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Surface melting and interface delocalization transitions are studied in films of finite thickness L,
for systems in which more than one density is needed to describe the ordered state. Since the sys-
tem is closed, there is the constraint of fixed concentration. For short-range (exponential) interac-
tions, a Ginzburg-Landau model is used to show that the finite-size effects are different from those
of a system without constraints. For long-range (e.g., van der Waals) interactions, we derive a sim-
ple two-component order-parameter model for surface melting from the density-functional theory.
For large L, the shift in the transition temperature is found to be proportional to L ~!/? in both

cases.

I. INTRODUCTION

The theoretical description of phase transitions is
necessarily restricted to simple idealized models. The
‘“real” system has extra ‘“‘hidden” variables or nonorder-
ing densities which are often ignored. Real fluids, for ex-
ample, always contain impurities at some level. One
form of “impurity” that is normally unavoidable is that
deriving from isotopic composition. In the usual experi-
ment the number of impurity atoms does not change. As
another example, consider ordering binary alloys. Two
densities are needed to describe the ordered state, the or-
der parameter, and the concentration (given by
differences and sums of the sublattice concentrations, re-
spectively). Experimental studies of the order-disorder
transition in these systems are generally carried out at
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FIG. 1. Schematic bulk temperature-concentration phase di-
agram of Cu,Au,_. near ¢ =0.75. The boundaries of the two-
phase region with the ordered and the disordered phases are la-
beled by c¢,(a) and c4(a), respectively. For further discussion,
see the text.
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fixed overall composition. Furthermore, the constituent
atoms of the binary alloy are usually of different size.
The sample may be surrounded by a medium of low
compressibility, which in the extreme case corresponds to
an experiment at constant volume. In the situations de-
scribed above, the nonordering densities are subject to a
constraint of some sort. At second-order bulk phase
transitions, constraints of this kind lead to what is com-
monly known as the Fisher renormalization of the critical
e:xponents.1

In this paper we consider the effect of constrained
nonordering densities on interface delocalization transi-
tions which occur when the bulk transition is first order.?
A constraint on the nonordering density commonly leads
to the appearance of a two-phase region in the bulk phase
diagram (see Fig. 1): The nonordering density (here the
“concentration” c¢) takes on different values in the or-
dered and the disordered phases. This does not change
the critical behavior at interface delocalization transi-
tions in semi-infinite systems, since the bulk acts as a
reservoir, which can absorb (or supply) an arbitrary num-
ber of atoms. The surface-induced-disorder transition
occurs in this case as the boundary of the two-phase re-
gion is approached from below.>* In contrast, the effect
of constraints on the nonordering density becomes impor-
tant in finite systems. The question is then, “What are
the finite-size effects in these systems?” We will consider
surface-induced-disorder (SID) transitions in this paper,
because examples of wetting transitions with conserved
nonordering densities seem to be harder to find. Howev-
er, our results are equally applicable to the corresponding
wetting transitions.’

II. SHORT-RANGE FORCES

One essential feature of the systems described in the
Introduction is that more than one density is needed to
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describe the ordered state. In addition, there is a con-
straint on the nonordering density. A simple continuum
model which contains these essential features is described
by the Landau free-energy functional

Fige}=[d*"p [ "az{ 1Y)+ f,(,0)
+[8(z)+8(L —z)]%alq&z} (1)

for a scalar order parameter ¢(p,z) and “concentration”
c(p,z). For the free-energy density we take

fo(d,0)=La¢’—1be’+1gd*+Bedp*+L1ac’—puc . (2)

This model can be used to describe, for example, the
order-disorder transition in thin-film fcc Ising antifer-
romagnets and binary alloys with short-range forces. In
particular, this explicit form of (1), (2) can be derived
from a short-range lattice-gas model for CujAu films
with (111)-free surfaces.®> The two densities in this case
are (i) the order parameters (OP) ¢ [given by the
difference of the sublattice concentrations in the (111)
planes], and (ii) the nonordering density c¢ [identified with
the deviation of the average Cu concentration of the (111)
planes from stoichiometry]. For Cu;Au, it turns out that
B> 0 (Ref. 3) so that c;(a) > c,(a) in the two-phase region
of the phase diagram, as in Fig. 1. There is no (Vc)?
term in (1) because the range of the concentration in-
teractions in the (111) direction turns out to be shorter
than that of the OP interactions. The OP mode deter-
mines the wetting behavior in this case so that the in-
teraction term involving the concentration field does not
influence the universal features of the critical behavior,
and can therefore be ignored. For similar reasons, no c-
dependent surface term has been included in (1). The
effect of such a term has been absorbed in a renormaliza-
tion of a;. See Ref. 3 for a further discussion of these
points.

In the bulk, this model has a first-order phase transi-
tion. For fixed chemical potential u=py, there is a transi-
tion at a,=2b%/9g.4—2Bu,/a, where g.s=g—28>/a,
from a homogeneous, ordered low-temperature phase
with ¢(a. )=¢=2b/3g.4 and c(a, )=(u,—Bd?*)/a to a
homogeneous, disordered high-temperature phase with
¢=0 and c=py/a. The finite-size effects which arise in
thin-film geometries in this case have been analyzed in
Refs. 6 and 7.

In many cases, however, experiments are performed at
fixed total concentration so that the integral of ¢ (r) over
the system volume V is fixed. The bulk phase diagram in
this case exhibits regions of two-phase coexistence (see
Fig. 1). Assume that the average concentration density is
fixed to be

A 1 d

o= [direw. (3)
At high temperatures,

a>a;=2b*/9g.s—2B¢ ,

the system is in a homogeneous disordered phase, and at
low temperatures,
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a<a,=a;—2B*¢*/a ,

in a homogeneous ordered phase. However, for
a, <a <a,, the system breaks up into domains with con-
centrations

c,(a)=¢+(a,—a)/2p
and
cyla)=¢+(a;—a)/2B

of relative volume such that (3) is fulfilled. In the present
model, the bulk order parameter ¢(a)=¢ in the two-
phase region of the phase diagram (i.e., along the line
o—o' in Fig. 1).

Returning now to the finite system, we shall consider a
film geometry of thickness L. There are two free surfaces
at z =0 and L, and the system is infinite and homogene-
ous in the direction perpendicular to z. In the present
mean-field (MF) analysis, the dependence of ¢ and c on p
can therefore be ignored. Incorporating the constraint
f gc(z)dz=L’c‘ of fixed average concentration ¢ and in-
tegrating out ¢ (z) we arrive at a nonlocal free-energy den-

sity®
—1 2 lp 341 282 | .4
f($)=1(a+2B0)p* = b’ + 5 g == |4
B oL, o
+o [ dz @) @

In (4), we have dropped terms independent of ¢. From
(1) and (4) we obtain the MF equation for the order-
parameter profile
d’¢
dz?

tlap{d}p—b’+gq’)=0, (5)
with the coefficients
_ B L 2
ag=a+2pe+2_- fo dz ¢4(z) ,
8er— 8 .d_ ’
and the boundary conditions

daé | _ -
dz | _, a,$(z=0)

and

a¢ S =
dz L al¢(2 L).

The concentration profile has the form

A_B 2 B rt 2
=t—= +—=—|d .
c(z)=¢ a¢ (z) oL fo z ¢*(z)
For fixed a4, Eq. (5) is identical to the MF equation of
the single OP model.*” We therefore solve (5) with @
constant and use the solution ¢(z) to calculate the real
“temperature” a. Since we are interested in continuous

SID transitions, we assume a;>(a¥)!"?, where
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=2b%/(9g.4), throughout this paper.

We have analyzed the MF equations by direct numeri-
cal integration, as well as using asymptotic estimates, and
a piecewise linear approximation. To determine the
phase diagram, two solutions, denoted m (z) and M%(z),
have to be compared.” The profile m (z) describes the
disordered film and therefore vanishes identically for all
z. The profile M%(z) is monotonically increasing for
0<z<L/2. For L—w, MXL/2) approaches ¢,, the
bulk order parameter in the ordered state. As already
noted, ¢, =¢ in the two-phase region of the phase dia-
gram, so that M“(L /2)=¢ (up to exponentially small
corrections) for a > a,,.

The main result of our calculations is that in the limit
L /§— oo, where & is the bulk correlation length, the free
energy of the ordered state and the equilibrium thickness
T of the disordered surface layer can be obtamed by
minimizing the function

Foo(D=20*+(L —21)f(¢,)

—21/¢ —(L—21)/¢
+c,e 1—c,e °, (6)

“ where ¢, and ¢, are constants'® and f (¢, ) is given by (4)
with

f dz¢*(z

In the two-phase region, this can be written as

2
) =f @) =Ha—a)F+-L—F4L —21). @)

2al
For a Sa,, (7) is correct to leading order in (a,—a). In
(6), &, and &, denote the correlation lengths of the or-
dered and the disordered bulk phases, respectively, and
o* is the surface tension of a free interface between the
ordered and the disordered phases in the infinite system.
The equilibrium state is determined by comparing the
free energy of the completely disordered state, Fy,=0,
with Ford(l ).

For systems with a relatively large surface tension, the
disordered state can become thermodynamically stable at
a temperature a,(L)<a,. The necessary condition for
this to occur is that

80 *

(ag—a,)646°

or equivalently, L /&,
(a;—a,)”'. In this case,

40*
L
so that the shift of the transition temperature is propor-
tional to 1/L, just as in the single OP case.”’ For
a—a,(L), the coverage begins to diverge as l/§d
~ —ln(a —a) and attains a maximum value 1/&,
«InL at q,(L). This behavior persists until a,(L)
=aq,, ie., when (8) becomes an equality. For larger
values of L, a, is greater than a,. In this case the thick-
ness 7 of the disordered surface phase begms to diverge as
a, is approached from below. Above a,, [ ~O(L). Ex-

L/E; < (®)

must be small compared to

a,(L)=2(a,+tay;)—

>
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tremizing (6), one finds that both the wetting and cross-
over behavior in the neighborhood of @, are described [to

lowest order in e —1/g, and (T/L )] by

Ale_21/§d+(a 0)= A221 , 9)
L
where 4,=2c¢,/ §d¢ and 4,=(a;—a,) are constants.

Thus, for L=, T diverges as a —>ao s whlle for finite L,
T~In(L) at a, (see Fig. 2). Fora,<a <a,,Tis O(L) and
the surface order parameter is O (e ~L). The surface tran-
sition is thus very weakly first order in this case. The
temperature dependence of | for a >a, is determined by
the “lever rule” for two-phase coexistence, i.e., by the
condition

2le,+(L —2T)e,=Le ,
where ¢, and ¢, are the values of the nonordering density
in the ordered and disordered bulk phases, respectively.
Since ¢, and c; depend linearly on temperature in our
model, we obtain immediately the linear temperature be-
havior of 7in Eq. (9). This result is a consequence of the
quadratic approximation for the concentration field ¢ (z)
in (2). Higher-order terms would give rise to a more real-
istic temperature dependence; however, the leading tem-
perature dependence would still be linear so that the con-
clusions obtained using the present simple model remain
unchanged.

For L — «, a,—a,. Using (6) and (9), one finds that
the temperature dependence of the free energy of the or-
dered profile is given by

(ad_a)z

Ford(a):

20*— 1§24 "
o (ay—ay)

CnL
-1/72 -~
—_

9o at(L)
a

Ometa 94

FIG. 2. Temperature dependence of the thickness I of the
disordered surface layer, for the case of short-range interac-
tions. The dependence of various quantities as a function of the
film thickness L is indicated. Four different regimes have to be
distinguished: (i) a SID regime (a <a,), where [ increases loga-
rithmically with temperature; (ii) a crossover regime (a=~a,);
(iii) a lever-rule regime [a, <a <a,(L)]; and (iv) a metastable re-
gime [a,(L) <a <a,.,(L)]. For further discussion, see the text.
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Comparing with F g (a)=0, this leads to the shift in the
transition temperature
172

80*(a;,—a,)
—d T\ - (10)

52

a(L)—a;=—

The quadratic dependence of F_ 4(a) on a;—a de-
scribed above occurs in the two-phase region of the bulk
phase diagram. In contrast, when there is no constraint
on the nonordering density (i.e., for the single OP model),
F, 4(a) is a linear function of (a —a,;), so that
a,(L)—ay;~L~1.%7 This difference in the finite-size be-
havior is a direct consequence of the different ensembles
realized in these two cases. Note that the entropy, i.e.,
the derivative of the free energy with respect to tempera-
ture, is a continuous function of temperature when the
transition occurs in the two-phase region of the bulk
phase diagram.

Although the ordered profile is no longer the state of
lowest free energy for a >a,(L), it still exists as a meta-
stable state and may be observed experimentally because
the relaxation time to the true equilibrium state may be
very large. It is therefore interesting to find the limit of
metastability, a.,(L), of the ordered state. Using (6)
and (9) we obtain

18a—amenl LT _ S0\ L 4 6p -1y,
(ad —-a, ) L go
which implies that the thickness of the ordered layer in
the center of the film is

(L —27)/&,=In(L /&,)+ const

at @pe,(L). The temperature dependence of [ as a func-
tion of L is summarized in Fig. 2.

As already noted, models (1) and (2) should describe
SID behavior in short-range lattice-gas models for fcc al-
loys in thin-film geometries. In particular, it has been ar-
gued in Ref. 3 that the explicit form of the model we ap-
ply is the correct continuum generalization of short-
range models of CujAu films with (111)-free surfaces. A
recent numerical analysis!! of one such model using a
discrete Bragg-Williams approximation (although re-
stricted to relatively thin films) does indeed exhibit cer-
tain aspects of the behavior predicted above: in particu-
lar, the behavior of the surface OP, ¢(z =0)~O(e L) for
a,(L)>a,, is clearly visible in the data presented in Ref.
11. The data for the transition temperature, on the other
hand, seem not to follow the L ~!/? law (10). We do not
have any good explanation for this discrepancy.

III. LONG-RANGE FORCES —SURFACE MELTING

The wetting behavior in many experimental systems is
determined by long-range power-law interactions. This
occurs, for example, in simple liquids, where van der
Waals forces dominate. Our analysis will be based on a
simple two-component OP model for the surface melt-
ing'? 7! of crystalline films, where such forces are expect-
ed to be important asymptotically.

Let n(r) denote the atomic number density. In the
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bulk solid phase, n(r) can be expanded in the form

n(r)=n,+Snge®r,
K
where
=1 d
"0—7de rn(r)

is the mean density of the solid and K is a reciprocal-
lattice vector. The sum runs over all K. In the film, we
write

n(p,z)=n,(z)+ Sng(z)e™"
K

=7 [1+¢o(2)+ 3 dg(z)e™®T ), (11)
K

where 7 is a convenient reference density (see the Appen-
dix).

Here we consider only a simple, truncated version of
the expansion (11). Namely, we assume that one set of
nonzero reciprocal-lattice vectors of equal length, denot-
ed by { G}, is dominant in the solid phase. In general, the
dominant set { G} is the smallest nonzero set, e.g., the 12
[110] reciprocal-lattice vectors in a bce crystal.!> Our or-
der parameter is therefore

$=2(¢ct¢-c)/2

(Ref. 15), where the sum runs over the elements of {G},
and the nonordering density ¢ =¢, In general, ¢ is
different in the solid (c,) and liquid (c,) phases; we shall
assume here that ¢, >c;. Finally, we consider here the
case in which solid-liquid coexistence is approached from
the solid side, and ignore any possible evaporation pro-
cess at the surface; this is certainly correct for low vapor
pressure substances such as lead (Pb).

Assuming that the asymptotic form of the interatomic
interaction is of van der Waals type, it is shown in the
Appendix that the appropriate coarse-grained free-energy
functional [for bcc crystals with (111)-free surfaces] is
given by (1) and (2), with the additional term

FLR{c}=%f0LdzfoLdz’c(z)w(|z —2'De(z’),  (12)
where
w(x)=—wex P for x— o

describes the long-range (LR) interactions of the concen-
tration c. wy> 0 is constant, and for nonretarded van der
Waals interactions, p =4. In the simple MF approxima-
tion we apply, there is no long-range interaction between
the OP fields (see the Appendix for a discussion of this
point). We have ignored a term of the type (Vc)? in (1)
because, while present, it is expected to be much weaker
than the (V¢)? coupling.!* Note furthermore that 3 <0,
since we require cy>c, in the two-phase region of the
phase diagram.
The Euler-Lagrange equations for this model are
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2
_%+[a¢<z)—b¢2<z>+g¢3<z>+2ﬂc(z>¢<2>l=0
. v
(13a)
and

—u+BoHz)+ac(z)+ fOLdz’w(lz —z')e(z’)=0. (13b)

If the thickness of the film is free to adjust itself, the tran-
sition occurs at constant chemical potential u and the
finize-size effects are the same as in the single OP case.®’
However, for L fixed, we have the constraint
f gdz c(z)=Lzg, and p is therefore both temperature and
size dependent. This is the case we consider here.

In a sharp-kink approximation, ¢,, ¢,, ¢;, and u are
given by the solutions of the equations

co=(—PBd3)/(a+w,) ,

cg=p/latw,),

(a +2Bc,)—bd,+gd:=0,
and

,u=(a+wb)’c‘+¢§%(L -2,

where
wb=f°° dx w(|x])<0.
In the limit L /§— o it is straightforward to show that

the free energy of the ordered state can be obtained in
this approximation by minimizing the function

Foq(D=20*+(L —21)f(¢,)+ A1l P *2
— AL —21)7P+2 (14)

with the Hamaker constants

A=+ o 2

T —2) el
Wo

}\’:—f-__._.—,_.__. — 2

2=t T =2y o)

In the two-phase region, f(¢,) is given by (7) as before,
with ¢ =2b /3g .4 and

Zr=g —2B*/(atw,) .

In (14), terms of order (L —1)"? %2 and L “?*2 have been
neglected, because they do not become singular in the
limits /—0 or (L —2/)—0. Note that (14) is the naive
generalization of (6) one would expect for long-range in-
teractions: all one has to do is to substitute the correct
form of the effective interface potential for the interaction
between the various interfaces. For ¢, >c,, both A; and
A, are positive; for ¢, <c;, however, A, changes sign and
there can be no continuous SID transition in this case.
For ¢, =c,; one expects, in general, higher-order terms of
the type / P *t1and (L —21)77 11,

Minimizing (14), we find that both wetting and the
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crossover behavior near a, are described (to lowest order)
by

AT P4 (a —aa)ZAz%l , (15)

where

A3=—2wufcy; /(p —1)atw,)>0.

~ . -— — p—
Thus, for L = o0, [ diverges as a —a, as (a,—a) 1/p =1,

while for finite L, T~L'/? at a,. For a,<a<a,, I is
O (L), just as in the case of short-range interactions con-
sidered before.

The shift in transition temperature is given by (10), in-
dependent of the range of the interactions (as long as w,

. is finite). However, when the system is taken into the

metastable regime, the interactions start to become im-
portant again. The limit of metastability is given by

—1+1
ad_’ameta(L)NL ! »

in the long-range case, which implies
(L —20)~L'?

at @0, (L). These results are summarized in Fig. 3.

Going beyond the sharp-kink approximation, it is
straightforward to show, using (13b) and arguments simi-
lar to those applied in Ref. 16, that the concentration
profile ¢ (z) develops a long-range tail of the form

c(z)—cy~1/z°71

in the disordered surface layer, i.e., for 0 <<z <<7: as well
as a similar tail in the ordered phase. Using this result in
(13a), however, one finds that this does not change the ex-
ponential behavior of the tails of ¢(z), so that

#(z)~ exp[ —(T—2)/&,] (16)

in the surface layer. Our model therefore predicts that

L T
2 II/
L\e
1
L2 )
7
7
7
A
? €=o-oo L
a4-a, 2
1
-1
(a,-a) P v —1+1/p
(I -2 =L/
o ! ol S
a, a, (L) Ometo G4
a

FIG. 3. Temperature dependence of the thickness [ of the
disordered surface layer, for the case of long-range (power-law)
interactions. The dependence of various quantities as a function
of the film thickness L is indicated. For further discussion, see
the text.
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the order-parameter decays exponentially, whereas the
concentration approaches its bulk value with a power
law. This kind of behavior has been postulated in order
to interpret surface melting experiments in thin films.!”

It is easy to show that the tails of the concentration
profile do not change the leading contributions to the
effective interface potentials, so that (14) is correct
beyond the sharp-kink approximation.!®!%1° Because the
concentration interactions are of longer range than those
of the OP, the concentration mode determines the wet-
ting behavior in the present case. This implies a rather
unusual, nonuniversal temperature dependence of the
surface OP as a —a, .!* However, in the two-phase re-
gion, Eq. (16) implies that the surface order parameter is
O(e 1), just as in the case of short-range interactions.
The surface concentration at the transition temperature
a,, on the other hand, approaches its value in the infinite
system, ¢ , (z=0), as

c(0)—c (0)~LPT1,

IV. SUMMARY

The presence of conserved nonordering densities drast-
ically alters the finite-size behavior at interface delocali-
zation transitions in films of finite thickness L. The
reason for this is that the constraints lead to a two-phase
region in the bulk phase diagram. For small L, the disor-
dered phase can become thermodynamically stable before
this two-phase region is reached. In this case the shift of
the transition temperature is proportional to L ~!, just as
in systems without constraints. However, for L
sufficiently large, the thickness of the disordered surface
layer begins to diverge as the two-phase region is ap-
proached from below. In the two-phase region, the thick-
ness of the wetting layer is determined by the constraint
(lever-rule regime). With increasing temperature, the
thickness of the wetting layer continues to grow until
close to the upper boundary of the two-phase region, only
a thin ordered layer of thickness O (L !/?) remains at the
center of the film. At this point, the ordered profile be-
comes thermodynamically unstable, resulting in a shift of
the transition temperature proportional to L ™72, in-
dependent of the range of interactions. The different
finite-size behavior in systems with and without con-
straints is thus a direct consequence of the different en-
sembles realized in these two cases. Finally, it was shown
that the ordered profile is metastable above the thermo-
dynamic transition temperature up to a temperature
@ pmeta(L), the value of which depends on the explicit form
of the interaction potential.

Two models were analyzed in detail; the first describes
surface-induced-disorder transitions in binary alloys with
short-range (exponential) interactions, and the other, sur-
face melting with long-range van der Waals interactions.
In both cases, constraints of the type we consider are ex-
pected to occur in many experimental situations. Expli-
cit results for the finite-size behavior summarized in the
last paragraph were presented. In addition, new results
for the decay of the order-parameter profiles at the sur-
face melting transition were derived.
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Accurate experimental studies of wetting behavior in
thin-film geometries have become increasingly feasible in
the last few years.!”?° It is hoped that the present work
will be of use in the interpretation of those experiments in
which “hidden” variables play an important role.
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APPENDIX

According to the density-functional formalism, the
Helmholtz free energy F on an inhomogeneous system
can be expressed as a functional of the atomic number
density n(r). If the elementary interatomic interaction
potential v(r) can be divided into a short-range repulsive
part u(r) and a long-range attractive tail w(r), the
mean-field grand potential functional can be written as?!

Q[n]=f7u[n]+%fdrfdr’w(Ir—r’I)n(r)n(r’)

+ [dr{ V(D) —pn(r), (AD

where p is the chemical potential, ¥ (r) an external po-
tential, and ¥, [n] the free energy functional of the refer-
ence system with potential u (r). Without loss of general-
ity, u (r) can be approximated by a hard-sphere potential
which is infinite for r <d and zero for r > d, where d is an
effective hard-sphere diameter approximately equal to r,,
the position of the minimum of the full interaction poten-
tial v(r). Equation (A1) contains only the lowest-order
mean-field-like contribution of w(r). This will be
sufficient for our purposes.

For small inhomogeneities, it is convenient to expand
the grand potential about some homogeneous reference
state.?? If we take this reference state to be the equilibri-
um liquid phase at uniform density »n(r)=7, we obtain

Q=[] +AF+1 [dr [dr' w(r—r'DAn(r)An(r')

+ [drv(n)an(r) (A2)

where

A7=B"fdr{n(r)ln[n(r)/ﬁ]~[n(r)*ﬁ]}
—1
——Bderfdr’cgs)(Ir—r’l;ﬁ)An(r)An(r’) ,

(A3)

with An(r)=n(r)—7 and B '=kT. c\}(r;@) is the
hard-sphere (HS) direct correlation function of the homo-
geneous reference liquid. In deriving (A2) and (A3) we
have used the fact that 89/8n|ﬁ=0 for V(r)=0. The
first term in (A3) is the ideal-gas contribution; the second
term results from truncating the functional Taylor expan-
sion of the excess Helmholtz free energy at second order
in the density difference An(r).
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In the film, a convenient parametrization for the densi-
ty is

n(r)=n (1+¢yz2)+ 3 dg(z)e®T ], (A4)
K

where the sum runs over the nonzero reciprocal-lattice
vectors K of the solid. In the bulk, {¢x} is the set of or-
der parameters characterizing the solid phase. Here, it is
sufficient to consider only a simple, truncated version of
(A4) in which only one set of reciprocal-lattice vectors of
equal length is included. This set, denoted by {G}, is the
smallest nonzero set, e.g., the 12 [110] reciprocal-lattice
vectors in a bee crystal.

To be specific, we shall assume in the following that the
solid is a bece crystal. As already noted, the set {G} con-
tains 12 elements in this case. A suitable choice of basis
vectors is

al=—;—(—€l+’éz+’é3) ,
az=§<e,—ez+e3> ,

and

a
a;= 5(314—32—33) ,

where a is the next-nearest-neighbor distance. The corre-
sponding reciprocal-lattice vectors are

21
b —_ = A +/\ ,
1 a (€2 93)
21
b J— A A R
2 2 (el } 63)

and
2
b3=—a71<a1 +2,),

so that the 12 elements of {G} are *b;, *b,, b,
+(b,—b,), £(b;—b;), and =(b,—b;).

In the bulk, the coefficients ¢ of all the [110]
reciprocal-lattice vectors must be of equal magnitude in
order for the resulting solid to have the proper cubic
point-group symmetry. Near a surface, however, this is
not so; in this case they divide into several different
classes depending on the direction cosine between the
particular [110] vector and the surface normal. Within
each class the amplitudes are the same.

In the following, we consider films with (111) surfaces,
and take the z direction to be parallel to a,. In this case,
the set { G} divides into two classes, each consisting of six
elements. The first class, {G,}={=£b,,tb;,+(b,—b;)}
consists of those reciprocal-lattice vectors which are per-
pendicular to a;. The second class, {G,}={%b,,
+(b,—b,), (b, —b;)} consists of those elements of {G}
which have a finite projection on the z direction.

The interaction terms in (A2) and (A3) can be com-
bined and written as

I=—1{dr[dre(r—rDAn(nAn(r), (A5
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where
o(lr—r')=p e (r—rl;7A)—w(r—r]) .

Substituting (A4) in (AS5), we find I =I,+1,+1,, with
=2
= — n_ ’ - ’
I,=—A4 2N [ dz [dz' $,(2)8,(|z =z’ g;(z") ,

where A is the area of one surface of the film, N; is the
number of reciprocal-lattice vectors in {G;}, and

$:=3(bg,+é-5,)/V2

i

for i =1,2. The functions ©,(z) are given by

8(2)= [dpO[(p*+2z))'"*],

91(2)=2fdpe[(pz—}—zz)”z]e"G"p ,
C'1

and

i 1, i .
0,(z)=3e G3 fdpe[(p2+zz)1/2]e Glp ,
GZ

where G3 is the magnitude of the component of G, per-
pendicular to the surface (i.e., parallel to z) and G} is the
component of G, in the (111) plane.

First, note that for nonretarded van der Waals forces,
©,(z) is asymptotically proportional to 1/z* in d =3 di-
mensions. On the other hand, both ©,(z) and ©,(z) are
short range, even though ©(r) has a long-range tail. To
see this, consider ©,(z). First of all,

J-dpeigl.p: fompdpf()ZﬁdeeiGlpCOSG
=27Tf0°°pdpJ0(G,p>
so that
Ol(z)=12ﬂfowpdp O[(p*+2z3)21o(Gp) .

The essential features of the large-z behavior of ©,(z) can
be determined by assuming an analytically tractable form
for ©(r) which exhibits the correct large-r behavior. A
particularly simple choice, appropriate for van der Waals
forces, is 9(r)=‘}//(a2+r2)3, where a and y are con-
stants. With this choice we find

S "pdpelip*+2)1o(Gyp)
2

G
1 Kz[Gl(a2+22)l/2]

a’+z?

=Y
8

-G,| . L.
so that ©,(z)~e ' ’ asymptotically. Similar arguments

can be applied to analyze ©,(z).

Because both ©,(z) and ©,(z) are short ranged, I, and
I, can be simplified further by performing a gradient ex-
pansion. Expanding ¢,(z’) and ¢,(z’) to second order in
(z'—z) about z, we find

r

d¢;
z

___nA = 2 A +
I,= 2N, Ji,Ofdz ¢i(z)+ 2N, Ji,2fdz d
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for i =1,2, where

.7,,,=r‘zfj dzz

G;r

"0,(z2)=n3 [drz"e(re'"’
Gi

Since G, =G, =G, we see that

J10=J,0=60(G)>0

where O(G) is the Fourier transform of the direct corre-
lation function. Also, note that

7l fdr rargO(r)e’* T

kkg

5 dO(k) | kaks d?O(k)
a, B k2

dk k2 dk?
and that ©(k)=1—1/S(k), where S(k) is the liquid
structure factor. Quite generally, we expect G to be the

approximate position of the first peak in S (k) (Ref. 23) so
that

1
k

s __6dek) | _
TS TG G’“O’
and
7. —_4dek) | _,d’ek)
2 G dk |, dk? |
2
.4 e(zk) 50
dk? |g

7 [ dr[1a,($3+3)+1b,d3—bido(di+¢3)—La

In writing (A7) we have followed the procedure used in
Ref. 13. At any (e.g., nth) power of order parameters ¢,
and ¢,, there exist several symmetry classes of polygons
with n sides which can be constructed from the elements
of {G}. All the polygons in a given symmetry class can
be transformed into one another by an operation of the
cubic point group. We make the ansatz that all polygons
with the same number of sides have the same coefficients.
This is not, however, required by symmetry. Neverthe-
less, the essential physics would not change if different
coefficients were allowed for, and furthermore, there is no
convenient empirical procedure for determining the
values of these coefficients.

Denoting the integrand of (A7) by f({¢;}), our free-
energy functional has the form

fdz

d¢,

2
— +f({¢,~})]

1
2
—1 [dz [dz' Oz —z'|\po(2)do(z") ,  (AB)

where unimportant constants have been dropped. The
Euler-Lagrange equations for this model contain no gra-

3(91+3616D)+ 3a (26126545630 + - 1.
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The contribution of the ideal-gas term in (A3) can be
determined as follows. Substituting (A4) in the first term
on the right-hand side of (A3) one obtains

[ dr{n(On[n(r)/A]—[n(r)—7])

s T J dr [+ Sser)!

— (A6)
W2k

The right-hand side of (A6) can be written as

7 [dr [zaK¢K(z)¢_K(z)
K

+ 2
K, K", K

ag k k" Pxbx Pt |

where the K sums run over zero and the elements of {G,}
and {G,}. In the third-order term, only those
reciprocal-lattice vectors contribute which satisfy the
condition K+K’'+K" =0, and, in general, the condition
that the nth order term does not vanish is
K+K'+ -+ +KW=0.

Since ¢, is a nonordering density, we shall keep only
the lowest-order contributions ¢3 and ¢odgéd_g. Doing
this we finally obtain

(A7)

dient term involving ¢,(z). ¢,(z) is therefore determined
by the local values of ¢y(z) and ¢,(z); in particular, it is
easy to see that ¢,(z)~¢3(z) for ¢,(z)— 0 so that the sur-
face critical exponent for the ¢, mode is just twice that of
the ¢, mode. In the bulk, however, ¢,( o )=¢,( ) in or-
der that the bulk crystal exhibits cubic point-group sym-
metry. As shown in Ref. 3, the ¢, mode does not affect
the universal features of the SID transition in this case.
¢, can therefore be integrated out, leaving a two-
component order-parameter model. The resulting model
is given by Eqgs. (1), (2), and (12) with §=¢, and ¢ =4¢,,.

The same procedures can be applied in other crystal
directions. For example, in the [110] direction, {G}
divides into three classes, two of which have a nonzero
projection of the z direction.!> The resulting model is
somewhat more complicated in that four fields must be
considered, three of which have nontrivial interaction
terms. Note that two elements of {G} (say *g) are, in
fact, parallel to the z direction in this case. This leads to
the novel situation that both ¢, and ¢, have long-range
interactions in the z direction.”* All other fields have
effective exponential interactions; for these fields a gra-
dient expansion can again be made.
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One general feature which has emerged from the
present analysis should be emphasized, namely, that the
range of the effective interaction in the z direction of
some component ¢, of the order parameter depends on
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the value of Z-k. Quite generally, the smaller the projec-
tion of k on Z, the shorter the range of the interaction. In
particular, for k||Z, one obtains long-range power-law in-
teractions.

*Permenant address: Sektion Physik der Ludwig-Maximilians-
Universitat Miinchen, 8000 Miinchen 2, West Germany.
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