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Central-force models which exhibit a splay-rigid phase
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Two models, one random the other periodic, are described which exhibit splay rigidity but are
not rigid with respect to compression. The random model is based on a periodic lattice of rhom-
buses whose sides consist of central-force springs, which is perturbed in the following way: rhom-
buses can have diagonal central force struts with probability y or they can have one of the horizon-
tal springs removed with probability x. For x,y (& 1 we are led to consider a long-ranged anisotrop-
ic percolation process which is solved exact1y on a Cayley tree. %'e show that for y/x near 2 the
compressional rigidity of this system is zero but the Frank elastic constant, K, describing splay rigi-
dity is nonzero. This is the first example of a percolation model for which this phenomenon, sug-

gested earlier, is conclusively established. For y/x ~2&2 the system has nonzero bulk and shear
moduli. We also study the excitation spectrum for a periodic model which possesses only splay rigi-

dity and obtain a libron dispersion relation co=czq, where q is the wave vector and cz-(K/p)'
where p is the mass density. These results are generalized to obtain a scaling form for cz and the
density of states of the random model which is valid when the correlation length for compressional
rigidity becomes large.

I. INTRODUCTION

Recently there has been great interest in the randomly
diluted lattice of central-force springs on a two-
dimensional triangular lattice. The conventional picture
is that as the concentration, p, of springs present in the
lattice is increased beyond a threshold value, p,f (which
is' significantly larger than the classical percolation
threshold at p, ) the system passes from a totally nonrigid
phase into a phase where the bulk modulus and the shear
modulus both grow continuously from zero for p larger
than p,f. Indeed, there has been quite some controversy
as to the values of the critical exponents associated with
this elastic threshold. ' This model has several obvious
similarities with the analogous electrical network prob-
lem obtained by replacing each central-force spring
present in the diluted lattice by a conductance o. between
the lattice sites. Because of this similarity ' it is clearly
desirable to adopt the field theoretic formulation of the
randomly diluted resistor network' ' " to this elastic
problem. In approaching this question we' have
developed series expansions for a quantity, the splay-
resistance susceptibility, which was formulated to be the
analog of the order-parameter susceptibility developed by
Stephen' '" for the random resistor network. The virtue
of this approach is that the resistive susceptibility reduces
in the limit o.~~ to the usual percolation susceptibility.
In this theory, therefore, the exponents associated with
the conductance threshold appear as crossover ex-
ponents' ' " associated with "turning on" o. '. The
relevant conclusion from our previous work' was that a
major role was played by the angular displacement 8(b),
of the bond b. It was shown that there could exist clus-
ters which could be compressed or sheared with no re-
storing force, but for which distant bonds when twisted
with respect to one another had a restoring force. This

bond-angle, or splay, rigid phase is analogous to the
bond-angle rigid or hexatic phase in a two-dimensional
liquid. ' Furthermore, in the limit where the spring con-
stants become infinite, this splay-resistance susceptibility
defines a new percolation problem, i.e., one describing the
percolation of splay rigidity.

Although this analogy is very satisfying, it remained to
establish whether the threshold for splay rigidity could be
distinct from that for total rigidity, as suggested. ' In
fact, Tremblay et al. ' and later Marshall and Harris'
have shown that these thresholds appear to coincide for
the diluted central-force model on a triangular lattice.
While it seems clear that these two thresholds can be
made different by including appropriate bond-angle
forces, the purpose of the present work is to give a
central-force model in which the two thresholds can be
established to be different. This demonstration not only
shows that such a splay-rigid phase is possible, but it also
indicates that the usual threshold for rigidity should be
considered to be a multicritical point at which the thresh-
olds for splay rigidity and bulk rigidity coincide. We also
study the nature of the elementary excitations in the
splay-rigid phase by analyzing the phonon spectrum of a
periodic system which is rigid only with respect to splay.
Here we find that the low-frequency modes are librons
with a dispersion relation ~=c&q, where co is the frequen-
cy and q the wave vector. Using the result we obtain a
scaling form for cz and the density of phonon states for
the random system by a simple ansatz for the dependence
of the velocity c& on the size of the rigid regions.

BrieAy, this paper is organized as follows. In Sec. II
we define a type of local dilution of the central-force
model in two spatial dimensions. In Sec. III we give
bounds for the thresholds for the propagation of splay ri-
gidity and compressional rigidity in terms of a long-
ranged percolation model whose exact solution is given in
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the Appendix. In Sec. IV we study the elementary excita-
tions to be expected in the splay-rigid phase, first by the
exact solution of a periodic splay-rigid system and then
by scaling arguments using the properties of large totally
rigid clusters. Our conclusions are summarized in Sec. V.

t 2x

II. DEFINITION OF THE MODEL
FIG. 2. The four possible states of a plaquette with their

respective probabilities.

We start from a periodic lattice of rhombuses with
central-force springs of spring constant k between
m.earest-neighboring sites, for which the Harniltonian is

H= —,'k g t[u(x) —u(x')] 8'„, J

(x,x')

where u(x) is the displacement of the node at site x,
(x,x') indicates that the sum is over pairs of nearest-
neighboring sites, and 6'„~ is a unit vector along the line
connecting sites x and x'. We will perturb this system
randomly in the following way. We first label every other
plaquette as in Fig. 1, so that each bond belongs to one
and only one plaquette. Each labeled plaquette can ran-
domly be in one of four states, as shown in Fig. 2: (l)
with probability y it has a diagonal central-force spring
(of spring constant k) inserted to connect the lower node
to the upper node, (2) with probability x, the bottom hor-
izontal spring is removed, (3) with probability x, the top
horizontal spring is removed, and finally (4) with proba-
bility 1 —2x —y it is not modified at all. In this model
therefore, the vertical springs are always present, some
horizontal springs are removed, and some diagonal struts
are added. As will be seen below, adding struts increases
the tendency of this system to be splay rigid, and to a
lesser extent, totally rigid, while taking out horizontal
bonds decreases the bulk modulus, and to a lesser extent,
the splay rigidity modulus. Thus we find that for small x
and y, where we can analyze the system conclusively,
there is a regime around y =2x for which the system is

splay rigid but not totally rigid.

/ /~/ /5/ /s/
+7+ gag peg g/ /10/ /11/ /12

»X %14' 'V5% X/ /1s/ /17/ /1a/
zo

/ /»/ /»/ /z~/

FICx. 1. Labeling of plaquettes on the periodic lattice of
rhombuses.

III. A NEW PERCOLATION PROBLEM

In this section we will study a new percolation problem
based on this model in which we consider simultaneously
"strut" percolation and "vacancy" percolation. We will
first show that when "strut" percolation occurs, the sys-
tem is splay rigid. By an argument that one may view as
dual to the above, we will next show that when "vacan-
cy" percolation occurs, the bulk modulus is zero. The
final step is then to show that for a regime of x and y both
types of percolation occur simultaneously. Normally in
two dimensions one would not expect two competing
types of connectedness to percolate simultaneously. The
reason why we find such a result is because the percola-
tion process we are led to consider becomes long ranged
when x and y are small. It is this feature that also enables
us to analyze the situation conclusively.

We first consider "splay-rigidity" percolation. One can
easily establish that pairs of opposite sides of a rhombus
are splay rigid. That is to say, if one applies forces to
twist opposite sides of the rhombus as shown in Fig. 3,
there is a finite response. A forrnal definition of splay ri-
gidity may be given as follows. For the system of X parti-
cles in any random configuration, C, we consider the elas-
tic Green's function, G (E,C), which is a 2N X2N matrix
with rows and columns labeled by (i,a), where i labels
the site and e=x,y the component and E is the energy.
We have

G(E, C)=(V EI)—
where I is the unit matrix, V the matrix of coef5cients of
the potential energy implied by Eq. (l), and the limit
E~0 is implicit. Generalized displacements are 2N
component vectors denoted ~q ). We are especially in-
terested in generalized displacements corresponding to
rotation of a bond b clockwise through an angle 0 about
its midpoint and we will denote such a generalized dis-

&AX X XXx
FIG. 3. Propagation of splay rigidity along a line of rhom-

buses. When torques of opposite orientation are applied to op-
posite sides (A,B) of a line of rhombuses the response is finite.
In contrast, when torques of opposite sense are applied to sides
A and D, the response is infinite, indicating that these two sides
are not in the same splay-rigid cluster.
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&8b —8b ~p;) =0 for i =1,2, . . . . (4)

We can show that splay-rigidity obeys the cluster proper-
ties: We will assume that b and b' are splay-rigidly con-
nected, and that b' and b" are splay-rigidly connected.
With these assumptions we will show that b and b" are
also splay-rigidly connected. (This property may seem
trivial, but it does not hold if one defines two bonds as
rigidly connected if there is a nonzero restoring force as-
sociated with moving their centers towards one another. )

We have

&8b 8b l~, &=-«b 8b l~, &+-&8b 8b-l~, &-

By assumption, each term on the right-hand side of this
equation vanishes for all I',. Therefore, the left-hand side
vanishes for all i, also. Thus splay rigidity obeys the clus-
ter property one expects for a percolation process and
which is necessary if one wishes to identify clusters.

In particular, splay rigidity will propagate through a
linear array of such rhombuses, as illustrated in Fig. 3.
Now consider the situation when a rhombus has a strut,
as shown in Fig. 4. Now all four sides of this rhombus
are splay rigid with respect to one another, in contrast to
the situation without the strut, where only opposite sides
are splay-rigidly connected. One sees that at a strut splay
rigidity will branch out into both transverse and longitu-
dinal directions. If we ignore vacancies for the moment,
one sees that the splay-rigid structure will be obtained by
connecting all struts in the same row or column. But it is
also clear that the presence of a vacancy will interrupt
this propagation of splay rigidity or "strut percolation. "
The question is now whether or not splay rigidity can
propagate arbitrarily far when the effects of interruption
by vacancies compete with the presence of the struts.

placement by ~8b). Bonds b and b' are splay rigid with
respect to one another if, for E—+0,

&8b 8—
b IGl8b 8b'& = Cbb'+ ~

where ~8„—8b ) denotes the generalized displacement
~8b ) —

~8b ). Physically, Cbb, is the angular response in
the coordinate 8b —8b ) to a unit conjugate generalized
torque. When Cbb is finite, there is a nonzero restoring
torque against rotating the two bonds in opposite senses.

Alternatively, if
~ P, ), i = 1,2, . . . are the zero eigen-

vectors of V, then bonds b and b' are splay rigid if

This situation is illustrated schematically in Fig. 5. In
summary, the system exhibits long-range splay rigidity if
"strut" percolation occurs. As noted previously'
compressional rigidity propagates differently than splay
rigidity. Opposite sides of a rhombus are rigid with
respect to compression (although not, of course, with
respect to shear). This compressional rigidity will also
propagate along a line of rhombuses. But at a strut, the
compressional rigidity does not propagate transversely.

When x and y are small the struts and vacancies are far
apart and the path of strut percolation is topologically
equivalent to a Cayley tree of coordination number 4.
(At each strut there emanate 4 pathways of rigidity. ) One
can see that from a strut, splay rigidity will percolate to a
neighboring strut to the right of it in the same horizontal
row if the path is unobstructed by a Uacancy. The proba-
bility pI',

"'""that this path is unobstructed is given by

(strut)g(1)2+2k(12xy)y
k=0

(1 —x) y
1 —(1—x) (1—2x —y)

where the kth term is the probability that the two struts
are separated by k steps having no intervening vacancies
or previous struts. In constructing this expression we
naturally took account of the state of the plaquettes in
the rows adjacent to the struts as well as those in the
same row as the struts. Also struts are allowed only in
numbered plaquettes which alternate with unnumbered
plaquettes. Thus p&"'"" is the probability for horizontal
propagation of splay rigidity. Likewise the probability
p,""""that from a given strut, splay rigidity will percolate
to a neighboring strut below it in the same vertical
column unobstructed by a vacancy is given by

(strut) y ( 1 2 )k
k=o 2x +g

We are thus led to consider a long-ranged anisotropic
percolation problem in the low density limit for which
the Cayley tree provides an asymptotically correct model.

/I/ //
/ //, '/
/ //

FIG. 4. Effect of a strut. In the absence of the diagonal strut,
splay rigidity percolates from 3 to C, but not from A to either
B or D. With the strut present sides 2, 8, C, and D are all splay
rigid with respect to one another.

FIG. 5. Percolation of splay rigidity via struts. Note that
splay rigidity propagation is interrupted by vacancies. Thus,
splay rigidity propagates from D to G via E and I' but not
directly from D to G, since a vacancy intervenes.
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The condition for percolation on a Cayley tree of coordi-
nation number z is' p (z —1 ) ) 1, where p is the probabil-
ity that a bond is occupied. Here we have two sets of
probabilities, and in the Appendix we show that the con-
dition for percolation here is

4 (strut) (strut) & g 1 (strut) qp 1 (strut) ~

In the limit of small x and y, this condition is

y )2x

vertical component of the displacement is given by the
average value of n as calculated for regions just above
and just below the line. The horizontal components of
the displacement (for nodes on the path) are those needed
to keep all springs unstretched.

We now carry out the same analysis based on the Cay-
ley tree for "vacancy" percolation. The probability pI("'
that a vacancy will have another vacancy in the same row
unobstructed by a strut is

in which case the lattice is splay rigid. This analysis is
expected to be exact in the limit x,y ~0.

Now we consider the effect of vacancies. We will show
that vacancy percolation implies that the lattice is com-
pletely compressible with respect to vertical stress. In the
following discussion we therefore will assume that the
bottom row of the system is undisplaced and we will
show that when vacancy percolation occurs, the top row
can be displaced vertically with no restoring force. For
the moment, let us ignore the effect of struts. If two va-
cancies occur in the same row at the edges of the sample,
then it is possible to displace the region above the line
connecting the vacancies downward. The displacements
which allow this to occur are shown in Fig. 6. In this
simple example one sees that the downward vertical corn-
ponent of the displacement is 1 for a node above the line,
—,
' for a node on the line, and 0 for a node below the line.
(For this calculation we assume the acute angle of the
rhombuses to be 60'.) However, it is clear that such dis-
placements cannot take place if there are struts adjacent
to the line connecting the two vacancies. The situation
when struts are also present is shown in Fig. 7(a). There
it is seen that to have zero compressional rigidity we
must be able to trace a path of vacancies from one side of
the system to the other. This path is constructed by con-
necting vacancies which are both either in the same row
or in the same column and such that this path is unob-
structed by a strut. The vertical component of the dis-
placement of a node not on the path is n, where n is the
net number of lines in the path going to the right below
the node, where a line to the right is counted as +1 and
one to the left as —1. This construction is illustrated
schematically in Fig. 7(b). For a node on the path the

L
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FIG. 6. Pattern of displacements involving no restoring forces

which can be made above a line connecting two vacancies in the
same horizontal row. No struts are allowed to be adjacent to
the line connecting A and B, but they can be anywhere in the
uniformly displaced regions.

FIG. 7. (a) Percolation of vacancies across the system via the
path A-B-C-D-E-F-G-H-I-J. Struts are not allowed to be adja-
cent to horizontal lines connecting vacancies or to intersect
vertical lines connecting vacancies. The deformation shown in-
dicates that the system has zero compressional modulus against
vertical stress. (b) Schematic representation of the displace-
ments associated with the path of propagation of vacancies of
panel (a). The path defines regions each characterized by a uni-
form vertical displacement. This vertica. displacement is equal
to the net number of lines going to the right below the region, as
discussed in the text.
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p&""'= g (1—x —y)"x =
k=o x+&

and the analogous probability for a column is

p'""'= g (1—2x —y)"(2x)= 2x
Zx +y

(10)

Here the factor 2x comes from the fact that each pla-
quette has two horizontal bonds each of which may be
the neighboring vacancy. In this case the condition for
percolation obtained from Eq. (8) is

y (8x (12)

for x and y small. Thus the compressional rigidity is zero
for y & 2&2x in the Cayley tree approximation.

Because of the horizontal rigidity of this anisotropic
model, it does not yet form an example of a system with
zero bulk elastic constants having nonzero splay-rigidity
modulus, K. To give such an example we should put to-
gether domains consisting of regions like those treated
here, some unrotated and some rotated by 90'. In sum-
mary, for —,'y &&2x &y the lattice is splay rigid but not
compressionally rigid.

IV. LIBRONS IN THE SPLAY-RIGID PHASE

It is of interest to study the frequency spectrum of
small vibrations of the splay-rigid phase of randomly di-
luted central-force springs. Numerical work' shows that
near a rigidity threshold there is critical behavior in the

E= —,'k g D,~(q)u, (q)ug( —q),
a, P, ~, r', q

where

(13)

TABLE I. Displacements of various zero-energy modes for
the splay-rigid system of Fig. 8. We label the modes as follows:

Q„ is the localized mode in which the square 1 —4 is translated
in the positive x direction, and similarly for Q». QL is the libron
mode at zero wave vector for which the displacements are re-
peated throughout all unit cells. For Qz we give only the dis-
placements of particles 1 —8. QI has not been orthogonalized to
the uniform translationai modes.

associated density of states, but the form of the singular
behavior is not yet understood. Since no work has yet
been done on excitations in the presence of long-range
splay rigidity we consider a periodic model of such a sys-
tem of central-force springs. This model is shown in Fig.
8, where each bond represents a central-force spring con-
necting adjacent particles with spring constant, k, as in
Eq. (1). That this system is nonrigid with respect to shear
and compression can be seen as follows. The square in
Fig. 8 consisting of sites 1, 2, 3, and 4 can be rigidly dis-
placed in either the x or y directions with a localized
zero-energy distortion. The associated displacements of
the particles are listed in Table I and are shown in Fig. 8
for a displacement in the x direction. Since we can form
wavelike linear combinations of these distortions, we con-
clude that for each value of wave vector q there will be
two zero-energy "phonons. "

To study the excitation spectrum we choose the unit
cell to contain particles 1-8 in Fig. 8. Thus the spectrum
of small oscillations has 16 branches. To obtain these we
write the elastic energy in terms of the dimensionless
dynamical matrix as

FIG. 8. Periodic lattice which is rigid with respect to splay
but not to compression or shear. The unit cell contains particles
numbered 1,2, . . . , 8. The square formed by particles 1 —4 can
be translated in either the x or y directions by a localized distor-
tion {see Table I) in which the connections between squares Rex
like an accordion. The pattern of localized displacements for
translating the square in the x direction is indicated by arrows.
Particles numbered with primes are in another unit cell and
those with double primes are in yet another unit cell ~
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u, (q)=(&„,) '~ gexp[iq (R+r, )]u, (R),

p(co) = —,'5(~)+ —',p(oi) (15)

The 6-function contribution to p(co) represents the local-
ized zero-energy distortions described in Table I. In ac-
tual calculations it is convenient to find the co; rather
than the co; themselves. Thus in Fig. 9 we show
F(co )—:2p(co)/co. The extreme irregularity of the spec-
trum is due to the large number of Van Hove singularities
for the large unit cell in our model.

In addition to the two zero-energy modes which occur
for each value of the wave vector q, there is also for q =0

where u (R) is the a component of the displacement of
the particle at location r in the unit cell at R and N„, is
the number of unit cells in the system. The dimensionless
dynamical matrix, D, is given in Table II. The first Bril-
louin zone is defined by —m/ao &q&, q„&m/ao, where
ao=v'10a, q&=q cos8O+q sin8o, q„=q~cos8o —q„sin8o,
with tanOo= —,

' and a is the length of a side of the squares
in Fig. 8. By sampling over the first Brillouin zone, using
the linear extrapolation method of 6ilat and co-
workers, ' we obtained the density of states p(co) [nor-
malized by jp(co)de= 1] as

a zero-energy libronlike mode whose displacements
within a unit cell are shown in Fig. 10 and given in Table
I. (These displacements are repeated in all unit cells,
since q =0.) For small q our numerical results gives the
libron dispersion relation as

I.= —,'nI8(r) —
—,'K[78(r)] (17)

where n is the number of clusters per unit area, I is a typ-
ical moment of inertia associated with a rigid region, and
0 is the angular coordinate assigned to each rigid region.
Since I—mr, we write the first term in Eq. (17) in terms
of a sum over clusters a as —,

' g n r 8(r) . The cluster
average of r which appears in this formulation is

mcu =—'ka q15

We have verified this result by a perturbative calculation
in powers of q.

We may generalize this result heuristically in a way
which may be applied to random systems. We assume
the libron mode to consist primarily of coupled librations
of rigid units of size gz, where gz is the correlation
length for total rigidity. g„ is finite in the splay-rigid re-
gime, but diverges as the threshold for total rigidity is ap-
proached. For the periodic model of Fig. 8, gz -a. We
write the Lagrangian per unit area as

TABLE II. Dynamical matrix for the splay-rigid periodic lattice of Fig. 8. Here X denotes exp(iq„a), Y denotes exp(isa), X
denotes exp( —iq a), and Y denotes exp( —isa). The first eight rows and columns refer to the x coordinates, the second eight to the y
coordinates, in each case ordered 1 —8 according to the particle numbering in Fig. 8.
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0.4—

oJ Qg3

where the exponents are those for elastic percolation, as
the totally rigid phase is approached from within the
splay-rigid phase. These exponents have not yet been in-
vestigated. If we note the existence of zero-frequency
modes associated with translating rigid clusters, we ob-
tain for d spatial dimensions

p(ro) =c, 'g (g~ )5(ro)

0.2 +c2'co '(boa/cs ) 6(cs/g„—co)/K, (20)

0,1—

O.O 0
t

2

( QJ /QJo )

I

4

FIG. 9. Reduced normalized density of states
2p(co)/co=—F(co') for the splay-rigid periodic system of Fig. 8.
We plot the dimensionless quantities co+~(ro ) vs (co/roo), where
coo=k/m. As indicated in Eq. (15) the 5-function contribution
is not represented.

where 6(x) is unity for x )0 and vanishes otherwise, c, '

and c2' are constants. The restriction on co in Eq. (20) is
caused by the short wavelength cutoff at qg~ =1 implied
by the rigidity of the fundamental units. The density of
zero-frequency modes will have a regular part and a
singular part. The former corresponds to the existence of
small rigid elements whose density varies smoothly
through the rigidity threshold, in loose analogy with the
percolation free energy which describes the number
of clusters. For the singular part of g(gz) we assume
that g (gz ) —(a /gz )". Considering only the singular
part, we write the result in Eq. (20) in scaling form as

p( co ) =~o '(a /4 ) f ( ro4 /cs (21)

L =c,gz ~ 8(r) c2$„" [Vo(r)]— (18)

where c, and c2 are constants. From this form we obtain
the dispersion relation for librons as

~2 (
el )q2 c2q2

/'v+ s /v —2
(19)

FIG. 10. Displacements for the zero-wave-vector libron mode
for the system of Fig. 8.

known' to be given by r —gz
~/ . Also we identify the

scaling of E to be similar to that of the superconducting
exponent, s, in the resistor network of randomly mixed
resistive and nonresistive elements. ' We denote this
exponent by s,&, since we expect it to be similar, but not
identical to that for the resistor network. (The
equivalence shown in Ref. 9 only holds for the unusual
anisotropic model considered there. ) Thus we have

with f (x)=ci'x5(x)+c2'x "8(1—x). It is not clear how
this scaling relation should be modified to treat the
compressionally rigid phase.

V. DISCUSSION AND CONCLUSION

It is important to discuss several modifications of the
model which might make it physically more realistic.
One might treat a system of unlinearized or "real"
Hooke's Law springs for each of which E = ,'k(r ro)—, —
where r is the distance between particles whose equilibri-
urn positions are r; and r, so that r=r;+u; —r —u .
One could imagine two subcases depending on whether
or not ro =(r; —r. ) . If this equality does not hold, i.e., if
the springs are under tension, say, then dilution would
randomly perturb the equilibrium positions of the parti-
cles. In this case there would occur transverse terms not
included in our analysis. Even if the system is not under
tension, motion perpendicular to the equilibrium direc-
tion of the spring gives rise to anharmonic terms which
limit transverse displacements. These effects would
eventually limit the range of amplitude over which libra-
tion of large rigid units could be considered to be har-
monic, as we have done. Obviously, the situation is po-
tentially quite complex. To avoid the myriad of compli-
cations and also to clarify the properties of this widely
studied model we have restricted our analysis to models
described by Eq. (1).

We may summarize our conclusions as follows. (1) We
have constructed a random model of central-force springs
in two dimensions which has a splay-rigid phase in which
the compressional rigidity vanishes, but which has a
nonzero Frank elastic constant, E, describing the stiffness
of the system against non-uniform twist. (2) As more
cross links are added, there is a transition to a conven-
tional solid phase where the elastic constants are all
nonzero and IC is infinite. (3) By considering a periodic
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splay-rigid lattice, we have also identified the libron
dispersion relation as co=c&q, and the scaling behavior of
cs as the solid phase is approached is given in Eq. (19).
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APPENDIX: ANISOTROPIC
PERCOLATION ON THE CAYLEY TREE

We start from the origin of a Cayley tree labeling out-
going bonds 1, 2, . . . , z, as in Fig. 11. We iterate this la-
beling, making sure that all z bonds intersecting a given
site carry distinct labels. We now consider percolation in
which the probability that a bond labeled i is actuaHy
present is p;. In the limit z =2d —+~ this model is
equivalent to fully anisotropic percolation on a d-
dimensional hypercubic lattice.

To locate the percolation threshold, we let P; be the
probability that bond of type i does not lead outward
from the origin to points infinitely far away. Then the
percolation threshold in (p„pz, . . .,p, ) space is the
boundary which separates the regime where P; =1 for all
i from that where P, (1 for all i. The recursion relation
for P,. is

2 I

FIG. 11. Labeling of bonds for anisotropic percolation on a
Cayley tree. From each node there emanate z bonds, the ith of
which has probability of occupation, p;. Here the case z =S is
shown.

ln detM= Tr lnM

=Tr lnMO —g k 'Tr[MD '
I 0 ~ ~ & I

]"
k=1

P, = H(1 p. +p.Pk)-,
kWi

(Al) =TrinMO —g k '(|I) Mo '~p)"
k=1

which expresses the fact that bond i is finitely connected
only if it leads to branches all of which are either missing
or are finitely connected. We write Eq. (A 1) as
4,.(IPI )=0. Clearly, P, =1 for all i is a solution to Eq.
(Al). It joins onto a nontrivial solution when

Thus

Z P. Z

detM= 1 —y g (1+p;)
1+p;

Z= g ln(1+p, )+in[1 —(P~MO
' g) ] .

i=1
(A4)

(A5)

ac,
det =det(5, , —(1—5;, )pj )

=0,
J

(A2)
and the condition detM=0 for the percolation threshold
is

where 6, is the Kronecker delta and the determinant is
evaluated when P; = 1 for all i. This relation is
det~M

~

=0, where

(A3)

where (Mo) J. =(1+p;)5J, (itj~ =(p„p2, . . . ,p, ), and

(P~ =(1,1, . . . , 1). Thus

1+p
(A6)

4p.p»=(1 p. )(1 pb) . — — (A7)

Percolation takes place when the left-hand side of this
equation exceeds the right-hand side, as written in Eq. (g)
of the text.

For p, =p this gives the usual result, p, =(z —1) '. For
coordination number z =4 with two probabilities, p, and

pb, we write (P~ =(p„p„pb,pb) and Eq. (A6) is
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