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New results of a variant of the numerically exact transfer matrix method have been compared
with the experimentally determined static properties of [CcH;;NH;]CuBr; (CHAB). Above T'=3.5
K, the available data on the zero-field heat capacity, the excess heat capacity AC =C(B)
—C(B =0) for B=1, 2, and 3 T, and the magnetization up to 5 T are described with an accuracy
that is comparable to the experimental error. Calculations of the spin-spin correlation functions by
this method reveal that the fair description of the experimental correlation length in CHAB by a
classical spin model is largely accidental. The zero-field susceptibility deduced from these correla-
tion functions is in satisfactory agreement with the reported data.

I. INTRODUCTION

The static and dynamic properties of one-dimensional
(1D) § =1 systems with a dominant nearest-neighbor in-
teraction have been the subject of a large number of in-
vestigations. From a theoretical point of view, these sys-
tems are one of the most simple nontrivial many-body
systems, displaying a large variety of unexpected features,
resulting from the inherent strong fluctuations.! Experi-
mentally, several compounds are available that are very
good realizations of theoretical model systems. Especial-
ly the compound [C¢H;;NH;]CuBr; (CHAB) has been
studied very extensively, since the ferromagnetic intra-
chain interaction in this system contains about 5% easy-
plane anisotropy. In a certain range of temperatures and
in-plane magnetic fields, the equation of motion of the
spins of this compound can be mapped to a sine-Gordon
equation.? In this mapping the spins are considered as
classical vectors, their motion is confined to the easy (XY)
plane and the limit of zero lattice spacing (continuum
limit) is taken. The sine-Gordon equation has both linear
solutions (magnons) and nonlinear solutions (kink soli-
tons). Despite the fact that the various approximations
underlying the mapping to a sine-Gordon model are
strictly not valid for CHAB, the behavior of the excess
heat capacity AC =C(B)— C(0) of this compound could
be fairly well described by this classical model.*> A more
detailed analysis, however, revealed that this largely re-
sulted from an accidental canceling of the quantum
effects by the effect of spin-components out of the easy
plane.* This is one of the observations that triggered
more direct calculations of the static and dynamic prop-
erties of easy-plane ferromagnetic chain systems based on
the original quantum-mechanical spin Hamiltonian.

In this context, various theoretical approaches have
been used. First, the thermodynamic properties and the
correlation length have been obtained by direct diagonali-
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zation of the Hamiltonian matrix for finite systems (typi-
cally 11 spins maximum). The properties of the infinite
system are evaluated by a suitable extrapolation of the re-
sults for these finite chains.>~7 Alternatively, an ap-
propriate version of the Lie-Trotter product formula® is
used to rewrite the partition function of the one-
dimensional quantum system as a sum over Ising spin
variables on a two-dimensional lattice. This sum has
been studied for finite lattices using classical Monte Carlo
techniques®!® or by a numerically exact transfer matrix
method.!! The latter approach, in principle, allows the
computation of the properties of chains up to a few hun-
dred spins, thus avoiding the uncertainties introduced by
extrapolation of the results for finite chains. On the other
hand, results can only be obtained for finite values of the
so-called Trotter number m.

The thermodynamic properties of the infinite system
obtained from the various approaches have been found to
coincide at high temperatures, but at lower T significant
differences are found. Recently, a variant of the quantum
transfer matrix method has been applied!>!? in which the
internal energy was calculated from the magnetization
and all three nearest-neighbor spin-correlation functions
in the so-called real-space decomposition. In this way, a
better convergence in the Trotter number m has been
achieved,'* !’ as was demonstrated by a comparison with
exact results. Actually, the internal energy was extrapo-
lated from the results for Trotter numbers m =7 and 8
using the 1/m? law.»!® In this paper we will compare
improved results of this transfer matrix method with ex-
perimental data on CHAB, in particular the zero-field
heat capacity, the excess heat capacity, the magnetiza-
tion, and the spin-spin correlations. The numerical pro-
cedure itself will be described in detail elsewhere.!” In
Sec. II we will briefly review the crystallographic and
magnetic properties of CHAB, giving special attention to
the validity of the spin Hamiltonian and the accuracy of
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the interaction parameters. In Secs. III-VI we will con-
sider the zero-field heat capacity, the excess heat capaci-
ty, the magnetization, and the spin-spin correlations, re-
spectively. The paper will be concluded with a discussion
in Sec. VII.

II. [CGH 1 1NH3]C“BI‘3

The crystallographic structure of [C¢H,;NH;]CuBr;
(CHAB) is orthorhombic, space group P2,2,2;.'® The
compound is built up from bibridged linear chains of
CuBr; ~ ions running parallel to the ¢ direction. The
chains are effectively isolated in the a and b directions by
the cyclohexylammonium complexes. From heat-
capacity, magnetization,!® and ferromagnetic resonance?
experiments, it was deduced that the individual chains in
CHAB can be described by the Hamiltonian

H=—2F (J*SS7 | +IPSPSY 1
i
+JI=SESi )~ 2 S,gB, 1
i

with

J¥ kg =55+5 K, (J™—J%)/ky=2.75 K ,

and
(1—J?/J*)=5X10"% .

The anisotropy in J /kp results from the symmetry of the
local environment of the Cu®?" ions. The y axis coincides
with the crystallographic ¢ axis, whereas the x axis lies in
the ab plane at an angle ¢ from the b axis. Two
symmetry-related types of chains are present, with
@=—25°and ¢=25°, respectively. In this paper we will
confine ourselves to measurements collected with the
external field B|c, which is located in the XY plane for
both types of chains. The interchain interactions are
smaller than J/kp by 3 orders of magnitude, and give
rise to a three-dimensional long-range ordered state
below 7.=1.50 K.

The results of measurements of the magnetization and
the nuclear spin-lattice relaxation in CHAB could be sat-
isfactorily explained by a model based on the spin Hamil-
tonian (1) with the set of parameters given previously. In
this model the linear excitations were described by stan-
dard spin-wave theory, and the nonlinear excitations
were associated with sine-Gordon solitons.?! The small
deviations between theory and experimental data were at-
tributed to oversimplifications of the model rather than
to uncertainties in the values of the parameters in the
spin Hamiltonian. For a meaningful comparison of re-
cent numerical results with experimental data, however,
the actual values of the exchange and anisotropy parame-
ters should be established as accurately as possible. This
is illustrated by attempts of Wysin and Bishop!! to im-
prove the agreement between their numerical results and
the available data on the excess heat capacity of CHAB
by changing the anisotropy parameter (J**—J%)/J**
from 4% to 10%. Apart from this, the correctness of the
spin Hamiltonian (1) has been questioned by Kamieniarz
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et al.’ because of the lack of agreement between the ex-
perimental excess heat capacity and estimates for AC
based upon the extrapolation of results for finite chains.

With respect to the reported set of parameters of the
spin Hamiltonian, we would like to note that the aniso-
tropies (J**—J»)/kg and (J*™—J%)/kp have been
determined rather directly by ferromagnetic resonance
measurements?® with an error that most likely does not
exceed 0.02 K. Hence the value for the XY anisotropy
(2.75 K) may be considered as rather accurate. The small
in-plane anisotropy is usually neglected in the calcula-
tions. In terms of Zeeman energy, however, this anisot-
ropy corresponds to 0.02 T, which hampers a detailed
comparison between theory and experiment at low ap-
plied fields. Therefore we have supplemented the report-
ed data on AC in the region B =0.65 T with measure-
ments for B =1, 2, and 3 T, at which fields the relative
effect of the in-plane anisotropy is expected to be vanish-
ingly small. These new data will be considered in Sec. IV.

The interaction between the chains in CHAB has been
estimated from ferromagnetic resonance experiments and
the magnetic phase diagram'®>?° as

zpJp/kg=0.08 K
and
z 5 4p/kp=—0.03 K .

Except very close to T, and at low values of B, the effect
of these interactions is expected to be negligible. The
largest uncertainty occurs in the magnitude of the intra-
chain interaction J /kg, which has been determined from
an analysis of heat-capacity measurements on a polycrys-
talline sample in the paramagnetic region'’ as

J*/ky=55+5 K .

To check the accuracy of this analysis we have performed
additional heat-capacity measurements on a single crys-
tal. The results will be discussed in the next section and
compared with an independent estimate of J/ky from
the in-chain magnon dispersion relation.

III. ZERO-FIELD HEAT CAPACITY

Heat-capacity measurements were performed on a sin-
gle crystal of CHAB with a mass of 527.5 mg for 1.2 K
<T <20.5 K and B =0, 1, 2, and 3 T along the crystal-
lographic ¢ axis. The data collected in the presence of a
field will be discussed in the next section. The zero-field
heat capacity was found to be equal to the data obtained
previously on a polycrystalline sample within experimen-
tal error (2%), except for the region between 2.5 and 8 K,
where the present results are up to 6% lower. This
difference may be attributed to impurities present in the
polycrystalline material, but may also be caused by the
heat of desorption of the *He exchange gas, used to im-
prO\llge thermal contact within the polycrystalline sam-
ple.

The data were analyzed by simultaneous fits of a lattice
contribution C; and a magnetic contribution C,,. For
C; a three-parameter expression appropriate to a chain-
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like structure’® was used. For C,, we used results ob-
tained from a variant of the quantum transfer matrix
method'?!® mentioned in the introduction.

Preliminary fits of C; +C,, to the data revealed large
deviations below T =6 K, which were attributed to un-
certainties in the theoretical prediction for C,,, since in
this temperature region the lattice contribution is rela-
tively small. For this reason, the original numerical
method was modified as follows. First, the calculations
were also performed for Trotter numbers m =9 (and par-
tially m =10), and these data were included in the extra-
polation. Secondly, the extrapolation in the Trotter num-
ber m was improved by taking into account errors in the
decomposition of order 1/m*. The zero-field heat capa-
city C,;+C; obtained in this way, appeared to describe
the experimental data down to 3.5 K, with a systematic
deviation less than 0.5% for J**/kz=63 K and an XY
anisotropy

(J*—J%) /ky=2.75 K .

The results of this fit are plotted in Fig. 1. The squares
denote the experimental heat capacity minus the lattice
contribution C;, whereas the solid curve represents the
theoretical prediction for C),. The scatter of the data at
higher temperatures results from the fact that in that re-
gion C; >>C,,. Inspection of this figure shows that the
systematic deviations between theory and experiment
above 3.5 K are smaller than the scatter in the data,
demonstrating the excellent quality of the fit. The
present value of J**/kg agrees completely with the value
J**/kg=6313 K, inferred from fits of the same single-
crystal data above T =7 K with extrapolated numerical
results for finite chains.” Since these estimates for J**/kg
are significantly higher than the value J**/ky=55£5 K

1.50 T T T T T T T
L o 1
o
1.25
o L
—-
2 1.00- 3
N
=2
o
E r -
o ® :
0.75+- o B
[CgH, NH5] CuBry
0.50 L 1 I 1 L 1 L
0 5 10 15 20

T K

FIG. 1. Temperature dependence of the magnetic heat capa-
city of CHAB. Squares denote the experimental heat capacity
minus the calculated lattice contribution, whereas the solid
curve represents the results of the quantum transfer matrix
method.
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obtained from previous measurements on a polycrystal-
line sample, it is obvious that small errors in the experi-
mental heat capacity may give rise to rather large uncer-
tainties in parameter values obtained from simultaneous
fits of C; and Cj, to the data. In our opinion, the present
value of J**/ky is-the most reliable, since it is obtained
from fits of accurate theoretical results to single-crystal
data down to 3.5 K, where the lattice contribution C; be-
comes insignificant. This is corroborated by the fact that
this value agrees rather well with the value J*/kg
=671t2 K obtained from an analysis of the magnon
dispersion relation of deuterated CHAB, measured by in-
elastic neutron scattering.?

Given the nice description of the zero-field heat capaci-
ty by the results of the modified quantum transfer matrix
method, we have performed similar calculations for the
excess heat capacity, the magnetization, and the spin-spin
correlations, which will subsequently be discussed in the
next sections.

IV. EXCESS HEAT CAPACITY

An analysis of the excess heat capacity
AC=C(B)—C(0) has the advantage that experimental
errors in the heat capacity of the empty sample holder
and the lattice contribution C; are canceled out. There-
fore, it may serve as a rather direct check on the accura-
cy of theoretical predictions. As already pointed out in
Sec. II, the deviations of CHAB from ideal model behav-
ior are expected to be smallest at high fields. For this
reason we extended our previous measurements of the
heat capacity, which were done at in-plane fields up to
0.65 Tand 1.2< T <7 K, with measurements at B =1, 2,
and 3 T, and temperatures up to 18 K. The new data on
AC, obtained by subtracting the experimental zero-field
heat capacity from the data collected in the presence of a
field, are plotted in Fig. 2. The solid curves reflect the

1.5 . . . ; . , .

[CgH, {NH5] CuBr o

AC (J/mol K)

FIG. 2. Excess heat capacity AC=C(B)—C(B =0) of
CHAB for B=1, 2,and 3 T. The curves denote the correspond-
ing quantum transfer matrix results.
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corresponding results of the modified transfer matrix
method, discussed in the preceding section. The calcula-
tions were performed for the same set of parameters

J*/kp=63 K ,
(J*—J%)/ky=2.75 K

that yielded a good description of the zero-field heat
capacity. The g value was taken equal to 2, which is
within the range g, =2.01+0.02 determined from the
saturation magnetization.?! The curves are drawn in the
region where we expect the uncertainty of the extrapola-
tion in the Trotter number m to be smaller than 3%. It
is obvious from the figure that not only the heights and
positions of the maxima in AC are reproduced rather well
by the numerical results, but the complete experimental
behavior down to 4 K is described correctly. Deviations
of up to 5% of AC seem to occur at temperatures just
below the maximum for B =1 and 2 T. If these devia-
tions are actually significant, they most likely result from
small inaccuracies of the parameter values in the spin
Hamiltonian, since in this region the uncertainty in the
numerical extrapolations is much smaller.

It is obvious that our results yield a significant im-
provement compared with previous calculations of AC
based on extrapolation of the results for finite chains,’
especially at temperatures below 10 K. To obtain more
information about the applicability of the present
theoretical approach, we will discuss in the next section
to what extent it describes the experimentally observed
magnetization.

V. MAGNETIZATION

The magnetization of CHAB in external fields up to 5
T along the crystallographic ¢ axis, which is located in
the easy XY plane, has been determined previously for 1.4
K <T<10 K.?!' In this section we will subsequently
focus our attention to the low- and high-field region.

The magnetization measured in fields up to B=2 T is
plotted in Fig. 3 as M /Mg against B, where Mg denotes
the saturation magnetization. The different symbols
reflect sets of measurements performed at different tem-
peratures. The solid curves reflect the corresponding be-
havior calculated from the modified quantum transfer
matrix method for T = 3 K, where we estimate the accu-
racy of the numerical extrapolations to be better than a
few percent. In these calculations we used the same set
of parameters as in the preceding sections, i.e.,

J*/kp=63 K ,
(J*>*—=J#)/kg=2.75 K,
8ee =2 .

Inspection of this figure shows an almost perfect agree-
ment between the experimental data and the numerical
results; for most temperatures, the deviations do not
exceed the experimental error in the determination of M
(~2%). Around 1 T, the data for 4.2, 5, and 6 K seem to
be slightly lower than the correspondent theoretical pre-
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FIG. 3. Reduced magnetization of CHAB for B||c at various
temperatures. The curves denote the corresponding quantum
transfer matrix results.

dictions. Since in this region dM /3T is rather large,
these systematic deviations should most likely be attribut-
ed to errors in the temperature measurement, because in
our magnetometer the sample temperature may inciden-
tally be 50-100 mK higher than that of the reference
thermometer.

In order to investigate the behavior at high fields in
more detail, we plotted M /Mg against 1/V'B in Fig. 4.
The more usual reduced form, ie., M/Mg against
T /V'B, was not chosen, since in that case the majority of
the data would collapse on one single curve,?! which
would hamper a detailed comparison between theory and
the data. Figure 4 corresponds to the field region be-

M/Mg
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0.0 L 1 I I
0.25 0.75 1.25 1.75

1/4B (1713

FIG. 4. High-field part of the magnetization of CHAB for
Bj|c plotted as M /Mg against 1/V'B at various temperatures.
The curves denote the corresponding transfer matrix results.
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tween 0.4 and 5 T. It is obvious that also in this region
an almost perfect agreement between the available data
and the transfer matrix results occurs. A fair overall
description of the magnetization of CHAB has also been
obtained from quantum Monte Carlo calculations and ex-
trapolated results for finite chains.!® Especially at low
fields and temperatures, however, the latter results
significantly deviate from the experimental data.

VI. SPIN-SPIN CORRELATIONS

The in-chain spin-spin correlation length in deuterated
CHAB has been measured with quasielastic neutron
scattering.?* In the paramagnetic region, the correlations
within the individual (decoupled) chains give rise to
diffuse planes within reciprocal space perpendicular to
the chain direction. The width of these planes is roughly
proportional to the inverse correlation length x.** In
general, k is deduced from the measurements by fitting
the intensity observed in scans perpendicular to such a
plane with a Lorentzian

Ak

—_ . (2)
q2+K2

I(g)=
In this equation g denotes the component of the scatter-
ing vector perpendicular to the plane, and A4 is a propor-
tionality factor. In most cases a constant background in-
tensity is included in the fit.

Formally, Eq. (2) is only valid if g is small compared to
the width of the Brillouin zone along the chain direction
and if the spin-spin correlations decay exponentially with
distance. Since in the limit of large distance the latter
condition usually holds, « is often deduced from the two-
spin correlation function p? = {(S?’S% , ), a=x,y,z, using
the relation

k,= lim (In|p%/p% 1) . (3)

This approach has the drawback that it is not very suit-
able for procedures based on direct diagonalization of the
Hamiltonian for finite chains, given the limited maximum
number of spins (N =11,12). Apart from this, the small
magnitude of p¢ for large n may introduce numerical
complications. These can be avoided by using a more
general definition of the inverse correlation length in zero
field given by?®
1 ]

4)

N
S n*S§sy)

n=—N

N
S (S§sH)

n=—N

N— o

(ko)*=2 lim [

The differences between the values of k obtained from Eq.
(3) or Eq. (4), respectively, are negligible at low tempera-
tures. The latter equation has been used in previous
transfer matrix calculations on classical spin chains.?’
For CHARB, such calculations yielded a fair description of
the experimental data,?* provided that the classical spin
length S was chosen equal to S instead of V' S(S +1). It
is obvious that Eq. (4) can also be used to deduce esti-
mates for « from numerical computations of pj; for quan-
tum systems with finite V.
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Recently, the temperature dependence of «, for CHAB
has been calculated from finite chain extrapolations and
by quantum Monte Carlo techniques.!® Although both
the uncertainty in the experimentally deduced correlation
length and the computed values of «, is rather large, the
theoretical predictions for 7 >4 K are systematically
lower than the data by a factor of 2. In order to get more
information about the origin of this discrepancy, we have
calculated the temperature dependence of k, using our
modified quantum transfer matrix method, which we ex-
pect to be rather accurate, in view of the results present-
ed in the preceding sections.

First, (SS) was calculated for 1 <n <50 and a chain
of 150 spins, where S, was located near the center of the
chain. The dependence of {S%SX) on n is plotted in Fig.
5 for n 21 and several temperatures in the range 2.5 K
<T =10 K. Since the spin quantum number S =1, the
autocorrelation functions {((S7)*) are exactly equal to
for a=x,y,z, all n, and all temperatures. The obvious
discontinuity of (S3SY) for n =0 at finite temperatures
should be attributed to the quantum nature of the present
system, since it is not present in the results for chains of
classical spins.?’ Inspection of Fig. 5 shows also that,
especially for n» <10 and low T, significant deviations
from exponential behavior occur, and hence the use of
long chains in the calculations of « seems essential.

Next, «, was calculated from the two-spin correlation
functions using the relation (S3Sy)=(S3S* ,) and Eq.
(4). The correlation functions for n > 50 were estimated
by extrapolation of {.S§S7), assuming exponential behav-
ior at large n. The inclusion of these extrapolated data in
Eq. (4) resulted in a decrease of the calculated value of k,
of ~10% at T =2.5 K, whereas at 7 K this decrease was
less than 1%. Between 4 and 12 K, the correlation length
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FIG. 5. The correlation functions (S3Sy) for the easy-plane
spin domponents in CHAB calculated by the quantum transfer
matrix method for various temperatures. The autocorrelation
function (SES% ), which is not included in the figure, is equal to
1 for all temperatures.
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obtained in this way agrees with the reported results'”

within the quoted errors of about 15%. If the latter re-
sults are corrected for the fact that in the corresponding
calculations a value of J™/kz =55 K has been used in-
stead of the present value J**/kz =63 K, they predict a
more or less constant value of k /T equal to 0.02310.004,
in rather good agreement with the present calculations.
This strongly suggests that the origin of the discrepancy
between theory and experiment must be sought in the in-
terpretation of the experimental data. In this respect we
like to recall that in the instrumental configuration used
for the quasielastic neutron scattering experiments both
the in-plane and out-of-plane spin components were mea-
sured simultaneously. In view of the results of a classical
spin model, it was assumed that at T > 8 K the correla-
tions of the in-plane (x) and out-of-plane (z) spin-
components were equal. Since, on the other hand, below
T =3 K the contribution of the out-of-plane spin com-
ponents near g =0 was negligible, the experimental inten-
sity profile was fitted with a single Lorentzian.

To check the validity of this approach, we have calcu-
lated the temperature dependence of both «, and k, in
the region 2.5 K =7 =50 K. The results are plotted as
k/T against T in Fig. 6, together with the reported exper-
imental data®® and the predictions from a classical spin
model with § =1, calculated for the same set of exchange
and anisotropy parameters. The quantum transfer matrix
results presented in this figure indicate that the ‘“‘cross-
over” from isotropic (Heisenberg) behavior at high T to
anisotropic (XY-like) behavior at low T occurs at much
higher temperatures than suggested by the classical spin
model, which complicates the interpretation of the neu-
tron scattering data. Therefore we have chosen a more

0.08 ; ey Ty - A et
0.06} N
:‘-T . 4
X
w 0.04F1 ﬁ
C
o
a
X0) L 1
g
X 0.02} -
0.00 | L I SRR | | PR SRR
1 2 5 10 20 50 100

T K

FIG. 6. Inverse correlation length in CHAB plotted as x/T
against 7. Solid squares represent the reported neutron scatter-
ing results Ref. 24. The solid and dashed curves represent the
classical spin predictions for the in-plane and out-of-plane spin
components, respectively. The quantum transfer matrix results
for the in-plane and out-of-plane spin components are denoted
by open squares and circles, respectively. The crosses reflect the
effect of a small in-plane anisotropy.
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direct comparison of the results of our numerical compu-
tations with the experimental data by directly calculating
an intensity distribution £%q), @=x,y,z, in analogy to®%:

N .
$Hg)= 3 e m(seST) . (5)
n=—N

The calculated intensities for the easy (x), intermediate
(»), and hard (2) spin components were added together
with weight factors corresponding to the experimental
conditions,** i.e., 0.28, 1.0, and 0.72, respectively. This
combination appeared to describe the experimentally ob-
served scattering profile with an error sum comparable to
that of the single Lorentzian used in the original interpre-
tation. Unfortunately, the large statistical uncertainties
of the data did not allow more pertinent conclusions.

Next, we will return to the region below 7"=4 K. In
contrast to the experimental data, presented in Fig. 6, the
calculated values of k, /T increase at lower temperatures.
Although the same tendency has been observed in recent
quantum Monte Carlo simulations,'? it cannot a priori be
excluded that this is an artifact of the present numerical
approach. In this respect we like to note that the accura-
cy of the calculated correlation functions (S$SZ) de-
creases at larger n, since in that region the error in the
extrapolation in the Trotter number m increases. Espe-
cially at low temperatures, where the long-range correla-
tions are important, this may have a significant effect on
the calculated value of k. On the other hand, the more
rapid decrease of the experimental inverse correlation
length may also be caused by the small anisotropy within
the XY plane. In our quantum transfer matrix calcula-
tions up till now this anisotropy (~0.02 K) has been
neglected, although the results of a classical spin model**
suggest that it may become important in this temperature
region. To investigate this point, we calculated the tem-
perature dependence of «, including an in-plane aniso-
tropy of 0.02 K, i.e.,

J*/kp=63.02 K ,

J?/kp=63.0 K,
and

J#/kg=60.25 K .

The resulting values for «, /T are also plotted in Fig. 6.
It is obvious from this figure that the inclusion of even
such a small amount of anisotropy induces a substantial
decrease of k, below T'=5 K. We did not try to increase
the in-plane anisotropy such that our numerical results
yielded a more precise description of the data at low tem-
peratures. As already mentioned, the absolute accuracy
of the numerical results rapidly decreases as T goes to
zero, whereas, on the other hand, a substantial part of
this anisotropy is of dipolar origin and hence cannot
properly be accounted for by the spin Hamiltonian (1).

VII. DISCUSSION

The comparison of the experimental data on the ther-
modynamic properties of CHAB with the results of the
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FIG. 7. Temperature dependence of the zero-field suscepti-
bility of CHAB. Squares denote experimental data taken from
Ref. 28, whereas the solid curve reflects the quantum transfer
matrix result.

modified quantum transfer matrix method, presented in
Sec. III, IV, and V, reveals an almost perfect agreement

for temperatures down to 3 K. The minor deviations that

are observed incidentally can largely be explained by ex-
perimental errors or small uncertainties in the precise
value of the parameters in the spin Hamiltonian.

With respect to the correlation length, the available ex-
perimental data do not allow a meaningful test of the ac-
curacy of the corresponding numerical results, as was
outlined in the preceding section. Nevertheless, our nu-
merical results for the correlation functions allow a direct
computation of the quasielastic neutron scattering inten-
sities. Moreover, the results for (S§S2) can be used for
a direct calculation of the magnetic susceptibility per
spin, which can be expressed as

2,2 N
Bl s (sgse) . (6)
n=—N

The resulting prediction can be compared rather directly
with the experimentally determined zero-field susceptibil-
ity of CHAB.?® We will confine ourselves to the reported
data for the susceptibility along the ¢ axis, which corre-
sponds to the y axis in the spin Hamiltonian (1). In Ref.
28 the susceptibility is given as x,7 /C against T, where C
denotes the Curie constant,

C=Ng?u%S(S+1)/3k .
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In the analysis a value g, =2.23 was used. We have
reproduced these data between 4 and 100 K in Fig. 7,
after rescaling in such a way that g,.=2.01, in accor-
dance with the magnetization measurements?' quoted in
Sec. V. The solid curve represents the corresponding
theoretical prediction, calculated from Eq. (6), using the
same set of exchange and anisotropy parameters as in the
preceding sections. The small in-plane anisotropy is
neglected, since it has almost no effect in the present tem-
perature region. Inspection of the figure shows that the
overall behavior of the data is described rather well by
the numerical results. In the temperature region up to
~20 K, the theoretical prediction is systematically lower
than the data by a constant factor of about 6%. As al-
ready mentioned in the preceding section, the accuracy of
the extrapolation in the Trotter number m rapidly in-
creases at higher 7. Therefore we believe that this con-
stant deviation should be attributed to the small uncer-
tainty in the g value, which enters quadratically in Y, or
to a systematic error in the experimental determination
of the susceptibility. At higher temperatures, the devia-
tions between theory and experiment increase, which can
be explained by the effect of temperature-independent
paramagnetism, for which the reported experimental data
have not been corrected.?®

Concluding we would like to remark that in most cal-
culations an increase of the chain length from N =150 to
300 was found to have only minor effects,!® even at T =3
K, corresponding to a reduced temperature

kT /2JS(S +1)=0.02 .

Our analysis of the zero-field heat capacity indicated that
extension of the calculations to lower temperatures would
probably require an increase of the chain length N, but,
more definitely, an increase of the maximum Trotter
number m. In this respect we note that calculations of
(S3Sy) for a chain of 500 spins and T'=3 K yielded re-
sults that are, up to n =50, equal to those of similar cal-
culations for N =150. This demonstrates again that the
numerical results presented in this paper are hardly
affected by the finite length of the chain.
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