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Memory effect of waves in disordered systems: A real-space apbroach
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We present a real-space treatment of the memory effect which was recently proposed by Feng
et al. [Phys. Rev. Lett. 61, 834 (1988)] for propagation of waves through a disordered system.
The real-space approach provides physical insight for the effect. We extend the theory to include
absorption and show that the memory effect is enhanced. The role of boundary conditions on the

memory effect is also discussed.

Correlation effects of optical waves through random
media have received much attention recently.! ~!3 In par-
ticular, the reflected- and transmitted-intensity correla-
tion functions for static' ™* and dynamic’~!? disorder
have been the subject of many recent studies. Very re-
cently Feng et al.'’® predicted a surprising correlation
effect, which they called the “memory effect,” for wave
transmission through static disordered media. This effect
correlates between the change in the incident direction of
the wave and the resulting change in direction of the
transmitted wave through a slab. The memory effect has
recently been confirmed experimentally by Freund,
Rosenbluh, and Feng.'4

In this paper, we provide a real-space treatment of the
memory effect which reveals more explicitly its physical
origin. Our results for the transmitted and reflected
correlation functions for the memory effect coincide with
the results obtained diagrammatically by Feng et al.'3 by
use of the so-called factorized diagrams. Moreover, we
extend the memory effect to include the effect of absorp-
tion and find that the memory effect is enhanced by in-
creasing absorption. Namely, the “memory” correlation
function falls off more slowly as the degree of absorption
increases. We have also investigated the effect of different
boundary conditions on the memory effect. When a con-
tinuous injection of photons is properly taken into ac-
count, we find that the backscattered memory correlation
function falls off much more rapidly whereas the
transmitted correlation function falls off more slowly.

Real-space formulation for dynamics®~'° and static*
correlation functions were shown'!! to correspond to the
diagrammatic approaches which rely on the factorization
approximation in which the intensity-intensity correlation
function is given'? by the square of the electric-field-
electric-field correlation functions. The real-space
theories not only describe accurately the diagrammatic
and experimental correlation functions in the weak-
disorder limit but also lead to an insight into the physical
origins of these correlations. Recent numerical simula-
tions'® confirmed the validity of the factorization approxi-
mation in the weak-disorder limit.

We here apply the real-space theory to study the
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memory effect. In Fig. 1 we show schematically this
correlation effect as predicted by Feng er al.'> Here
(qs,q.’) are the transverse incident wave vectors and
(qs,9s') are the corresponding transmitted ones. We seek
for the intensity-intensity correlation function (57(q,,
q5)81(q.,qs')), where (- - - ) denotes an ensemble average
over the uniform distribution of the scatterer position.
Thus, if q, is changed to q, the question in hand is to
what extent the transmitted intensity at q, correlates with
the transmitted intensity at angle qp. In the
diagrammatic-factorization approximation, this is given
by :

(61(Qa,95)61(qa,qs)) = | (E(q4,q5)E * (qu,qp)) |2
1)

In the real-space representation, a wave incident at
point / with an initial value of the electric field Ej is
transmitted at point n after undergoing multiple elastic
scattering with /V random steps. The wave acquires a ran-
dom phase ¢,;n. The amplitude of the wave at point
nis P,yn and P2, y=W,,n is its random-walk
probability, '°-'® which is given below. In this representa-

FIG. 1. Two photon trajectories which after summing and
averaging as described in Eq. (2) describe the electric-field—
electric-field correlation function.
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tion, the electric-field-electric-field correlation function is given by

(E(q,,,qb )JE* (qa',qb'» =E& E (P,,,,,NP,,',,',N'Nexp( —iq. R;+iqs Ry+iqy R, —iqpy R,)) (exp[i(q),,,/,lv - ¢n’,1’,N')]> .

N,l,n,
NP
)
Since ¢,,;, ¥ and ¢, N are random variables, only diagonal terms survive the ensemble average and (2) becomes
(E(q4,95)E*(qa,9s)) =E§ IZNWn,l,N expl —iR,(q, —q.) +iR, (g, —qs)], (3)
n,i,
where W, ; v is the solution of the diffusion equation for a slab geometry with the appropriate boundary conditions and is
given by
Z mnZ
Ay =(DL) "' T sin et gin T2 g o | P2\ R, — Ry | | o))
m L L L

where A, ;=X xW,n and Ko(x) is a Bessel function.
Using the continuum approximation, we get

(E(20,8)E* @050 =C [ [d?Rd?R' A(|R—R’| )e 40 Reitar R’ )

where Aq,=q, —qu, and AQ; =qs —q. From (5), by
changing variables it is apparent that the correlation
effect is a geometrical effect independent of the phases
that the wave acquired by performing the multiple-
scattered trajectories. The correlation function (5) de-
pends only on the properties of the diffusion probability
A(|R—R']|) as given by (4). Moreover, from (5) it fol-
lows that

(E(qq,95)E*(qa,qp)) =CA(AG,) Saq, nq, - )

Thus, a nonzero correlation is obtained only when the
transverse momentum is * conserved,” i.e., Aq, =AQqp.
The correlation function falls off with increasing Aq, since
it is proportional to the square of the Fourier transform

|
A(Aq,). The final result in the case of transmission is

(Aq,,L)2
(E(Qa,95)E* (9, 96')) |* & Saq, .00, = ——+
|<E(q4,q5 LR TN 44a.495 sinh2(Ag,L)

@)

and agrees with the result obtained by Feng er al.'> The
mean free path, /, does not appear in the correlation func-
tion (7) since the functional form of A(|R—R’']|) does
not depend on /. The L dependence enters from the range
of A(|R —R'|) which is of order L.

We now calculated the memory effect for the reflected
waves and obtain

L sinhAq, (L —I)sinhAq,l
(L—-DIAq,sinhAg,L

which again coincides with the diagrammatic calculation.'* Here, unlike the correlation for the transmission case the
memory effect is not universal but depends on the degree of disorder via /. This / dependence enters because the typical
range of A(|R —R'|) for reflection is a few mean free path and therefore the “form factor” 4 (Aq,) must depend on /.

Thus, for a shorter range of A(|R—R'|), we expect to get a slower falloff of 4(Ag,) and hence a stronger memory
effect. We therefore expect that for real samples in which absorption takes place the range of A(|R —R']|) will be re-
duced and the memory effect will be more apparent. We now include the effect of the absorption in our real-space theory
by replacing W, ;v by W, ~nexp(—NI/L,), where L, is the absorption length. This leads to a modification of Eq. (4)
and instead of Ko(mn/L | R, —R;|) we get Ko([(mn/L)?+(1/L,)*1"*| R, — R;|). The memory effect for transmission
in the presence of absorption is modified to

®

[{E(q4,qs)E*(qu,qs)) |? & Saq, aq,

sinh2(L/L,)(Aq.) L2
sinh?(A§,L)

where Ad, =(L, >+Aq2?) ~"/? and (T ) is the transmitted intensity given by
(Tap) ={TH)(L/L,)/sinh(L/L,)

CT (qa,‘la', qs 7qb') = ( Tab >< Ta'b') sAquqb ’ (9)

and (T3,) is the transmitted intensity without absorption. The transmitted intensity (T,;) is, of course, reduced in the
presence of absorption and therefore the absolute value of the intensity-intensity correlation function is reduced. Howev-
er, the normalized correlation function falls off much slower. This is demonstrated in Fig. 2 for different values of L,/L.
We see that as L,/L becomes smaller the correlation function falls off more slowly. Moreover, Eq. (9) suggests that the
memory correlation function in the presence of absorption can be obtained from the memory effect without absorption by
replacing everywhere Ag, by (Ag2+ L, ?) /2, Similar behavior was found for the coherent-backscattering peak. '
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For reflected light, in the presence of absorption, we obtained the following memory correlation function:

sinh[Aq, (L —1)1sinh(A§,L )sinh(L/L,)

2

Cr(Q4,95,90Q5) ={Rap XX Ra's)8aq,,aq,

and the reflected intensity in the presence of absorption is

given by

Lsinh[(L —1)/L,1sinh(//L,)
(L—=01)(/L,)sinh(L/L,)

and (R%) =1—(T3).

We have also used the diagrammatic approach of Feng
et al.'® and have included the effect of absorption by
correcting the Ladder propagator, which in real space in
the diffusion approximation is a solution of the following
equation:

(=V2+L DL —r)=G/I1)6G—r"),

(Rap) = (R,?[)

(11)

where L(r —r') must vanish at the boundaries z =0 and
L. This leads to exactly the same correlation functions
both for transmission as in Eq. (9) and reflection as in Eq.
(10).

Finally, we discuss the role of boundary conditions on
the memory effect. In the continuous-injection boundary
condition!” the photon can be scattered at any distance
from both boundaries. When we use this continuous-
injection boundary condition'”'® we obtain for transmit-
ted waves an enhanced memory effect. The enhancement
of the memory effect results from an effective shorter
sample for this boundary condition. This net effect in the
correlation functions (7) is to replace L by L —a where a
is of the order of the mean free path. This is plotted in
Fig. 3(a). Therefore, the influence of the boundary condi-
tions will be most noticeable for thin slabs or for back-
scattering. For the reflected wave the influence of the
boundary condition on the correlation function (8) is to
replace /, which represents the distance at which the pho-
ton begins to diffuse in the slab, by /', which is the aver-
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FIG. 2. The transmission correlation function Cr(qq,qq’,
q»,qs') plotted for different values of the absorption length L,.
a, L,=o (no absorption); b, L,=L; ¢, L,=L/2; and d,
L,=L/4. The slab thickness L =10/.

(10)

L,A§,sinh(A§,L)sinh[(L—1)/L,1sinh(I/L,)

t;ged distance, I'=3/. In Fig. 3(b) we show that the
memory correlation function under the continuous bound-
ary condition falls off more steeply than the fixed bound-
ary condition. This figure also shows that the exact corre-
lation function in this case can be obtained by replacing /
by 2.71. It is interesting to note that the role of the con-
tinuous boundary condition, which we believe is more
physical, changes the memory correlation function for
transmitted and reflected light in opposite ways.
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FIG. 3. (a) The effect of continuous-injection boundary con-
ditions on the transmission correlation function. Curve a corre-
sponds to the correlation function as described in Eq. (7), and
curve b corresponds to the correlation function with the effect of
continuous injection taken into account. The dots correspond to
Eq. (7) when L is replaced by L —0.92/. The slab thickness
L=10l. (b) The effect of continuous-injection boundary condi-
tions on the reflection correlation function. Curve a corresponds
to the correlation function as described in Eq. (8), and curve b
corresponds to the correlation function with continuous injection
taken into account. The dots correspond to Eq. (8) when / is re-
placed by 2.71.
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In summary, we have presented a real-space treatment of the memory effect. The physical origin of the effect is
demonstrated by including in the theory the effect of absorption which enhances the memory effect and the role of con-
tinuous boundary conditions which is important for reflected light.

We are grateful to I. Freund and M. Rosenbluh for discussions regarding this paper. We acknowledge the Israel-U.S.
Binational Science Foundation and the Academy of Science and Humanities for supporting this research.
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