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Excitations in a nearly half-filled Hubbard model with U
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It is shown that, even near half filling, the elementary excitations of the large-U Hubbard mod-
el form wide bands of width -t, the intersite hopping integral, and that the slave-boson-based
mean-field approximation is qualitatively wrong in the relevant limit. This large —U limit has no
Kondo-type divergences.

In the context of high-temperature superconductors,
there is considerable interest in the elementary excitations
associated with the Hubbard model. ' The fact that,
e.g., YBa2Cu306 is an antiferromagnetic insulator sug-
gests that an appropriate beginning model for these ma-
terials might be a half-filled Hubbard Hamiltonian with a
large Coulomb U and doped by a small concentration no
of holes. It is important to understand under what cir-
cumstances these excitations correspond to a Fermi liquid.

Many years ago Brinkman and Rice considered the
problem of a single hole in an otherwise half-filled, large-
U, Hubbard model and showed that, depending on the na-
ture of the spin-wave function, the hole has a mass equal
to or -20-25% less than the electron mass. However,
except for the ferromagnetic case, the spin-wave functions
considered cannot be stationary states in the presence of a
finite concentration of holes. In general, the kinetic (spa-
tial) and spin-wave functions are interdependent in a
fashion which is not well understood, and for this reason
these pioneering results cannot be trivially extended to the
present problem. In one dimension, for U-~, a finite
concentration of holes, and independent of the spin-wave
function, the exact solution corresponds to quasiparticles
which occupy a broadband with a width 2t, where t is the
hopping integral. In this case there is no coupling between
the kinetic and spin degrees of freedom, e.g., there is a
Curie rather than Pauli susceptibility. In contrast,
Nagaoga's theorem shows, again for a small but finite
concentration of holes, two or more dimensions, and
strictly the U ~ limit, that such a coupling does exist
and implies a "ferromagnetic" ground state. For large
but finite U there will be a competition between this "fer-
romagnetic" tendency and the antiferromagnetic ex-
change interaction and the nature of the spin-wave func-
tion becomes less clear.

Perhaps the best understood example in which a cou-
pling of this type leads to a Fermi-liquid theory is the
single-ion Kondo effect. It is possible that, with a finite
concentration of holes, the present problem might be
equivalent to a periodic Kondo problem. For the single-
ion Kondo problem, Coleman has proposed a method of
performing an expansion in 1/N, where N is the orbital
degeneracy. In the large W limit the partition function is
dominated by a saddle point which corresponds to a
mean-field theory. The expansion in 1/N then yields an

approximate solution for finite N. A well-defined large-N
limit requires that the slave-boson constraint Q;-1 be
modified to Q; qN & 1. Kotlair and Ruckenstein argue
that the large-N saddle point is not unique, but that one
choice corresponds to the popular Gutzwiller approxima-
tion, and that, at least for the Anderson-lattice model, the
Kondo effect is already "built in." Recently, Kotlair and
Liu have shown, for large U, the large-N limit results in a
simple Fermi liquid with a Pauli susceptibility and a band
of width, nozt, i.e., proportional to no. Usually it is sug-
gested that this band narrowing reAects the "block oA"' of
hopping by other particles. Such calculations suggest that
the Kondo effect is not involved. Apparently, there is not
the usual energy scale Ttr —Dexp[ —(1/~ pJ ~ )] where
D nozt, p-1/D, and J is the effective exchange con-
stant. However, this is not clear, since writing J—V /ed,
here both V and ed-not so that J-not while

p —(1/D) —(1/not) so that T~-D-not, i.e., the ex-
ponential factor is of order unity. It is possible to inter-
pret the narrow band as being equivalent to the single-ion
Kondo resonance.

The purpose of the work described here was to help
resolve these issues. The problem is formulated using
slave bosons and the equation-of-motion method. A new
type of time-ordered Green's function will be introduced.
It is well known that the limit of large but finite U is
equivalent to U plus a local antiferromagnetic in-
teraction +

~ Jo [ S;.S~ where this
~ Jo ]

—t /U. It is clear
that this exchange only affects the spin-wave function and
so formally it will be assumed that U=~, but no initial
assumption will be made about the spin-wave function.
Three possible lattice structures will be considered, a one-
dimensional chain, the Bethe lattice, and the two-
dimensional square lattice. Three variants of the model
will also be considered. Of principal interest is the regular
Hubbard model as described above; however, for compar-
ison a one-dimensional Anderson model, obtained by set-
ting U ~ for site n 0 and U 0 for all the other %,
sites, is considered (no is now measured relative to the
state with 2N, +1 electrons). The third model is the ex-
tended Hubbard model of Kotlair and Liu with
Q;-qN & l.

It is found that interchanging particles of diferent spin,
leads to the coupling between the kinetic and spin degrees
of freedom and therefore that the three diAerent lattice
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types and three variants of the model represent different
cases. For the Hubbard model in one-dimension, particles
cannot be interchanged while, for the Bethe lattice, such
interchanges involve O(t ) and (np), and are negligibly
small in the no 0 limit. For a square lattice, inter-
changes occur when a hole passes around a loop and in-
volve only O(t ) and np F. or both the Anderson and
Kotlair-Liu, qN ) 1, models it becomes possible to inter-
change particles in a process which involves O(t ), np,
and which occurs even in one dimension. Certainly, in the
absence of this process, and for one dimension, only a
broadband exists and the inevitable conclusion is that the
narrow band, or Kondo resonance, according to the mod-
el, arises from the O(t ) process. For the Hubbard mod-
el, this process and the associated narrow band are un-
physical. It follows, for one dimension, or for the small no
and the Bethe lattice, that the renormalization represent-
ed by expansion in 1/N should completely remove the nar-
row band and replace it with a broad one for N =2. (As it
should at N 1 for the Anderson model. ) Even for a
square lattice, the expansion in 1/N with N=2 must also
represent a large renormalization since, even if such a nar-
row band exists, it would reAect a process involving loops,
i.e., quite different physics from the O(t ) process.

The Hubbard Hamiltonian is

Jr = t ~ Cnm&sfe+ ~ ~ Cnm f Cnm f Cnm ) Cnm ) ~

nm, o
sl

where c„~ creates an electron, with spin o., at the site
with index nm, and where the prime on the sum indicates
that the sum on st is over z near neighbors only.

It does not seem to be widely realized that there is
a mechanical way in which to replace physical operators
with their slave-boson equivalent. If 0 is such a physical

operator

O-ge"' '~'..&&a[O~P&.,
a,P

where a,p identify a given state and where s, is the auxil-
liary fermion or boson, depending upon whether ( a) cor-
responds to an odd or even number of electrons. The total
number of these auxilliary particles is constrained, i.e.,
Q=g, s,ts, 1. Here the usual gauge, p, 0 for all y,
will be used. A convention is required in order to specify
the exact meaning of the state

~ t J & -c„t tc„t
~ ~

&= —c„t ~c„t 1 ~). Because of this convention there is an
asymmetric spin dependence in the slave-boson replace-
ment of the operators cnma= fnmabnmp+tTbnmt)fnm —c»

an obvious notation. Here, since U ac», c„t fntm b„p
and the Hamiltonian reduces to

I

fnma bnm obst pfsta ~

n, m, a

In the equation of motion method a simple inhomogene-
ous term results if a new time-ordered Green's function

g„(t) -&T,'[c„t (t)c„(0)l&
is defined, where

get (t)c„(0), if t )0,
T,'[c„t (t)c„(0)]= '

—c„(0)c„~ (t), ift &0.

Since no site is doubl~ occupied, the number of holes
n„p =c„ tc„ t =c„~c„~.By design, it follows that the
inhomogeneous term in the equation of motion for g„m(t)
isunity. Theequation of motion for c,t ft b, p,

(e+P)fnmabnmo t g Z fnmafnma'fsta'bsto+bnmobnmofstabstost, cr
(2)

where p is the chemical potential. This equation is exact
but not useful. A hierarchy of equations is developed until
a point is reached where they can be simplified.

Initially, only a certain subclass of terms is retained.
Quite generally, sites on the lattice can be designated as
being numbeI diagonal or not. At a number diagonal site
there is a b„t p for every b„p and a ft for each f„
The site is spin diagonal if it is number diagonal and if it
is possible to have tr=a' for each f~,f pair. Because the
Hamiltonian conserves particle number, there can only be
an odd number of number off-diagonal sites. Retained are
terms which have the minimum, i.e., a single, number off'-

diagonal site. Ignored are the commutators with diagonal
sites, i.e.» ~fnmafnmafstabst o» & I ~ fnmc»fnmc»[fstabst 0» &).
The effect of this latter commutator is to shift the number
off-diagonal site from st to one of its neighbors. It follows
that such "single-particle" terms can be put in correspon-
dence with walks of a particle on the lattice. It is easy to
show that each site on the walk is associated with a ma-
trix,

&c»a = &fnmafnma'+ ~aa'bnmobnmo) ~

Consider first a walk with M steps, ~ith no back steps; the

t
t

t. +p
(~nm~st. . . ~abgcd)

where the terminating matrix

QVC '=f„,, b„„p.

Specializing to a Bethe lattice, in order to return to nm, a
particle must retrace its original path, i.e., must make
back steps. Any walk with a single back step, must con-
tain an initial M+1 steps which do not repeat. The next
step returns to the previous site and requires the evalua-
tion of the commutator

[~c»a'Ccs» +abed~ Qcdfabababo fabc»babp» (3)

where, for the last equality, the constraint, Q,d-l, has
been used. This equation represents the crucial step
which distinguishes the three different models. For the
qN & 1 model evaluating the commutator leads to extra
terms. For the Anderson model, the commutator is the

I

corresponding term on the left of the equation of motion,
Eq. (2), is

' M —
1
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same but the equivalent of

Qcd ~cdaecda +~cdaecda

which contains the appropriate prefactor for a walk of
M+2 steps but has lost the A matrices for the last two
steps. As such a walk continues, each back step can be
contracted in this fashion until eventually the walk returns
to the beginning site nm whence the result for a walk of M
total steps is simply

[t/(e+p)]~ '(C'). -[t/(e+p)]M 'ft .b„p,
and so the single-particle result is

(e+p)g.m (e) -1+t J
walks &+P

g. (e), (4)

where all walks start and end at nm (It i.s easy to show
that there are no additional inhomogeneous terms in this
system of equations for the Green's functions. ) This is the
principal result but is perhaps deceptively simple. It coin-
cides with a certain approximation for the single-hole
problem, but represents an extension of those results to
the problem with many holes. The significance is essen-
tially negative, i.e., for an approximation which gives
Kondo divergences for the Anderson model, there are
none for the Hubbard model.

Most of the omitted terms in the equations of motion
are zero. A given step on the lattice is associated with a
hopping term /fnmsta tfnmabnm pbst pfsta+ H.c. On
Bethe lattice, each R,b,d must occur in the equations of
motion in a different sense an even number of times, and
at a given stage a certain P,b,d can lead to a finite com-
mutator only if at least one of the two site labels has ap-
peared in an earlier commutator (or is nm) Taking su. ch
a commutator in an order diAerent from that involved in
the single-particle term should produce an extra number
of off-diagonal sites, in pairs. However, when both sites
have appeared previously, the relevant commutator is

[A' A', &',b,d ] 0.
Finite terms involve commutators in which only one of the
sites involved has occurred in a previous commutator.
The first such term involves np and appears in O(t )
which is unexpected since, if it were not for the external
vertices, on a Bethe lattice, terms which involve the inter-
change of electrons correspond to "shunting" particles at
a node, they require z~ 3 and involve (np) and O(t )
(see below). In fact, the O(t ) term also occurs for z-2,
i.e., for the one-dimensional problem. It is not difticult to
show that these terms are irrelevant and can be made to
cancel by a suitable, but involved, redefinition of the
Green's function. It follows that the energies determined

unless the site cd 0, is simply the fermion commutation
rule c,d~,d +c,d~,d 1. Using this in place of the con-
straint Q,d -1 gives an extra term which eventually leads
to the usual Kondo divergences. The net result for this
walk, for the Hubbard model, is

' M+1
(AnmAst. . . gab)

by the poles of the single-particle Green's function are ex-
act in one dimension and correct up to O(t ) and (np)
for a Bethe lattice.

The single-particle result, Eq. (4), is identical, for a
Bethe lattice, to that for the uncorrelated problem, i.e., for
U 0, when written in terms of the regular time-ordered
Green's function, for a given spin direction. In the ther-
modynamic limit

1
g. (e)-

e —[z/(z —I)]&(e) '

where

( ) (z —1)t'
e —&(e)

The solution, valid for a Bethe lattice for small no, is

g„(e)-2(z —1) 1

iz[4(z —1)t' —e'] ' '+ (z —2)e
and corresponds to having band edges at ~D, where
D 2tdz —1. Near the band edges the density of states
-VD~e.

The regular temperature-ordered Green's function G
can be calculated, from the new time-ordered g, using the
well-known analytic properties of such Green's functions,

G, (ico, ) J dco'[np(co')+n (co')]

Im [g—„(co'+is )],1 1

1CO„—CO

where the probability that a state of energy co will be filled
by a hole is np(co) = [1/(1+2e P")] and with an electron
of spin o is n (co) [e ~"/(I+2e ~")]. Notice the spin
degeneracy factor of 2 in the denominators; these are the
same statistics as encountered for the chain and follow
because the current approximation deliberately fails to
couple the kinetic and spin degrees of freedom.

Finally, for the square lattice, the four-step loop term
corresponds to

3

t (A" A"A""'A" ) f„tm b„p,6+@

which cannot be simplified to ff b„p. As with the ear-
lier O(t ) Bethe term, this implies a spin ground-state
dependence to g, (e) which is associated with the,
sought for, coupling of the kinetic and spin degrees of
freedom. It is found, for a square lattice, that the addi-
tion of the loop contributions leads to a ferromagnetic
coupling between the kinetic energy and the spin degrees
of freedom and are favorable to the Nagaoga ground
state. On the other hand, the O(t6) interaction which
comes from shunting particles at a node is antiferromag-
netic. It follows that for a small enough concentration of
holes, the former process dominates and the ground state
is ferromagnetic while, for higher concentrations, the
latter process takes over and the tendency is towards anti-
ferromagnetic correlations. Trivially, the role of a finite J
is also to favor the antiferromagnetic tendency, however
there is not a single J, associated with the instability of
the Nagaoga state, as often assumed in the analysis of
small systems, but rather J, depends on the concentration
of holes.
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