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Phase diagram of the "2+4"model in a mean-Seld approximation without correlations
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A model with two- and four-spin interactions, with coupling constants J2 and J4, respectively, is

studied using a mean-field approximation without correlations. The phase diagram in the x, T
plane (x = —J4/Jp, J2& 0, J4& 0) possesses three regions, corresponding to a paramagnetic, a
ferromagnetic, and a "three spins up and one down" ((31)) phase. The transition between the
ferromagnetic and the paramagnetic region is second order and independent of J4. The transition
from the (31) to the paramagnetic phase is first order, and its critical temperature is asymptoti-
cally linear in x. The discontinuity is shown to be due to the n-spin interaction, and to appear for
n & 2. We have found numerical evidence indicating that incommensurate phases should not ap-
pear in the "2+4" model.

I. THEORY

In recent years model Hamiltonians with multispin in-
teractions have been the object of several investigations,
due to their possible application to, among other systems,
the magnetic structure of He (Ref. 1), NiS2, and CusEu
(Ref. 2) and, more recently, to lipid bilayers. ' In addition
to the n-spin interaction it may be necessary to consider a
second one, of two spins. When both interactions compete
with each other the system may present interesting
features, such as different phases, possibly including
modulated ones, Lifshitz points, infinite-ground-state de-
generacy, etc. A great deal of information is contained in
a phase diagram where one of the axes is the ratio be-
tween the four- and two-spin coupling constants (J4 and
J2, respectively). For instance, a quantum one-dimen-
sional version of the "2+4" model has been studied by
Penson and by Kolb and Penson using finite-size scaling.
They found that the phase diagram is similar to that of
the axial next-nearest-neighbor interaction (ANNNI)
model, except for the absence of a region of incommensu-
rate phases. Also, Grynberg and Ceva have obtained the
phase diagram of a two-dimensional "2+4"model, using
low- and high-temperature expansions and spin waves.
Another debated point is the order of the transition from
the ordered to the disordered state, which depends on
x= —J4/J2 and on the number of interacting spins.
To our knowledge, the determination of the phase dia-
gram in the mean-field approximation (MFA) has not
been carried out yet. In spite of its simplicity this method
gives, in many cases, results close to the exact ones. In
this paper we consider a three-dimensional "2+4"model,
applying to it a classical statistical-mechanical formalism
in the MFA, without correlations. Our formalism is
essentially the same as one that was previously applied to
orientational order-disorder transitions. " ' In this case
there are only two possible orientations, instead of a con-
tinuum.

%'e consider a simple tetragonal lattice where the
"2+4" interaction is along the z axis. In the xy plane the
spins only interact with the nearest neighbors, with cou-

Here i denotes an xy plane, and the 5; is the spin associat-
ed with any of its sites, which can take the values ~ l.

The axial ground-state configurations in the Jz, J4
plane are shown in Fig. 1. For J4 & 0 there is no competi-
tion and the order is FM for J2 )0 and antiferromagnetic
(AFM) for J2&0. For J4&0, the four-spin interaction
prefers a configuration of the type (31) (we denote a
phase of n i spins up, n 2 spins down, etc. as (n in 2 &),
~hereas the 6rst-neighbor interaction prefers a simple FM
or AFM state. The former dominates in the region

~ J4/J2) ) 2. From now on, we will assume J4&0.
On the lines J4/J2=+ —,

' there exists infinitely many
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FIG. 1. Diagram of least free™-energy configurations at T=O

pling constant Jo. %e assume that this interaction is fer-
romagnetic (FM), and since there is no competition for it,
all the spins in the same xy plane are equal to each other
in the ground state. Therefore at T=0 K the total mag-
netic energy can be written as

HT —Q(2JoS; +J2S;S;+)+J4S;S;+)S(+2S;+i).
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states with the same energy. On J4/J2 2 these states
are, in addition to the AFM and the (31), the (21), and
those of the form &

. n~ . n2 .
&, where the n; are

equal to 2 or 3 and the ellipses stand for one or more "1"
(for example, &11312111)).For the degenerate states
on J4/J2 ——,

' we can say the following. All the states of
the type &ntn2), with n2a2, are present. The case of
brackets of four or more groups is more complicated, and
we do not have a general criterion to decide which ones
are present. We have found that phases of the type
&nin2n3n4) with n2, n3 equal to 1 or 2 are not present (for
example, &3 1 1 3) or &3 2 1 4)). Also, configurations
&nin2n3n4) with nt )2, n2 1, n3& 2, n4 1 or those with

n tn ,2nsn4 & 2 are present (for example, &3 141& or
&3 3 4 3), respectively).

Let n; be the probability that at T~0 K a spin of the ith
xy plane points in the up direction. We assume that the
system has a periodicity of N planes in the z direction

I

+J4&s;)&s;+,&&s, +,&&s;+,&) .

In our approximation, the entropy term per plane is

(2)

S —(ks/N) g [n;inn;+ (1 n;—)ln(l —n;)l . (3)

Instead of n;, we introduce the average magnetization
of the ith layer Mi=&S;) =2n; —1. The free energy F

0—TS is

(i.e., n; n;~iv, i 1,2, . . . , N). As we wish to express the
free energy in terms of one-particle distribution functions,
we neglect all correlations between spins (for n-spin in-
teractions with n & 2 this approximation is stronger than
the MFA).

Now the magnetic energy per xy plane takes the form

H -——g (2Jo&S;)'+J,&S;)&S;+,&
1

1 ks T 1+Mi 1 —Mi—Z' (2JoMi2+ J2MiMi+i+ J4MiMi+1Mi+2Mi+3)+ Miln + ln
f l

(4)

At a temperature T the distribution functions of the system will be those satisfying the N equations 8F/8M 0. This
leads to the system

Mi tanh[pJo[4M;+M; +iM; ~+x(M—;+iM;+2M;+3+Mi iMi —2Mi —3—
+M( y &Mi —iMi —p+Mi —iMi+ ]Mr+2)]i (i 1, . . . , N), (5)

where x = —J4/J2 and P-1/ksT. Here and in the fol-
lowing we assume Jo J2.

II. RESULTS

In Fig. 2 we show the phase diagram in the x, ksT/Jo
plane. It presents three phases, in agreement with other
authors. Our diagram differs from theirs in that the
paramagnetic (PM) region does not extend down to T 0
K at x 0.5. This difference between the results of mean
field and other types of calculations is the same as that ex-
isting for the ANNNI model between Bak and von
Boehm's ' and Villain and Bak's ' phase diagrams, and

should be attributed to neglecting correlations.
The transition from the FM to the PM phase is found to

be of second order. As just below T, all the M; are «1,
the term with x in (5) can be neglected. So, we conclude
that (i) the ordered configuration must be FM as in a sim-
ple Ising model, (ii) the transition is independent of the
four-spin interaction, and (iii) the critical temperature is
koT, /Jo 6. The property (ii) has also been found by the
first-order perturbation theory.

The transition from the &3 1) to the PM phase is of first
order. The critical line is easily seen to be asymptotically
linear in x. In fact, for x»2 in the ordered phase all

~ Mi (
=1 and F=H —(2+x)Jo, while in the PM

phase F —TS —kpTln2. Equating both expressions
gives

kT/J0"
PM ksT /J, - +2 1

ln2 ln2

2.

,0.5 1.0 1.5 2.0 2.5

FIG. 2. Phase diagram of the "2+4" model in a mean-field
approximation neglecting correlations. Here x —J4/J2, with
J2&0 and J4&0. We assume J0 J2.

The triple point of the phase diagram is tricritical. Its
position is obtained solving system (5) with the condition
that the free energy of the &31) phase must be equal to
that of the PM phase and imposing ksT/Jo 6. The
result is M ~ M3 0.936 388, M2 0.963 684, M4—0.887 389, and x 2.006042.

In the &31) region the system (5) has, above a certain
temperature (which depends on x), two solutions of the
&31) type. The one with the least free energy is that with
the larger values of the )M; ~, which decrease with in-
creasing temperature; the ) M; ) given by the other solu-
tion increase with the temperature, and correspond to an
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f (x)

~ ~
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TABLE I. Values of (M) and kaT/J for the interaction of n

spins, corresponding to the point of the transition from an or-
dered to a disordered phase.

~ e
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e
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e

r

FIG. 3. Graphic solution of Eq. (7). The solid line corre-
sponds to f(x) tanhx. The dashed (dotted) Iine corresponds to
I(x) ~Ay' t" ' for ~ ~ (z/n) &l(n i) 1& & (z/n) &/(n-i)] For
the sake of definiteness, in this plot we took n 4.

3
4
5

6
7
8
9

10

0.948 059
0.990611
0.997 912
0.999500
0.999877
0.999969
0.999992
0.999998

1.000000

k8 T/J

1.487 908
1.451 797
1.444 810
1.443 210
1.442 823
1.442 727
1.442 703
1.442 697

I/ln2

F/Jn

—1.031 339
—1.006 309
—1.001 457
—1.000 357
—1.000088
—1.000022
—1.000006
—1.000001

4

0

—1.000000

M tanh(nM" '/z) or Ay'/" ' =tanhy, (7)

with z k~T/J„, y =nM" '/z, and A =(z/n)
For n 2 the left-hand side is a straight line, which in-

tersects the hyperbolic tangent at one or no points if

unstable situation. Both solutions converge to a single
one, but this always happens at a temperature higher than
T, . This behavior is due to the four-spin interaction (see
below).

We looked for the existence of modulated phases (here
we call "modulated" any phase different from the FM or
(31)). Qur search was carried out near two values of x,
where such phases, if they exist, are more likely to be
those with the least free energy: x =0.5 and x =2.0. For
x =0.5, the modulated phases one should expect are of the
type (n 1) (n 4, 5, . . .) (which differ little from the FM
for large n and from the (31) for small n), and also
(3 1 4 1), (3 1 3 1 4 1), . . . (which differ little from the
(31)). We verified that these con6gurations are solutions
to system (5). However, they have a higher free energy
than the (3 I). The same happens for (3 3), which is one of
the most stable con6gurations in the ANNNI model. '" A
similar thing occurs for x=2. Here, in addition, any
modulated phase disappears appreciably before the (31)
does, i.e., the latter survives for higher temperatures. The
absence of modulated phases occurs because their entropy
term is not large enough as to compensate for the loss of
the magnetic energy with respect to the (3 1)
con6guration. Modulated phases were also looked for by
Kolb and Penson, s with a negative result. Let us say that
our calculations are limited to modulation wavelengths of,
at most, 30 sites. However, relying upon our previous ar-
guments, we think that modulated phases should not be
expected to be the most stable ones in our MFA.

The behavior of the (3 1) phase is, to a great extent, due
to the four-spin interaction. This can be seen studying the
case Jo J2 0. We do this considering the general case
of an n-spin interaction. To fix ideas, let us take J„)0.
Now Eq. (5) can be cast into the form

z/2&1 or z/2) 1, respectively. For n &2 the left-hand
side has an infinite slope at the origin and tends to infinity
for y ~ ~, so that it can be like the dashed or the dotted
line in Fig. 3, depending on the values of n and ~. At low
temperature the curve is like the dashed line. As the tem-
perature increases, the two solutions approach each other
until coinciding at a certain T, above which they disap-
pear. This gives rise to a discontinuity of the magnetiza-
tion. Among the two solutions, the one with the greater
value of

~
M

~
has the lower free energy. The transition to

the PM phase occurs when

'r 1+M—r ln2 —M"+—M ln +ln
2 1 —M

1 —M
4

Equations (7) and (8) form a system whose solutions are
presented in Table I.

Let us compare these temperatures with those above
which there are only trivial solutions. The latter must
satisfy Eq. (7) and

~n —
1

cosh
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We verified that for any n and J„ these temperatures are
higher than those given in Table I. Therefore the transi-
tion to the PM phase must occur when there are still two
solutions.

This behavior is essentially the same we found in the
"2+4"model for the (3 1) phase so we conclude that it is
due to the multispin interaction.
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