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Negative moments of currents in percolating resistor networks
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It has been shown that the positive-integer moments of the current distribution in a percolating
resistor network theoretically suffice to determine that distribution and hence all of its moments.
We discuss the inherent numerical and analytical difficulties involved when the negative moments
are reconstructed from the positive ones.

In a recent paper ' a new program of characterization of
universal properties of multifractal moments was suggest-
ed. It focuses on universal probability distributions for
positive integer moments M~, and on the corresponding
universal exponents and amplitude ratios. This descrip-
tion is based on analogies with critical phenomena. Its
completeness hinges on a theorem by Hausdorff and Bern-
stein which states that an exact knowledge of the
positive-integer moments of a probability distribution on a
finite support, suffices to characterize the entire distribu-
tion. The usual study of multifractals, on the other hand,
does not address the question of amplitude ratios but in-
cludes instead a discussion of negative moments. Al-
though these quantities generally exhibit less universal be-
havior than the positive moments, physical situations may
require their evaluation. It was stated in Ref. 1 that, in
principle, it is possible to construct negative moments
from the knowledge of the positive ones, although in prac-
tice such a procedure might not be desirable. The purpose
of this Brief Report is to explicitly show that indeed the
evaluation of the negative moments of currents in per-
colating systems from the positive ones involves severe
practical difficulties. That this can be the case is suggest-
ed by previous work where the negative moments had
been analyzed directly for percolating resistor networks
and found to display a type of Lifshitz phenomenon,
~herein, for q & 0, M~ is dominated by unusually small
currents in extremely low-probability configurations.
Since Lifshitz phenomena are notoriously difficult to in-
vestigate numerically, this raises the question of whether
numerical or analytic calculations of the positive mo-

ments can be used in this way to obtain the negative mo-
ments. This note explicitly shows why, when negative mo-
ments are required, a direct evaluation is preferable to a
calculation from the positive-integer moments.

We consider a percolating system in which nodes are
connected by resistors, each of which randomly assumes
the values 1 and 0 with respective probabilities p and
1 —p. If a unit current is inserted into the network of
resistors at node x and removed at node x', we define

Mq(x x') gib q Q I
b b

where the sums run over all bonds with ibWO and [ ]
indicates an average over all configurations. Series tech-
niques involve calculations of a quantity essentially
equivalent to Mq(p)—=g Mq(x, x'). Here we also con-
sider Mq(x, x') for a system of size L when ) x —x'( is of
order L and we denote this quantity Mq(L). For q )0,
one has, at the percolation threshold, in the asymptotic
limit of large I„

Mq(L) AqL '

where Aq are nonuniversal amplitudes and —xq are the
multifractal exponents, with —xo the fractal dimension of
the backbone. For negative q, it was found that the
threshold p, (q), at which Mq diverges, decreases as q be-
comes more negative. This was attributed to the fact that
the small currents which dominate the negative moments,
depend exponentially on L. In fact, the small currents
arise, for example, from long "ladders" (see Fig. 1 of Ref.
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3). The current in the last rung of a ladder of l rungs is of
order exp( —al/2), contributing an amount of order 3

bM~-exp( —aql)exp[ —P(p)l], (3)

where exp [—P(p )l] is the probability that such a
con6guration occurs. Since l-Lr with y ~ 1, bMv in-
creases with L exponentially (or even faster) for q & 0 and
a I q I

& P(p).
Here we wish to point out that exponential contribu-

tions as in (3) prevent, in practice, the determination of
the negative moments from the knowledge of only the pos-
itive ones due to intrinsic difficulties in obtaining these
moments to a sufficiently high accuracy. For example, let
us consider the possibility mentioned in Ref. 1 that the e
expansion results might be used to evaluate the negative
moments. This expansion is basically a perturbative tech-
nique (albeit a fancy one) in which the iterative length re-
scaling is designed to identify a power-law behavior as in
(1). Weak essential singularities due to exponential con-
tributions as in (3) are not accessible to these methods.
Such a behavior is analogous to the Griffiths singularities
in dilute ferromagnets or the Lifshitz phenomenon at the
band tails in the density of states of an electron in a
bounded random potential. No one has yet devised a
scheme to observe singularities in the dilute system which
occur at the transition temperature of the pure system due
to rare undiluted regions. These eff'ects, and the ones that
are indicated by (3) for the positive moments, correspond
to unobservable exponential singularities.

The accuracy required to obtain the negative moments
from the positive ones may be estimated from the
Hausdorff-Bernstein reconstruction formula. ' We 6rst
state the results, and then proceed to prove them. Sup-
pose that the smallest current in the network is a fraction
exp( —aL~) of the input current. To recover, with N
positive-integer moments, the leading contribution to the
negative moment of order q & 0, one needs N)&q,
N»exp(aLi') and, assuming N =exp(aL ), a relative er-
ror in the positive moments which is less than exp
x[—yexp(aLr)] where y=ln3. Since, at best, one may
obtain power-law corrections to scaling, it is clear that
such an accuracy is unattainable in analytic calculations.
Likewise, in numerical calculations, the required pre-
cision, even for aLr 5, exceeds the 16 bytes accuracy of
commercial computers.

To obtain the above estimates, we 6rst employ the
reconstruction formula, ' which states that given the first
1V positive moments, one has

~J ~]
lim di PN(i, L)f(i ) di P(i,L)f(i ), (4)

where the right-hand side exists. Here PN (i,L) is
de6ned via the first N moments of P(i,L),

N

P~(i,L)=—g Cg(i "(1 i ) )b—(i —k/N), (5)
k 1

where Cf=1V!/k!(N —k)!, the an—gular brackets denote an
average over the true distribution of currents, and f(i ) is
continuous over (0, 1]. Now we single out the smallest
current, which we assume to dominate the negative mo-

N N —k

M — g CP(k/N) g C "(—1)"M
k 1 r 1

Assuming every moment has an error

Mp+, Mk+, +BMk+r,

(9)

(10)

and also assuming that most of the error in M —
v comes

from the neighborhood of ro, where C„" is sharply
peaked, we use Stirling's formula to find

N —k

g C, ( —1)"bM +„=2 bMk+ (11)
r~$

Substituting (11) into (9) and approximating the sum by
its maximal term (for which k =N/3) we have

BM — =3 +qBMk +, .

To obtain 8'M —
q &&M —q we thus require

(bMk, +„,)/(Mk, +„,) «3 +v (M q)/(Mk, +„,) . (12)

Choosing 1V =exp(al) (to set the most relaxed condition)
and inserting (8) and Mk, ~,,—1 on the right-hand side of
(12) we have

bMk +,gM, , «e -'&+' ""'(R+We'& i'")

=~e -'"'"' (13)
where we assumed N & exp(al) » (qa —P)l+q ln3. Re-
lation (13) is the result quoted above. Since in real (or

ments in the manner indicated by (3),

P~(i', L) -gN(i', L)+ae S'b(i' e—") .

Here g~ leads to power-law scaling for Mq as in (2) and a
is of order unity and will be dropped subsequently.

The 6rst question we consider is how large N needs to
be so that (4) can be used for an accurate estimation of
the negative moments. Using (4)-(6), we have for the—qth moment, M —

v (q & 0),
r I

M — di P (i L)i

R+,e pl g Cp(k/N) qe kal(1 e
—al)N k-

k-i
(7)

where R stands for the "regular" contribution from gN.
For large values of N we can estimate the sum by its max-
imal term. Assuming N»q and using Stirling's formula,
we find a maximum at k k,„Nexp( —al). Substitut-
ing this result into (7), we obtain

-Z+We' -~" (8)
which is the expected behavior. The conditions that must
be fulfilled to obtain (8) are met when N k,„exp(al)
&)exp(al). It follows that an exponentially large number
of positive moments are needed for retrieving the contri-
bution of exponentially small currents to negative mo-
ments.

The second question we address is the following: As-
suming N is large enough to meet the above condition, to
what precision does one need the positive moments in or-
der to retain the information about the negative ones. Us-
ing (4) and expanding the averaged product in (5), we
have
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simulation) measurements the relative error increases
with the order of the (positive) moment, then (13) sets the
most relaxed condition for a11 Mk & k,+„.

As a 6nal remark, we note that the q dependence of
p, (q) found in Ref. 3 is a novel direct measurement of ex-
ponentially rare terms like those of (3). Indeed, we expect
similar q-dependent thresholds for negative moments of
appropriately de6ned densities of states of localized wave
functions.
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