutzwiller wave functions [leading to the same expres-
sion for EI,~ as obtained from (5) at T 0] have been also
discussed recently by Shastry, Krishnamurthy, and An-
derson, 2 who independently studied the single spin flip in
the U ~ Hubbard model. They evaluated (5) for vari-
ous lattices and found that within this approximation the
destabilization of the fully polarized state occurs only for
relatively large values of the hole concentration (around
quarter filling). In our opinion, the implications of this re-
sult are somewhat disappointing since, on the basis of
Kanamori's Bethe-Goldstone theory and from the slave-
boson calculations, one expects the complete destruction

of ferromagnetism at similar values of the 611ing. In fact,
the possibility of an instability for very small hole concen-
trations may be outside the scope of a Gutzwiller-type an-
satz. This is best understood by noting that, e.g., in 1D
and very close to half filling such an ansatz leads to a
ground-state energy higher than that obtained for aPxed
(i.e., in6nite mass) spin flip. ' ' In other words, the local
constraint implied by the Gutzwiller wave function simply
leads to too rapid a spatial variation of the many-body
wave function, and thus to a very high kinetic energy for
the spin Hip. It then requires a signincant hole concentra-
tion before flipping the spin balances the Fermi energy.

The physics ignored in the Gutzwiller treatment is the
dynamical reaction of the Fermi sea to the motion of the
spin Hip. In analogy with the two-hole problem, the frus-
tration of the spin background (i.e., the stabilization of
the spin flip) should be enhanced by increasing the density
of low-lying excitations associated with the x-ray edge like
effects of spin flips in the presence of the Fermi sea. In
our context, this problem is difficult to treat with (well)
known techniques: We are presently attempting to discuss
it within our many-body approach for composite opera-
tors. '

In this Rapid Communication we have shown that the
Nagaoka state with two holes is unstable in a Gnite sys-
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tern. Although in our calculation this appears entirely as
a finite-size effect, we expect that the presence of zero-
energy bound states (in the thermodynamic limit) may
lead to a destabilization of the saturated ferromagnet (i.e.,
a decrease in the magnetization) for arbitrarily small
values of (i) the exchange interaction J and (ii) the hole
concentration.

Recently, Trugman has constructed a rigorous proof
that for U ~ and ftnite number of holes (i) there are no
two-hole bound states in any spin sector, and (ii) the fer-
romagnetic state is either the ground state or becomes
asymptotically degenerate with the ground state in the
infinite-volume limit, consistent with our findings.
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