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Vacuum degeneracy of chiral spin states in compactified space
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A chiral spin state is not only characterized by the T and P order parameter E&23

-Sl. (S2~S3), it is also characterized by an integer k. In this paper we show that this integer k
can be determined from the vacuum degeneracy of the chiral spin state on compactified spaces.
On a Riemann surface with genus g the vacuum degeneracy of the chiral spin state is found to be
2k . Among those vacuum states, some ks states have (E&$3))0, while other k states have
(E]23& &0. The dependence of the vacuum degeneracy on the topology of the space reflects some
sort of topological ordering in the chiral spin state. In general, the topological ordering in a sys-
tem is classified by topological theories.

Recently, Witten' (also see Ref. 2) studied the quanti-
zation of many topological theories, including the quanti-
zation of the non-Abelian Chem-Simons theory in 1+2
dimensions described by

The studies in Ref. 4 suggest that the frustrated
Heisenberg model may support T and -P-symmetry-
breaking vacua —chiral spin states. The T and P order
parameter is given by a three-spin operator

L d x Tr(A„B„Al„—Y'A„A„Ai)e"".k El23 (Sl S2) S3. (4)

It is found that the Hilbert space of (1) has finite dimen-
sions and the number of dimensions depends on the topol-
ogy of the (compactified) two-dimensional space.

In some studies of the high-T, superconductors, it is
shown that the vacuum of the frustrated-spin model may
be a chiral spin state. The fiuctuations around a chiral
spin state are described by the following low-energy
effective action:

L,tt d x a„8~l.e"" + (f „)+
7l g

(2)

Lt,t, d xka„8~l„e"".
4z ~ (3)

Using renormalization-group language, we may say (3) is
the infrared fix point of (2).

Because the topological theory (3) contains only linear
time derivative terms, the Hamiltonian is identically zero,
and all the quantum states of (3) have zero energy. Note
that (3) is a scaleless theory containing no dimensional
parameters. The quantum states cannot have nonzero en-
ergies. 'Therefore, the number of dimensions of the Hil-
bert space of (3) is equal to the number of the vacuum de-
generacy of the model (2) (defined on compactified two-
dimensional space). We may use the method in the topo-
logical theory to calculate the vacuum degeneracy of sys-
tems described by (2).

where the ellipsis represents higher-order terms and a„is
the dynamically generated U(l) gauge field. Note the
charge coupled to a„is chosen to be one. Equation (2)
should be regarded as a compact U(1) gauge theory.

The effective theory (2) is not a topological theory, but
when g is large, all local excitations have gapa of order
g . At energy scales much lower than g, only the global
excitations are allowed and the model is described by the
topological theory
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FIG. 1. A classification of spin-liquid states.

Under T and P, El23 —El23. The T- and P sym-
metry-breaking properties of chiral spin states are charac-
terized by the nonzero vacuum expectation value (VEV)
of El23. Furthermore, a mean-field study of chiral spin
states suggest that chiral spin (liquid) states are not only
characterized by the nonzero VEV of El23 but also
characterized by an integer (Fig. 1). The integer is noth-
ing but the integer k appearing in front of the Chern-
Simons term in the effective action of chiral spin states.
Now the question is whether there is a direct and a physi-
cal way to measure the integer k which characterized a
chiral spin state. In the following we will show that the
integer k can be measured directly by measuring the vacu-
um degeneracy of a chiral spin state on a compactified
space such as a torus. We find that on a torus the vacuum
degeneracy of a chiral spin state is equal to 2

~
k ( if k&0.

Thus a chiral spin state is characterized both by the T and
P order parameter El23 and by its vacuum degeneracy on
a torus.

Since the low-energy excitations of chiral spin states are
described by (3), to calculated the vacuum degeneracy of
the chiral spin states on a torus, we only need to calculate
the vacuum degeneracy of (3) on the same torus.

Now let us first quantize (3). Following Refs. 1 and 2
we may quantize (3) in the gauge

ao-o.
The equation of motion for all still needs to be taken into
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account and serves as a constraint. That is,

~ eoVf . ~0
ap

(5)

(11) is given by

H - [-(B„-iA„)'- (By -iAy ) 'j .1

m
(12)

which means f]2 vanishes on the torus. The gauge poten-
tial satisfying (5) is parametrized by two real parameters
corresponding to the constant gauge potential:

a] a](t), a2 ap(t) . (6)

Due to residual (time-independent) gauge symmetries,
different a; may correspond to gauge-equivalent config-
urations. Actually, if the torus (denoted at TL, ) is given
by a rectangle L] XL2 with periodic boundary conditions,
then the following two gauge configurations a; and a are
gauge equivalent:

2' 21E'm
(a],a2) —(a],a2) a]+,a2+

Lj L2
(7)

where n, m are integers. The gauge transformation that
relates a; and a (a a; —iU 'B;U) is given by

U —exp 2+i +nx' mx2

Li L2

Note that U is single valued on the torus when and only
when m and n are integers. Thus, the gauge inequivalent
configurations are given by a point on a torus (denoted as
T,) of size 2'/L]&2m/L2. The dynamics of a; are de-
scribed by the Lagrangian (taking ao 0),

L k— dt(a]a2 —a2a]), (8)

where A is the area of the torus T„A 4' /L]L2. Equa-
tion (8) is obtained by substituting (6) into (3).

To quantize (8), it is convenient to introduce (x,y)
such that

( )
27E'x 2'

~1~~2
1 2

Thus (x,y) and (x+n,y+m) are equivalent points and
(x,y) parametrize a torus. Using the new variables, (8)
becomes

(10)L k]r dt(xy —yx) .

It is also convenient to add a small mass term to (10) and
to write it as

t

L-J dt k]r(xy —yx)+ (x'+y')
2

Later we will let m go to zero. If we start with (2), the
mass term is actually generated by the Maxwell term with
m kg

The Lagrangian (11) describes a unit charged particle
moving on a torus parametrized by (x,y). The first term
in (11) indicates that there is a uniform "magnetic" field
8 2+k on the torus. The appearance of the magnetic
field indicates that an Abelian gauge structure is induced
in the gauge configuration space. The total Aux passing
through the torus is equal to 2]rk. The Hamiltonian of

This Hamiltonian has been studied in detail by Haldane
and Rezayi. Choosing the gauge

A„O, A~ Bx 2irkx, (13)

(nk+ l ) ' (]tz)t]„~x e (14)

where l 0, 1, . . . , k —1. The expression within the
square brackets is a e function. The wave functions satis-
fy the boundary conditions

y(x+ l,y) e" ]'y(x,y), p(x,y+ I )-y(x,y), (15)

which is consistent with the gauge choice (13). All the ex-
cited states have energies of order 1/m and can be ignored
in the m ~ 0 limit.

The k-fold-degenerate ground states that we find for
the Hamiltonian (12) correspond to k ground states of the
chiral spin state. (E]23) have the same sign in these k
ground states, say (E]23))0. There are other k-fold-
degenerate ground states with (E]23) & 0. Thus the total
degeneracy of the ground states of the chiral spin state is
2k. In other words, the chiral spin states have twofold de-
generate vacua on uncompactified space, one with
(E]23))0, another with (E]23) & 0. The low-energy
effective action for each vacuum is the topological gauge
theory (3) with coefficient + k. When we compactify the
space into, say, a torus, each vacuum in the uncom-
pactified space generates k-fold-degenerate vacua.

The chiral spin state studied in Ref. 4 has flux x per
plaquette. The integer k is found to be equal to two.
Thus, the ir-flux chiral spin state has fourfold degenerate
vacua on a torus. In general, one may have a chiral spin
state with flux 2it(p/~) per plaquette, where q is an even
integer. In this case, k is found to be equal to q and the
vacuum of such a chiral spin state has 2q-fold degeneracy
on a torus.

Haldane has studied the chiral spin state on a torus us-
ing a generalized Laughlin wave function for spin- 2 elec-
trons and using the e function method. He found that the
chiral spin state studied by Kalmeyer and Laughlin has
twofold degeneracy on a torus. The same result has also
been obtained by Laughlin. ' This result agrees with the
result in Ref. 4 and in this paper that the Kalmeyer-
Laughlin state is a k 2 chiral spin state. In order to ob-
tain more general chiral spin states, one needs to use wave
functions involving higher Landau levels or hierarchial
fractional-quantum-Hall-eff'ect (FQHE) wave functions.
The degeneracy of the chiral spin states is closely related
to the degeneracy of the FQHE states on a torus, as stud-
ied by Haldane and Rezayi.

The vacuum degeneracy of general two-dimensional

it is found that the ground state of H in Eq. (11) is k-fold
degenerate. The wave function of the ground states is
given by

y](x,y) +exp 2ir(x+iy)(nk+l)
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(2D) spin- —,
' systems has been studied in Ref. 11. Af-

fieck" gives an argument that a 2D spin- —,
'

system must
have either vacuum degeneracy or gapless excitations.
Haldane, " using the nonlinear ~-model, further demon-
strates that a 2D gap full spin-liquid state of half-odd-
integer spins should have fourfold-degenerate ground
states, which agrees with our result obtained here. How-
ever, as we have seen from the previous discussions in this
paper, the vacuum degeneracy may come from the global
excitations. In this case, some degenerate ground states
appear to be "accidental" and have nothing to do with the
broken symmetries. As we will see later, the global exci-
tations, as well as the vacuum degeneracy, depend on
boundary conditions and topology of the two-dimensional
lattices. The vacuum degeneracy discussed in Ref. 11
does not always imply broken discrete symmetries. Some-
times it may imply the existence of some topological order
in the spin-liquid states.

We may compactify the space into a Riemann surface
with higher genus as well. Again, each vacuum in the
uncompactified space generated degenerate vacua in the
compactified space. The degeneracy is different than that
on a torus. To calculate the vacuum degeneracy of the
chiral spin state on a Riemann surface Zg with genus g, we
first need to parametrize all the gauge configurations
satisfying f~2 0. Let A„B,(a-l, . . . ,g) be the canon-
ical one cycles on Zg (Fig. 2), and w„ri,be the closed one
forms on Zg. One can choose w, and ri, such that'

„~~b ~ah~ ~~ ~b
a a (16)

Ib 0~
& g tb ~ab ~

The fiat gauge connection (satisfying f&2 0) is given by a
closed one form which can be written as

a -atdx'+a2dx zn(x'w, +y'q, ) . (i7)

w~Artgl~beb, w~Awb ~ T/eAT/b ~0,g Xg a

and substituting (17) into (3), we find that the Chern-
Simons Lagrangian reduces to

l.- dt kit(x'y' —y'x')+ (x') +(y')
2 , (zo)

where a small mass regulation term is included. Equation
(20) is just g copies of the system described by (10).
Thus, the ground states of (20) are k~-fold degenerate.
We conclude that the chiral spin state on Zg has kg vacua
with (E f23) & 0 and k vacua with (E /23) & 0.

In the above, we have calculated the vacuum wave
functions of a chiral spin state in terms of the effective
gauge potential. One may ask what are the ground-state
wave functions in terms of the original spin variable?
Formally, one may write the ground-state wave functions

Thus, the fiat gauge connection is parametrized by 2g real
parameters, x' and y'. Two gauge connections a and a'
are gauge equivalent if

x" x' integer, y"—y' integer .

Using the relation

Bi Bz 83

FIG. 2. The canonical one cycles A, and 8, on Riemann sur-
face Zg (g 3).

da ) da2 yt (a i,a2) ( a ),a 2&, (zi)
where yt is given in (14) (assuming the space is a torus)
and

~
a ~, a2) is the spin state corresponding to the effective

gauge potential (a &,a2). Motivated by the mean-field ap-
proach of chiral spin states, the spin state ) a~, a2) may be
constructed in the following way. Consider the following
mean-field Hamiltonian defined on a torus:

H gg;~cjtc;expi„a dx. (zz)

H contains both next-neighbor and second-neighbor hop-
ping terms. g;~ in (22) characterizes the mean-Geld chiral
spin state and is given in Ref. 4. a (ai, a2) is the con-
stant gauge potential corresponding to the quantum fiuc-
tuations around the mean-field vacuum. H in (22) can be
diagonalized and we can obtain the ¹lectron ground
state ~ai, a2) „„m(Nis the number of the lattice sites).
The spin state ) a i,a2) can be obtained by doing Gutzwill-
er projection on the mean-field state ) a i,a2) „„,

I a i,a2) PG I a 1 a2)mean . (23)

We stress that the above construction of the ground-
state wave function is only an approximate construction,
in the sense that the wave functions

~ @t) obtained are not
the exact ground states of simple Hamiltonians, e.g., the
frustrated Heisenberg model. The same thing is true for
the Laughlin's wave function of FQHE. However, the
wave functions we constructed are expected to contain
correct topological structure and given rise to correct
quantum numbers for the quasiparticle excitations. Al-
though we are unable to write down the exact ground-
state wave functions, the vacuum degeneracy discussed
above is strictly correct.

We would like to remark that the vacuum degeneracy
of chiral spin states discussed in this paper is exact only in
the thermodynamic (large volume) limit. On a finite lat-
tice the would-be vacuum states have small energy dif-
ferences which vanish when the lattice size goes to infin-
ity. Our effective theory for chiral spin states (2) is exact
only in an in6nity long-wavelength limit. Thus, in gen-
eral, one expects the finite-size effects to lift the degenera-
cy of the vacuum states.

There is another subtlety related to the lattice. In order
to use computers to test the vacuum degeneracy, one must
perform calculations on so-called unfrustrated lattices.
Naively speaking, the ground state on the unfrustrated
lattice represents the true vacuum of the Hamiltonian un-
der consideration. The ground state on the frustrated lat-
tice may contain some topological excitations such as
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domain wall, soliton, etc. For example, consider an anti-
ferromagnetic Ising model defined on an Ni XN2 lattice
with a periodic boundary condition. If one of N; is odd,
the lattice is frustrated. The ground states contain a
domain wall and they have a large degeneracy corre-
sponding to different positions of the domain wall. Only
in the unfrustrated lattices (with both Ni even) do the
ground states have twofold degeneracy, which corresponds
to the true vacuum degeneracy of the Ising model. How-
ever, without any knowledge of the vacuum property of a
system, how does one know which lattice is frustrated and
which is unfrustrated? Here we propose a model-
independent definition of an unfrustrated lattice. We first
pick a small energy e & 0 which is much less than the typi-
cal energy scale of the system under consideration and
pick a large integer I. We define a lattice as unfrustrated
when the number of the states with energy less than e
(measured from the ground state) is less than I. When e
is less than the energy gap and I is larger than the vacu-
um degeneracy of the system, the above definition unam-
biguously defines the unfrustrated lattice in the large lat-
tice size limit. Let I~ be the number of states with energy
less than e in an unfrustrated lattice of N sites. For small
enough e and large enough I, we have three different
cases: (i) There is no unfrustrated lattice with size
N )Np(e, I), where Np(e, I) is a function of e and I. This
means that the system has gapless quasiparticle excita-
tion. (ii) The unfrustrated lattices exist for arbitrary
large N and Itv~ I as N ~. If e is small enough, all
the I states below e have zero energy. We may say the
system has I -fold degenerate vacua. This can be re-
garded as a definition of the vacuum degeneracy of a lat-
tice system. (iii) Unfrustrated lattices exist for arbitrary
large N but the limit Itv ( iv does not exist. For exam-
ple, Itv may alternatively keep taking several different
values as N~ ~. In this case, the vacuum property of
the system has a strong dependence on lattice size. The
system may not have a well-defined continuum limit.

The main purpose of this paper is to address the ques-
tion of characterization of chiral spin states. A chiral spin

state is not only characterized by its T and P breaking
property, but also characterized by an integer which can
be determined from the vacuum degeneracy of the chiral
spin state on Riemann surfaces. The integer measures the
strength of circulation of spins in the chiral spin state. We
stress that the vacuum degeneracy studied in this paper is
not a consequence of symmetries. The appearance of the
additional vacuum degeneracy and the dependence of the
vacuum degeneracy on the topology of the compactified
spaces suggest that chiral spin states contain nontrivial to-
pological structures which we may call the topological or-
der in chiral spin states. Measuring the vacuum degen-
eracy for different spaces is one of the simplest ways to
probe the topological order in a system. A more complete
characterization of the topological order in chiral spin
states will appear elsewhere. '.

Generally speaking, sometimes the vacuum states of a
system are not completely characterized by order parame-
ters. The vacuum states may have additional topological
ordering. If all quasiparticle excitations above the vacu-
um states have finite energy gaps, from the above example
we see that the topological order in the vacua is classified
by various topological theories. In other words, the in-
frared effective theory may be trivial even when all quasi-
particles have finite energy gaps. The effective Lagrang-
ian of the system may Aow to a topological theory at low
energies which support nontrivial global excitations. It
would be interesting to see whether various topological
theories can be realized as the low-energy theories for
different condensed-matter systems.
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