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The phase diagram and critical behavior of a two-dimensional system with competing multispin
interactions, known as the two-plus-four model, are studied by means of simple approximate analyt-
ical methods. Using the Muller-Hartmann and Zittartz approximation, the interface free-energy
calculation in the ferromagnetic region is reduced to a single-particle problem. We found accept-
able agreement with earlier finite-size scaling results. The model is also considered in the Hamil-
tonian limit, where a linearized Holstein-Primakoff transformation is used to replace spin interac-
tions by a set of independent Bose excitations. We conjecture that the phase transition is first order
when the ratio of the four-spin and nearest-neighbor interactions is greater than one-half. Standard
perturbative calculations for low temperatures also indicate that the model could display first-order
phase transitions.

I. INTRODUCTION

A few years ago Penson' suggested the convenience of
introducing a new Ising-type model with competing mul-
tispin interactions as a contribution to an increasing in-
terest in such systems in different fields. There is evi-
dence of important effects of many-body interactions
which naturally led to the idea that this type of force has
to be included to have a more adequate description of
reality than in models using only pairwise interactions.
According to the exact results available, it is clear that
multibody forces have a strong inhuence on the critical
behavior of model systems, introducing significant
differences with the classical solution of the two-
dimensional Ising model. It is natural to consider the re-
lationship between the critical features and these types of
interactions, when they are made to compete with the
nearest-neighbor interaction. This has been done by Pen-
son and Kolb' using a quantum Hamiltonian analog
and by the present authors in the isotropic case by
means of finite-size scaling (FSS) methods.

A phase diagram obtained with a Monte Carlo tech-
nique has been published very recently. The phase dia-
gram of this model with competing multispin interac-
tions, known as the two-pl'us-four model, has been found
to be very similar to that of the anisotropic next-nearest-
neighbor Ising (ANNNI) model, with a ferromagnetic, a
paramagnetic, and a commensurate phase, the latter one
with an eightfold degeneracy. The main qualitative
difference between both systems, insofar as the works re-

.ported in Refs. 5 and 6 are concerned, is that the two-
plus-four Inodel does not display an incommensurate
phase. However, numerical approaches demand growing
lattice sizes as the ratio of competing interactions in-
creases. Moreover, most of the numerical work is based
on the application to first-order phase transitions of cri-
teria well verified only for continuous transitions; this
point still needs further clarification.

In this work we adopt an alternative approach and per-
form different types of simple analytical calculations in
an attempt to describe some features of the model, name-
ly its phase diagram and the character of its phase transi-
tions. The results of this article are presented in the fol-
lowing order. In Sec. II, we define the model, brieAy re-
view its ground-state structure, and obtain its ferromag-
netic boundary via the interface approximation of
Miiller-Hartmann and Zittartz (in the following referred
to as MHZ). In Sec. III, we consider the Hamiltonian
limit assuming, as usual, that anisotropy is not relevant
as far as the universal properties are concerned. After a
duality transformation, ' we further simplify the row-to-
row transfer matrix of the model at low temperatures by
means of a linearized Holstein-Primakoff transforma-
tion. " We refer to this as the free-boson approximation
(FBA). Although this method has been extensively used
in the quantum theory of magnetism, ' as far as we know
it has not been applied to classical Ising systems via their
transfer matrices. ' We conjecture that the model under-
goes first-order phase transitions and argue that if modu-
lated phases were stable, they should be incommensurate
structures for some values of the competition ratio.

In Sec. IV a standard low-temperature perturbative ex-
pansion is introduced. These calculations also indicate
that the model could exhibit first-order phase transitions.
Finally, in Sec. V, we make some concluding remarks.

II. THE MODEL AND ITS SURFACE ENERGY
IN THE FERROMAGNETIC REGION

The two-plus-four model is characterized by the re-
duced Hamiltonian

PH= g (Eos „s—+, „+K2s „s „+i
m, n

+4 m, n m, n+1 m, n+2 m, n+3)
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with p= I/T. The Boltzmann constant is taken to be
unity. The sums extend over the sites of a rectangular
lattice with Ising spins s „=+1. The indices m and n

correspond to the x and y directions, respectively.
We consider throughout this work EO, K2,K4) 0 and

adopt the usual parametrization of the ANNNI model:
X=%4/K2, which measures the degree of competition
between two- and four-spin interactions. Note that K4
should be positive definite, otherwise no competition with
ferromagnetic interactions is possible.

For X&0.5 the ground state is ferromagnetic, while
for X)0.5 it is an octuplet consisting of repeated pat-
terns of spins, such that sgn(s, szs3$4) = —1:

(+ ———), (
—+ ——), . . . , (

—+++)
along the x axis. ' The spin arrangement along the y axis
is always ferromagnetic. This phase will be denoted as

The rest of this section will be devoted to the evalua-
tion of the interface free energy between two regions or
domains with different ferromagnetic states. Phase tran-
sitions are then indicated by the vanishing of the inter-
face free energy.

In a recent study of the wetting transition for the same
model, ' the phase boundary was obtained by means of
the MHZ approximation, and some details of the calcula-
tion for X)0.5 were given. Here we develop a simple al-
ternative technique for X &0.5 which gives both the fer-
romagnetic boundary and the eigenvalue spectrum of the
transfer matrix.

MHZ assume that it is sufficient to consider only sim-
ple nonreversing interfaces (overhangs and clusters
configurations are excluded in this scheme). This as-
sumption appears to be justified in particular for large Ko
which is the case of the Hamiltonian limit. In spite of
this restriction, the results are often accurate and in some
cases even exact.

Following MHZ, the interface free energy per row or
surface energy o. is given by

where 0 is a row-to-row transfer operator defined as

( t
I &Ij ) =exp —(2K,d;, ) . (2.5)

State li ) ( lj ) ) corresponds to a row with a wall in the ith
(jth) column and d,. = li —jl is the distance between the
walls of two successive rows.

Imposing periodic boundary conditions on the lattice
rows, in the thermodynamic limit Z is simply

Z=(A, ,„) ', (2.6)

where A, , is the maximum eigenvalue of 0.
Now, any single-wall row configuration ln ) may be as-

sociated with a single-particle state

c„vac = n (2.7)

8= g kkckck
k

where

(2.9)

1 po
~k

go+ 1 2pocosk

from which it follows that

(2.10)

o=cotghKo . (2.11)

Then the surface energy associated with the coexistence
of two ferromagnetic domains is given by

o = T[2K2(1 —2X)+in(tghKO)] . (2.12)

where lvac) is the state with zero particles (or walls).
The transfer matrix then takes the form of a single-
particle problem, namely

~= X X $0(cj'cj+d +H. C. )

J d

with go=exp —2KO, d =0, 1,2, . . . .
By Fourier transforming, the diagonalization of 0 is

now immediate and is written down as

o = T 2K2(1 —2X)—lim lnZ
1

N ~oo Ny
(2.2) The ferromagnetic phase boundary obtained by setting

o. =0 is

The first term of the right-hand side of Eq. (2.2) is the en-

ergy needed to create a straight domain wall perpendicu-
lar to the uniaxia1 direction, while Z is the partition func-
tion of a lattice with N columns Ny rows, and two
different ferromagnetic domains. In the MHZ approxi-
mation, Z is given by

Z= g exp[ Pb, E(n, )], —
(n,. )

(2.3)

where bE(n; ) is the energy relative to a straight wall
configuration and the sum runs over all the possible wall
kinks (n; ) along the X» rows.

Then Z is written as

sinh[2Kz ( 1 —2X ) ]sinh2KO = 1 . (2.13)

sinh(2K& MKM )sinh2Ko = 1—. (2.14)

This is indicated in Fig. 1, where satisfactory agreement
with earlier FSS results is observed. As usual, this type
of calculation gives the correct surface energy and transi-
tion line of the ordinary Ising model (X=0).

An immediate generalization of this calculation to
similar models with M spins (M even) interactions (KM )

in one direction can be done. The ferromagnetic phase
boundary of such models is computed similarly and is
found to be

(2.4)

For all I, the phase transition turns out to be continu-
ous.

In the next section we turn to a different kind of ap-
proximation.
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04 HD = K2 y —(CT'„XCT'„0'„+2—+acr"„cr.„+] ) . (3.4)

For X&0.5, the low-temperature twofold degenerate
ferromagnetic ground state of the original model is
mapped into a single state representing the disordered
high-temperature region of the dual model. This state
corresponds to all dual spins pointing in the x direction.
For X )0.5, the eightfold degenerate (3.1) phase is pro-
jected into a fourfold degenerate antiphase equal to the
usual (2) phase of the ANNNI model, which is charac-
terized by a two-spin-up —two-spin-down row config-
uration pointing'in the x direction. The paramagnetic
phase corresponds to a ferromagnetic one.

After the o."„~o'„,o'„—+ —0"„ transformation, the dual
Hamiltonian is given by

FIG. 1. Ferromagnetic phase boundary. The dotted line is
the boundary obtained with the MHZ approximation for
E'2 =Ep =Jp /T. Solid circles denote previous finite-size scaling
results (Ref. 6).

The advantage of HD over H is that it does not contain
four-spin interactions.

Now we introduce boson operators via the Holstein-
Primakoff transformation, which for spins one-half reads

~ ——pt ( 1 ptp )1/2 (3.5)

III. FREE-BOSON APPROXIMATION
IN THE HAMILTONIAN LIMIT

Starting from the Hamiltonian model, the row-to-row
transfer matrix is easily written down (omitting an inno-

N /2
cuous factor [2 sinh2KO] "

) as

V=exp Ko g g"„exp Kz g g'„g'„+&

Z Z Z Z+4 ~ Vn Vn+1 In+2 in+3

(3.1)

where tghKo =exp( —2K0) and the Pauli matrices g„
and g'„act on the nth spin of a given row. The thermo-
dynamic functions and different correlation functions can
be expressed in terms of the eigenvalues and eigenvectors
of V.

Since V is dificult to handle in its present form, let us
consider the Hamiltonian limit, where the transfer matrix
is written in terms of a single exponential argument. For-
mally this is correct if K2, Ã4, It 0 «1, which corre-
sponds to strong coupling in the vertical and weak cou-
pling in the horizontal direction. Then the transfer ma-
trix is written as V= exp( H), where—
H K2 g (71 g +] X71 g +]g +2/ +3+ rg„), (3.2)

with ~:—K0 /K2
It will turn out that it is convenient to work with dual

variables. Under the dual transformation, the Pauli
operators transform according to

0'„=1 —2p„p„.
Here, o.„and o.„are spin raising and lowering operators
and the p's are operators which exactly satisfy boson
commutation relations. Different ground-state structures
of HD have to be considered separately.

A. X&0.5

In this case we can linearize the transformation by as-
suming that for small r ("temperature") the fraction of
spins deviating from their ferromagnetic ground state is
negligible. As it will be shown, this assumption works
properly even very near the transition point w, .

Then Eq. (3.5) is rewritten as

(3.6)

Finally, of course, as ~~~„ the ferromagnetic ground
state will become unstable and this approximation
scheme breaks down. The ground-state expectation value
of (o. ) arising from Eq. (3.6) is (incorrectly) equal to 2.
Hence, ' we include in what follows a factor 2 ' in 0.+

and 0
Retaining only bilinear terms and Fourier transform-

ing, HD can be written as HD =E0+H0, where

Eo= —K2X (1—X) (zeroth perturbation order),
(3.7)

Ho K2 X [2(1—2X)—rcosk](pkpk+p kp k)
0&k &77

K2~ g cosk(p„—p „+H.c. )
0 & 1@ & 77
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and pk creates spin-wave-like excitations, namely the
Fourier transform of the quasiboson operators p, .

As it is known, Ho can be diagonalized using a
Bogolyubov-Valatin' transformation. Then . HD is
rewritten in terms of new boson excitations as

1.50

HD=
—m&k &m

(~kbk+ 2 )~k 2 X +k+E0
—m. &k & m.

(3.8)
1.00 &g

with

1
cok =2E2u I ——T cosk

1
ak =2E2 u ——~cosk

u=1 —2X .

' 1/2

(3.9)

Q.OO

~ ~

'
~

0

F
~ ~

~ N

I I

Q.s
I 1

G.B
1

1.0

b, =2IC~u (1—flu )'~ (3.10)

From the vanishing of the mass gap at ~, =1—2X, we
recover the ferromagnetic boundary previously obtained
with the MHZ method. The critical wave vector result-
ing from this continuous transition is always zero.

It is found that the singular part of the free energy, f",
satisfies a scaling relation given by

f*(Ar„Ar) =Af*(r„r) . (3.1 1)

This scaling property will no longer be valid if X)0.5.
For completeness, it is worthwhile to test the validity

of the approximation made in Eq. (3.6), by calculating the
mean value of the quasiboson occupation number in the
b's vacuum. After some simple algebraic calculations,
(p p) is found to be

with

E(p)+p IC(p)
(1+p')" (3.12)

p =(r, /r) —[(r, /r) 1]'~— (3.13)

and K(p), E(p) the complete elliptic integrals of the first
and second kind, respectively. ' It is interesting to note
that even at ~=0.99~„the average of p~p is less than 0.1,
i.e., the linear scheme is still an acceptable approxima-
tion.

Hence the mass gap or inverse correlation length, defined
as the gap between the ground and first excited states of
HD, is simply

FIG. 2. Phase diagram of the two-plus-four model in the
Hamiltonian limit, obtained using the free-boson approximation
(dotted line). We also show the results obtained by Penson (Ref.
1) using finite-size scaling (solid circles).

mation to decouple the eight resulting modes (see the Ap-
pendix for calculation details), we finally obtain the ele-
mentary excitations of HD which always display a non-
vanishing gap. Here, we will adopt an ad hoc criterion
and assume that when the mass gap reaches a finite
minimum (maximum correlation length), the system has a
first-order phase transition. At low temperatures the re-
sulting phase boundary is, as expected, in acceptable
agreement with earlier FSS calculations. ' In Fig. 2 we
show the phase diagram obtained using the free-boson
approximation compared to numerical data.

It also turns out that if X)0.5, the energetics of the
system in the thermodynamic limit may impose a critical
wave length which is not commensurable with the period
of the chain. This result does not necessarily imply the
existence or stability of modulated phases, although if
this were the case, they should display an incommensu-
rate structure for certain competition ratios. Although
these results are not conclusive, nevertheless they are use-
ful to indicate that the physical behavior underlying the
region X)0.5 is rather different from that corresponding
to the ferromagnetic case.

IV. PERTURBATIVE CALCULATIONS

B. X &0.5

Although the algebra involved in this case is simple
and similar to the former case, it demands a lengthy cal-
culation due to the ground-state structure. After retain-
ing only bilinear terms and using a Tyablikov' transfor-

The main problem in applying standard perturbation
theory at small w is that the degeneracy of the ground
state of H cannot be removed in any order of perturba-
tion even if X&0.5. From a practical point of view it is
reasonable to avoid such complication by using the dual
representation HD.
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The unperturbed problem for small w is

Ho = —K2 g (cr'„—Xo'„o'„+~),

while the (even) perturbation is given by

V= —K2~+ o'„o„+, .

(4.1)

(4.2)

We shall compute the mass gap of HD up to third order
in ~, because for X)0.5 this is the lowest order which re-
moves the translational invariance degeneracy of the first
excited state.

First we consider the case X &0.5 which is character-
ized by a ferromagnetic ground state. After a straightfor-
ward calculation, the third-order mass gap is found to be

b'z '=F2 2(1 —2X)—2&cosk+ +csin k
(1—2X) (1 —X )

X(1—X)cosk + —,'cos k ——', cos3k
(1—2X)

1 1 1 1 1 3 1 1+cosk —9/4
2X+ 1 1+X 2(2X —1) 2 8 X

It follows from this expression that the whole perturbation scheme is singular at X=0.5, which is not so surprising in
view of the infinite degeneracy of the ground state at ~=0, X=0.5. The first-order correction leads to the ferromagnet-
ic boundary previously obtained using the MHZ and the free-boson approximation methods; the critical wave vector is
always zero.

A rather different critical behavior is found in second and third order. In the latter case, for X 0. 17 there is a non-
vanishing mass gap at low temperatures; we interpret this result as in Sec. III, i.e., we assume the system has a first-
order phase transition, which implies that there should be a tricritical point at this value of X.

Minimizing Eq. (4.3) it is found that for X (0.46 the resulting third-order wave vector is zero. Above this value of X,
the third-order boundary becomes unstable, as expected when X~0.5. Similar results were obtained for second-order
corrections.

We now consider the case X)0.5, characterized by a ground state equal to the usual (2) phase of the ANNNI mod-
el. We found that the third-order mass gap is given by

b, ' '=K 4X —2 —r ——21 1

2 4X
(4.4)

1.6

O.g

O.O
Q.Q

from which it follows that the third-order correction is
the lowest order needed to remove the translational in-
variance degeneracy; the resulting critical wave vector is
always zero.

Below X=0.6 the second- and third-order gaps do not
vanish. As it was previously mentioned, we then assume
that the (3.1) phase boundary arises from a first-order
phase transition. Results for X)0.6 seem to indicate
that the transition should be continuous. This calcula-
tion, however, is not too reliable because it corresponds
to the region ~, ) 1.

A high-temperature perturbation expansion seems to
be less useful, because the interesting region of the phase
diagram corresponds to ~ ') 1. If, nevertheless, one car-
ries out this calculation, it is somewhat remarkable that
the anomaly observed in the low-temperature expansion
near X=0.17 is still present. In Fig. 3 we show the phase
diagram obtained with low- and high-temperature expan-
sions together with FSS data.

FICs. 3. -Phase diagram of the two-plus-four model in the
Hamiltonian limit, obtained using low- and high-temperature
expansions. The solid and dotted lines represent the second-
and third-order terms of the low-temperature expansion, respec-
tively; the dashed line indicates the second-order term of the
high-temperature expansion. As before, solid circles indicate
Penson's results (Ref. 1). We do not show first-order results sep-
arately, to improve clarity.

V. FINAL COMMENTS

In this work we have made three simple analytical ap-
proximations to the two-plus-four model which is an in-
teresting example of a system with multispin interactions
and modulated phases. In what follows we make some
final comments in addition to those made in previous sec-
tions.



7270 MARCELO D. GRYNBERG AND HORACIO CEVA

By now it is well established that a continuous transi-
tion can be detected by the vanishing of the correspond-
ing mass gap of the equivalent quantum Hamiltonian ver-
sion. To our knowledge there is no similar result in rela-
tion to the first-order phase transitions (which, as is well
known, are characterized by a nondivergent correlation
length). In this paper (see Secs. III and IV), we have used
as a criterion that a (finite) minimum in the energy gap
corresponds to a first-order phase transition. A posteriori,
we found that in the FBA this assumption is in good
agreement with published numerical results.

The free-boson and MHZ approximations led to the
same ferromagnetic boundary and predicted a continuous
phase transition along it. Indeed, erst-order low-
temperature perturbation theory yields the same result.
This agreement, however, is lost when higher-order
corrections are considered: in this case the phase transi-
tion ceases to be continuous for X)0. 17 and the phase
boundary is somewhat changed. We want to emphasize
that the anomaly seen in Fig. 3 around this tricritical
point needs further study. We found it suggestive that in
the ANNNI model there seems to be an anomaly at al-
most the same value of the competition ratio it is not
unreasonable to think that it could be a similar origin for
this behavior in both models (like, for instance, the pres-
ence of the disorder line).

The FBA turns out to be surprisingly good for values
of X which are not too large, up to "temperatures" very
near w, . In the critical region, however, a more reliable
calculation should keep higher-order terms of Eq. (3.5).
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APPENDIX

The purpose of this appendix is to describe some de-
tails of the free-boson approximation in the region
X)0.5. Let us consider the four sublattices obtained by
keeping one of every four columns of the original lattice,
and associate to each sublattice site a Pauli spin operator
in the following way:

0 4 +p o., „mi th s =a, b, c,d according to p = 1,2, 3,4,
respectively; X= 1,2, . . . , X„/4 —1.

The linearization of Eq. (3.5) now appears as

o-+ =a o-+ =b o-+ =c~ o-+ =d~.an n& bn n& c, n n& d, n n (A 1)

By Fourier transforming and retaining only bilinear
terms, HD is written as HD =Eo+Ho, with

It is interesting to remark that HD, within the approxi-
mation given by Eq. (3.7), does not conserve the number
of particles; its ground state is a linear combination of
states with a variable number of pairs of particles with
momentum (k, —k). In this sense, it is analogous to the
BCS ground state of superconductivity.

Eo = N, XK2 (ze—roth perturbation order),
(A2)

Ho = —K2 2u
—71-&k &~

(ckck+dkdk )
—2v

—71. & k &Vr

(u/&b /&+&/, bk+H c )+r

(&k&k+bkb/, )

(Ckd g +Cgdk +H. C. )
—~&k&~

—7T&k &m

—~&k &71-

(bkc /, +bktck+H. c. )+r g (e' dka k+e ' dkak+H. c. )
—7T&k &7T

where U=(1+2X) and u is defined as in Eq. (3.9). In
spite of the apparent difhculty of this expression, it is bi-
linear and can be diagonalized with the help of a general-
ized Bogolyubov transformation introduced by Tyabli-
kov' in the quantum theory of magnetism.

In each k subspace there are eight kinds of excitations
and from a practical point of view it is convenient to rela-
bel them in the following way:

where

H)=gL /3B Bp,

H2= —,
' gM f3B Bp,

a,P

H3= —,
' g M* pB Bp .

a, P

(A5)

a —k +5, k~

bk +2, k& k 3, k& k +4 k

~ —k ~6, k ~ C —k ~7, k& ~ —k ~8, k

(A3)
Here, L and M are, respectively, Hermitian and sym-

metric matrices, written as

With this notation, HD is decomposed in 8 X 8 blocks
which in turn are expanded in three types of processes:

Fk 0 0
L=

0 F, M=
0 (A6)

H =H, (BtB )+H~(B tBt)+H3(BB'), (A4) where Fk and R/, are 4X4 Hermitian matrices given by
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I'k = —E~~

—2v /r

0
—ike

—2v /w

1

0

0
1

2u /r
1

ik

0
1

2u /7

g(XpaXva ypayva) &N, v &

X (xt axva ypayva ) =0 .
(A9)

p 1 p ik
(A7) Using Eq. (A9) we can find the inverse transformation

of Eq. (AS), which turns out to be

1 0 1 0
Rk K2~ 0 1 0 1

—ik 0 1 0

8 = g(x„* T„+y„*Tt) . (A10)

T„=g(x„B y„B—), (AS)

Now we perform the Tyablicov canonical transforma-
tion from quasiboson operators B to new operators T

Taking into account Eq. (A10) and the solution of the
secular problem [H, T ]=co'"'T, the elementary excita-
tions co' ' are finally derived from the positive eigenvalues
of an 8 X 8 matrix Ak given by

which almost satisfy boson commutation relations pro-
vided that

Qk= R

R

k
(A 1 1)
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