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The critical dynamics of dipolar ferromagnets are investigated by a mode-coupling theory. The
dynamical scaling functions for the Kubo relaxation functions and the damping coefficients are
computed. The shape of the transverse scaling functions shows a crossover at the dipolar wave vec-
tor qp, while the characteristic time has its crossover at about a tenth of g,. For wave vectors
smaller than g, the critical transverse correlation function decays nearly exponentially with time.
On the basis of this theory, we interpret neutron scattering experiments (constant-wave-vector and
constant-energy scans) on EuO, EuS, and Fe. The agreement of the theory can be extended beyond
the immediate vicinity of the critical point by including van Hove terms in the damping coefficients.

I. INTRODUCTION

The critical dynamics of ferromagnets has been a
matter of debate over many years both theoretically and
experimentally. There are a variety of experimental
methods, each sampling different regions of wave-vector
space. These measurements indicate that the critical dy-
namics of isotropic ferromagnets cannot be explained
solely on the basis of the short-range exchange interac-
tion. In hyperfine-interaction (HFI) experiments on Fe
and Ni, one observes a crossover in the dynamical critical
exponent from z =% toz =2; 1=4 ., a crossover to a dy-
namics with a nonconserved order parameter. This is
confirmed by electron-spin-resonance (ESR) and magnet-
ic relaxation experiments,®”!° where one finds a nonvan-
ishing Onsager coefficient at zero wave vector. However,
in contrast a critical exponent z =3 is deduced from the
wave-vector dependence of the linewidth observed in neu-
tron scattering experiments right at the critical tempera-
ture.!! 2! Nevertheless, the data for the linewidths above
the transition temperature!>!%2? cannot be described by
the Resibois-Piette scaling function resulting from a
mode-coupling (MC) theory?® and a renormalization-
group (RG) theory,?*?> which take into account the
short-range exchange interaction only. Those apparent
experimental discrepancies were resolved recently by a
MC theory,?*?” which on top of the exchange interaction,
takes into account the dipole-dipole interaction present in
all real ferromagnets.

Another important problem is the shape of the correla-
tion functions. For the short-range exchange interaction
this problem was analyzed by means of a discrete version
of MC theory in Refs. 28-31, and by a RG theory in
Refs. 32 and 33. All these theories fail to reproduce the
nearly exponential decay of the Kubo function, found by
spin-echo experiments on EuO at ¢ =0.024 A~! and
T=T,." Only at larger wave vectors are the RG and
MC calculations in accord with the experiment, as shown
by a comparison®* of the shape of the RG theory*>33 with
the heuristic shape of Ref. 18. The discrete versions of
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the MC theory give a quite reasonable agreement with
experiments for large wave vectors near the Brillouin-
zone boundary, as can be inferred from Ref. 31. It was
argued in Refs. 35 and 36 that neither MC nor RG
theory is valid in the time regime probed by Mezei’s'” ex-
periments. To fit the experimental results a ‘“hybrid
theory”’3® was proposed, which is a phenomenological in-
terpolation scheme between the short- and long-time lim-
its. In contrast we have shown in a brief report’’ that the
experiment can be explained naturally within our dipolar
MC theory without any need for a special treatment of
the short-time behavior.

Certain features of the shape of the correlation func-
tion can be accentuated by constant energy scans. The
RG theory (based on the short-range exchange interac-
tion) predicts a flat curve for the reduced peak position
gow >’ plotted versus the scaled frequency wg&/2.3%%
In certain energy and wave-vector regions, this theoreti-
cal result is confirmed experimentally.’® However, re-
cently Boni et al.??* have found pronounced departures
from the isotropic results in EuS in a region, where ac-
cording to Refs. 26 and 27, the dipolar interaction should
have a considerable effect on the dynamics. This is quite
similar to the situation in constant wave-vector scans,
where one finds deviations from the Resibois-Piette scal-
ing function.!»!* We will give an explanation of these
anomalies on the basis of the MC theory including the
long-range dipolar forces.

At first sight it may be surprising that the relatively
weak dipolar interaction is responsible for the anomalies
observed in the critical dynamics. However, the dipolar
interaction has the following characteristic features,
which have important consequences on the critical dy-
namics. (1) In contrast to the short-range exchange in-
teraction, the dipolar interaction is of long range and
thus dominates the asymptotic critical behavior of fer-
romagnets. (2) It introduces an anisotropy of the spin
fluctuations longitudinal and transverse to the wave vec-
tor q. This implies that the longitudinal static suscepti-
bility remains finite for q—0 and T—T,.** (3) The or-
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der parameter is no longer conserved, as can be inferred
from the equations of motion.?%?” (4) The strength of the
dipolar interaction introduces, besides the correlation
length &, a second length scale g, !, where g, is the so-
called dipolar wave vector defined below. This leads to
generalized scaling laws for the relaxation functions and
the linewidths.

For later reference let us now make some remarks
about the structure of MC theory. The basic idea under-
lying MC theory is that near the critical point the
relevant dynamics are described through slowly varying
macroscopic modes; i.e., the conserved quantities and the
order parameter. The dynamics are formulated most
conveniently in terms of the Kubo relaxation functions
for the spin variables S'(q,?), which are defined by
dU(q,1)=i m%fwdfe“ff([s"(q,f),sf(q,oﬁ]> ,

€—

t

(1.1)

with the normalization ®7(q,z =0)=1; i.e., the spin vari-
ables are normalized with respect to the static susceptibil-
ities. The corresponding frequency-dependent relaxation
functions are defined by a half-sided Fourier transform

Di(q,0 f dre’®'®i(q, 1) (1.2)

This Kubo relaxation function is related to the transport
coefficients I'’(q, t) and the frequency matrix w"(q) by

%‘D’f(q,t)= i (q)DH(g, 1)
= [ldrT*q —no¥iqn, (13
where the frequency matrix is given by
0(q)= ——————([S¥(q,1),5H(—q,0]) . (1.4)

¥ (q@)x/(@)]'?

The I“ik(q,t) are determined self-consistently from decay
processes of the spin modes. If only two-mode decay pro-
cesses are taken into account, the spin-relaxation func-
tions enter quadratically into the coupled 1ntegro-
differential equations for the I'*(q,). Frequently one in-
troduces, in addition, a Lorentzian approximation for the
Kubo relaxation functions, which results in a simplified
set of MC equations for the linewidths. For instance the
Resibois-Piette scaling function for isotropic ferromag-
nets is obtained on this level of approximation.

The MC equations for ferromagnets with both dipolar
and exchange interaction were derived in Ref. 26. As can
be inferred from Refs. 26 and 27, the linewidths can be
determined satisfactorily by the Lorentzian approxima-
tion. However, in order to obtain information about the
line shape, one has to refrain from this approximation
and has to solve the complete set of MC equations.?’
Then one finds a crossover in the line shape of the trans-
verse Kubo function from a shape similar to that found
in RG calculations®>3? at large wave vectors (i.e., ¢ > gp)
to a Lorentzian-like shape at ¢ <<g,. This explains the
nearly exponential decay of the transverse Kubo function
found by spin-echo experiments on EuO.!> The time
dependence of the longitudinal shape function is Gauss-
ian for small times and shows an oscillatory behavior.

In this paper we expose the arguments in more detail
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and present, in addition, the results for temperatures
above T,. Specific predictions are made for EuO, EusS,
and Fe. Furthermore, we examine the influence of van
Hove terms and static irrelevant interactions on the criti-
cal dynamics. The outline of the paper is as follows: In
Sec. II we formulate the MC theory for dipolar ferromag-
nets starting from a Hamiltonian, which contains both
the short-range exchange and the long-range dipole-
dipole interaction. The symmetry of this Hamiltonian
leads us to introduce spin modes longitudinal and trans-
verse with respect to the wave vector q. From the MC
equations we obtain generalized scaling laws for the re-
laxation functions and linewidths. The set of self-
consistent MC equations for these scaling functions is de-
rived. In Sec. IIT we present numerical results for the
substances Fe, EuO, and EuS. Reference is made to par-
ticular experiments (i) spin-echo experiments, (ii) con-
stant wave-vector scans, and (iii) constant energy scans.
A comparison is made of the Lorentzian approximation
with the complete theory. Section IV is devoted to an ex-
amination of the influence of van Hove terms in the
transport coefficients and of static irrelevant interactions
on the critical dynamics. In Sec. V we give a summary
and discussion of the results.

II. GENERAL THEORY

The spin Hamiltonian, including both short-range ex-
change and long-range dipolar interactions, is given by’

— daq 2\&ij ij i j
H={ Gy (o +Ja")87+7gD i @)1S ()S(—q) ,
m

(2.1)

where S'(q) are the Fourier-transformed Cartesian com-
ponents of the spin operator S'(x)

Siq)= [ d’xe "197Si(x) . (2.2)

The parameters J, and J characterize the exchange in-
teraction, with the former not entering the equations of
motion. The Fourier-transformed dlpolar interaction is
represented by the function

J . ..
Dt](q)_qq +_ql j+ +_q2__(q1)2 81]’
q° a 4 a;

(2.3

where a; are constants depending on the lattice struc-
ture.” The ratio of dipolar to exchange interaction is
characterized by the dimensionless parameter g

g= ay(g pup) =(gpa)?
2Ja? P
which defines the dipolar wave vector q;,. Note that all
quantities are given in units of the nearest-neighbor dis-
tance a. Here g; is the Landé factor and puy the Bohr
magneton.
If one retains only those terms in the Hamiltonian,
which are relevant in the sense of the RG theory (see also
Sec. IV B), the Hamiltonian reduces to

(2.4)



1&

d’q 2517299 | si(q)s)
H= Jo+Jg)6"+J, S q)S/(—q) .
[ amy | oI g% T IS s i —q)

(2.5)

Since the dipolar interaction contains the projection
operator (g'q’/q?), the static as well as the dynamic criti-
cal behavior is quite different for the spin modes longitu-
dinal and transverse with respect to the wave vector q.
The static transverse susceptibility diverges with the di-
polar critical exponent y (Ref. 39) as the critical tempera-
ture is approached, whereas the longitudinal susceptibili-
ty remains finite. The matrix of the static susceptibility is
given by

x“(g,9)=x"(g,q)

. qiqj
8 —"5
q

inJ
+XL(g,q>5f2—, 2.6)

where we will use the Ornstein-Zernike forms for the lon-
gitudinal and transverse susceptibilities

T _1 1 :

(8,9)=— , (2.6a)
X&0=7 5 a
L1 1

(g,9)=———— . (2.6b)
A

The mode-coupling theory does not account for effects of
the critical exponent 7, which will be neglected in the fol-
lowing. Here

T—T,
T,

c

-V

§=8

is the correlation length. The static crossover from
Heisenberg to dipolar critical behavior is partly con-
tained in £ through the effective exponent v=y q/2.404!
The tensorial structure of the static susceptibility sug-
. J
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gests a decomposition of the spin operator S(q) into one
longitudinal and two transverse components with respect
to the wave vector q; i.e.,

S(q)=S4q)§+S (qr'\@+S 2 (g2@) , 2.7)

where the orthonormal set of unit vectors is defined by

, TH(q)=g9xt(q) . (2.8)
For vanishing components of q the limits are taken in the
order of increasing Cartesian components. In the follow-
ing we will use these longitudinal and transverse spin
operators for the description of the dynamics. The Kubo
relaxation functions of the spin variables S%q,?) are
defined by (a=L,T,T,)

o(q,0)=ilim [ “dre”([S%(q,7),5%q,0)"]) ,
€— t

(2.9a)

with the normalization ®%(q,t =0)=1; i.e., the spin vari-
ables are normalized with respect to the static susceptibil-
ities. The corresponding frequency-dependent relaxation
functions are defined by a half-sided Fourier transform

o%(qw)= [ “die’®%q,0) . (2.9b)

From the Heisenberg equations of motion for the spin
operators one derives the following set of mode-coupling
equations for the damping I'*(q,g,¢) and relaxation func-

tions ®%(q,g,1):26%’

—a—<1>"‘(q,g,t)= — fotdrl"“(q,g,t —7)0%q,8,7) , (2.10)

at

and

3 B, o —
F“(q,g,t)=2JZkBTfBZg;’§—3—2vsa(k,q,g,e)(sﬂ'%aa’Taﬂ’ﬂaoﬂX Ueg1a—kL.8) g1 o, 1)0o(lq—Klg,1) .
Bo

Here the k integration runs over the first Brillouin zone
(BZ). The vertex functions v, for the decay of the mode
a into the modes 8 and o can be found in Refs. 26 and
217.

Equation (2.11) describes two-mode decay processes.
As emphasized before, the dipolar interaction introduces
a second length scale ¢, ! besides the correlation length
£. This entails the following extension of the static scal-
ing law:

X*(g,8)= %q “XU%,p) (2.12)
with the scaling variables
=L
9’

and (2.13)

x*(q,8)
(2.11)

Ve

7
Since the vertex functions vg, are proportional to the
fourth power of the wave number, vg, < q*, the dynami-

cal scaling functions derived from Egs. (2.10) and (2.11)
obey the dynamical scaling laws

y=

D% gl gl wl?)=1""®%q,g,0) , (2.142)

and

I'*(ql,gl* 0l?)=1T%q,g,0) , (2.14b)

with z =3 and a scaling parameter /. We emphasize that
despite z assuming the isotropic value 3, there is a cross-
over to dipolar critical behavior contained in the func-
tional form of the correlation functions. An immediate
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consequence of Eq. (2.14a) is the following scaling prop-
erty of the characteristic longitudinal and transverse fre-
quencies 0%(g,g8):

o7(q,8)=Aq*Q%x,y) , (2.15)

where A is a nonuniversal coefficient.

Now there are various ways to rewrite the scaling laws
[(2.14a) and (2.14b)] by appropriate choices of I. If one
sets [ =¢ ~! one finds,

s (2.16a)

and

I'“(q,8,0)=q¢f® (2.16b)

A disadvantage of Egs. (2.16a) and (2.16b) is that both the
crossover of the time scales and of the shapes of the
correlation functions are contained in . Since the time
scales for the isotropic and dipolar critical and hydro-
dynamic behavior differ drastically, it is more natural to
measure frequencies in units of the characteristic frequen-
cies. Hence, we fix the scaling parameter by the condi-
tion

=L
Aq*Q%(x,y) ’

and find from Egs. (2.14a) and (2.14b),

q)a( ’ ’w):_—_ a(x, s ), (2173)
98 quQ“(x,y)¢ Vs Va
and
I'(q,8,0)=Aq*Q%x, )y *(x,y,v,) , (2.17b)
with
- (2.18)

Va < ey
AgQ%(x,y)

Equation (2.17a) separates the crossover of the frequency
scales and the crossover of the shapes of the correlation

J

E. FREY, F. SCHWABL, AND S. THOMA 40

functions. The former is mainly contained in Q%(x,y) the
latter in ¢*(x,y,v,).

There is still some freedom in the choice of wy in Eq.
(2.15); for instance, one could take the half-width at half
maximum (HWHM) of the frequency-dependent Kubo
functions. This, however, would require us to solve Egs.
(2.10) and (2.11) simultaneously for the time scales and
the shapes of the correlation functions. Therefore, in the
following we will use as characteristic frequencies the
half-widths resulting from the Lorentzian approximation
for the line shape, which are already known. The
Lorentzian line widths obey the same scaling laws as the
HWHM and have the same asymptotic (hydrodynamic,
dipolar, isotropic) properties. Thus, this choice for the
characteristic frequencies solely is a matter of numerical
convenience and does not introduce any approximations.
From the final result one can obtain the HWHM and
rewrite the scaling functions in terms of these new vari-
ables.

Equations (2.17a), (2.17b), (2.13), and (2.18) imply for
the Laplace-transformed quantities the scaling laws

Pg,8,1)=0"(x,y,7,) , (2.19a)
and

[%q,8, ) =[Aq*Q%x,»)Py*(x,p,7,) , (2.19b)
where the scaled time variables 7, are given by

T,=AqQ%x,y)t . (2.20)

One should note that the characteristic time scales
1/[Aq°Q%x,y)] are different for the longitudinal and
transverse modes. This is mainly due to the noncritical
longitudinal static susceptibility implying that the longi-
tudinal characteristic frequency Ag?Q%(x,y) shows no
critical slowing down asymptotically. In other words, for
T =T, and g —0, the longitudinal characteristic frequen-
cy does not tend to zero, which implies an effective
dynamical critical exponent zL; =0 in the limit g —0.

Inserting Eqgs. (2.19a) and (2.19b) together with the
static scaling law (2.12) into Egs. (2.11) and (2.10) we find
the following coupled integrodifferential equations:

A X Do X
: s
_ s +1 Pcut —2 A o, T a, TsB,Lso,L _ _
Xy, Ty) =2 | ——— d dpp=% S 9% (y,p,7)(8% T+ 6% TehLeo L) =
yx,y axy) S dnf “dpp 2 05,0 eey)
x ¢8| X, L rx,vp) |67 |, 2 r (x|, 2.21)
P TR | P
and
9 a — Ta a a .
3, ¢ (x,yn'a)——fo dry(x,y,7,—T)¢%(x,,7) , (2.22)

connecting the scaling functions for the transport coefficients with the scaling functions for the Kubo relaxation func-
tions. In Eq. (2.21) we introduced the notations p=k /q, p_=|q—k| /g, y=cos(q,k), and

Tag( X0, 0) =T 2 QP (X /11,y /1) /9% x,p) .
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The nonuniversal frequency scale resulting from Eq. (2.15) is

172 1/2
JkgT _ 8ikp | kpTa,
47 B 4

9p

A=qa5"? (2.23)

87

The critical dynamic exponent following from Eq. (2.14) equals z = 2, however, as noted before, the crossover to dipolar
behavior is contained in the scaling functions for the transport coefficients y*(x,y,7,), the scaling functions for the
Kubo relaxation functions ¢*(x,y,7,) and the scaling functions of the characteristic frequencies Q% x,y).

The scaled vertex functions read®®

2728%L+(1—7?) (pn—1)7, (2.24)

Sﬂ’T+;-l‘2— ‘8“’T
p%

2
) (2.25)

D= [201—7?8*L)—(1—7? &=

2
1+ pn—t+2-
P> 2

which are related to the vertex functions vg, of Eq. (2.11) by vg, =q4ﬁga. For both longitudinal and transverse modes,
the dipolar interaction enters only in vertices involving decays into a longitudinal and a transverse mode, since the dipo-
lar interaction enters the Hamiltonian only through the longitudinal modes.

Because the k integration is restricted to the Brillouin zone, the p integration of Eq. (2.21) contains the cutoff

Pcutzﬁ_qﬂy , 2.26)

q 9p
where gp; denotes the boundary of the first Brillouin zone. All other material dependent parameters are contained in
the frequency scale A, Eq. (2.23). The cutoff (2.26) is important for small times, because the integrand of Eq. (2.21) is of
order 1 for t =0 and p >>1. Hence, for small times wave vectors near the zone boundary also contribute to the relaxa-
tion mechanism.
As explained before, we take for the characteristic frequencies the linewidths resulting from the Lorentzian approxi-
mation of the MC equations; i.e.,

Q%x, )=y 8 (x,p) . ' (2.27)
The scaling functions of the Lorentzian linewidths y ¢, (x,y) are determined by the coupled integral equations®?’
~g | x x
vyl e
+1 - P-
Yo X,¥)= e f d'qf dpp~*3 (y,p,n)(S”'T+8“’TSB’L8”’L)
P2 i | £ 02 o | = pL

Using the solution of Eq. (2.28) as input we have solved -
the complete set of MC equations (2.21) and (2.22) for \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\iiii\“\i\\'
different values of qp;. Because there are three scaling \\\\\\\\\\\\\\\\\\\\\\\\W N \ \\\\
variables (x, y, and v,) it is impossible to present here all \\\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\Qt\\\\\‘\\\\\
numerical results. Instead, in the next section, we will
concentrate on a limited number of temperatures and \\ \\\ \\\ \\\\\t\\\t“‘\ﬁ\\\\&\i\\\@\\‘ \\\\\\1\\\‘\1\
wave vectors motivated by the available experiments on N \\\\\\\\\‘ \\\t‘\‘ ‘\“\\\t\\‘\“\\“‘“\\““
the substances of primary interest EuS, EuO, and Fe. N

In closing this section we give the results for the criti-
cal temperature (x =0). We refer to EuO, characterized
by ¢p=0.147 A" ' and g, =1.06 A™1."5 The transverse
and the longitudinal scaling functions ¢%x =0,y,7,)
versus the scaling variables 7, and y =g, /q are shown in
Figs. 1 and 2. The line shapes for the longitudinal and
transverse Kubo relaxation functions differ significantly,
especially for small wave vectors g <<gqp; i.e., y >>1.
Both functions drop off quadratically at ¢t =0, as is im- FIG. 1. Scaling function of the transverse Kubo relaxation
plied by Eq. (2.22), but the transverse relaxation function function ¢7(x =0,y,7) at the critical temperature vs 7 and
obeys this behavior in a very small time domain only and y=ap/q.

\\\\\\\\\\\\\\\\\\\\\\\

0
\\\ \\\\\\\\\\\\\\Q\\\\\\\\‘ ’Q
\ N \'

[N
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FIG. 2. Scaling function of the longitudinal Kubo relaxation
function ¢X(x =0,y,7,) at the critical temperature vs 7, and

Y =4qp/9q.

may be approximated best by an exponential function for
y>>1. The longitudinal relaxation function shows a
damped oscillatory behavior.

III. APPLICATION AND PREDICTIONS
FOR EXPERIMENTS

As already mentioned in Sec. II, the p integration in
Eq. (2.21) contains a material dependent cutoff
Peut=Vqpz/qp. The ratio ggz/qp is characteristic for
the material and is collected together with other impor-
tant nonuniversal parameters of EuO, EuS, and Fe in
Table 1.

Due to this cutoff dependence we are forced to solve
Eqgs. (2.21) and (2.22) for each substance separately. Nev-
ertheless, the resulting scaling functions of the Kubo re-
laxation function for EuO, EuS, and Fe are nearly identi-
cal for temperatures T close to the critical temperature
T, and for small wave vectors g. This is not very surpris-
ing because of dynamic universality. The scaling func-
tions differ in regions well separated from 7. and for
wave vectors near the Brillouin-zone boundary. In the
presentation of our numerical results selected according
to their experimental relevance we restrict ourselves to
the most important aspects.
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A. Kubo relaxation function versus time,
exemplified for EuO

In view of spin-echo experiments on EuO above T, the
analysis of which is in progress,*> we investigate the
Kubo relaxation function versus time for the set of wave
Vectors q =0. 018 A*1 0.025 A*1 0.036 A~ , 0.071

~10.150 A~!. In order to make evident the dlfferences
in the shape crossover for different temperatures we first
examine the scaling function for the transverse and longi-
tudinal Kubo relaxation function. In Figs. 3(a) and 3(b)
these are plotted versus the scaled time variables 7, for a
temperature in the immediate vicinity of T,
(T'=T,+0.25 K) and in Figs. 4(a) and 4(b) for T=T7_.+8
K. In Fig. 3(a) one recognizes a nearly exponentially de-
cay of the transverse scaling function for wave vectors
g <<qp=0.147 A~'. Therefore, the frequency-
dependent relaxation function exhibits a Lorentzian-like
shape for g <<gp. On the other hand for q 2gq, the
curves look similar to Gaussians for small times and os-
cillate for larger times. Passing from small to large wave
vectors there occurs a shape crossover near the dipolar
wave vector. This should be contrasted with the
linewidth crossover appearing at a wave vector almost 1
order of magnitude smaller than g, (see Refs. 26 and 27).
The longitudinal scaling function in Fig. 3(b) shows a
Gaussian behavior at small times and damped oscillations
for larger times, which is quite different from what is
found for the transverse scaling function. Furthermore,
there is no crossover to an exponential decay as one
passes to smaller wave vectors.

Further away from T, the line-shape crossover of the
transverse relaxation function is much less pronounced
and the shape is more Gaussian, even for wave vectors
much smaller than g,. In Figs. 4(a) and 4(b) the trans-
verse and longitudinal Kubo functions are shown for the
same wave vectors as in Figs. 3(a) and 3(b) at T=T,+38
K. For this temperature the shape of the longitudinal
and transverse Kubo function is nearly the same as one
realizes by comparing Figs. 4(a) and 4(b). This is exactly
what one would have expected, because the influence of
the dipolar forces decreases with separation from the crit-
ical point and then there is no difference any more be-
tween longitudinal and transverse modes.

To single out the line-shape crossover, the appropriate
time scales are 7, of Eq. (2.20) used in Figs. 3 and 4. On

TABLE 1. Material parameters for Fe, EuO, and EuS. These values are collected from Refs. 13-22
and 39. gpz is defined by replacing the simple-cubic lattice by a sphere; i.e., ggz =(67)!/3/a. If there is
more than one value in the literature it is given in parentheses.

Fe EuO EuS
a (A) 2.87 5.12 5.95
T, (IS) 1040 . 69.1 16.6
9p (Ao_l) 0.045 0.147 0.24(0.27)
gsz (A7YH) 1.7 1.06 0.66
9pz/49p 38 7.5 2.8
Tp—T, (K) 8.6 8.2 4.8
a, V247 4T 41
Acxpt meV A5 130 8.7(8.3) 2.1(2.25)
Aro, meV A572 112

7.1 2.1
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FIG. 3. (a) Scaling function of the transverse Kubo relaxa-
tion function vs the scaled time variable 7 at T=7,+0.25 K
for ¢ =0.018 A" ( ), g =0.025 A~ (— — —), g =0.036
10\::(* ----- ), g =0.071 A~! (—-+—+-—.-—), and ¢ =0.150
A (= —). (b) The same as in (a) for the longitudinal

Kubo relaxation function.

the other hand, for comparison with experiments it may
be more convenient to present the transverse Kubo relax-
ation function versus the time scale 7' =A;..¢°’*. Such
plots are exhibited in Fig. 5 for T=T, and the wave vec-
tors ¢ =0.018 A™',0.036 A™', 0.150 A7, 0.3 A !, and
m Fig. 6 for T=T, +0 5 K and g =0. 018 A7, 0.025
Al , 0.036 A“1 0. 071 A~'. This choice of temperatures
and wave vectors is motlvated by experiments in pro-
gress.*?

B. Shape crossover at the critical point

Now we return to the critical temperature and com-
pare Fig. 1 with the spin-echo measurements of Mezei'®
on EuO. Taking a cut of the transverse Kubo relaxatlon
function in Fig. 1 at the wave vector ¢ =0.024 A~
find the relaxation function shown in Fig. 7 as the s011d
line versus time in nsec, where we have used the theoreti-
cal value for the nonuniversal scale A=7.1/5.1326
meV A5/2. There is an excellent agreement with the ex-
perimental data for # =1 nsec. The experimental data are
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TABLE II. Parameters a, b, and ¢ of the approximant Eq.
(3.1) for a set of scaling variables y =q,, /q.

y a b c
0.5 0.82378 0.31006 —0.00512
1.0 0.706 17 0.17740 0.08173
2.0 0.14239 0.92374 —0.06203
3.0 0.033 67 1.048 08 —0.084 28
4.0 0.01406 1.044 57 —0.076 86
6.0 0.006 37 1.006 16 —0.06101
10.0 —0.000 34 0.959 39 —0.04145

above the theoretical curve for £ =1 nsec. This may be
due to finite collimation effects in this time domain, as
noted by Mezei.!> To substantiate this point we have also
plotted in Fig. 7 the relaxation function at g =0.028 A~
(dot-dashed curve), which is significantly higher than the
curve for g =0.024 A7 fort>1 nsec, The fairly large
difference of the curves with ¢ =0.024 A 'and q =0.028
A~ ! comes from the vicinity of the crossover region.

1.0
o (b)
0.5
0
0 2 4
T
FIG. 4. (a) Scaling function of the transverse Kubo relaxa-

tion function vs the scaled time variable 7 at T=7,+8.0 K
for the same set of wave vectors g as in Figs. 3(a) and 3(b). (b)
The same as in (a) for the longitudinal Kubo relaxation func-
tion.
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FIG. 5. Scaling function of the transverse Kubo relaxation
function vs 7 =A;,q% at T=T, for ¢ =0.025 A~ ( ),
g=0.036 A!' (———), ¢g=0.150 A~! (—.—.—.), and
g=0.300 A7 (— - — o — e —).

In order to exhibit the difference from the MC theory
including only short-range exchange interaction, we have
solved Egs. (2.21) and (2.22) for this special case; i.e.,
y =0, x =0, and p., =gpz/q With ¢ =0.024 A~'. The
result is the dashed curve in Fig. 7, which differs drasti-
cally from the line shape including the long-range dipolar
interaction. It is important to realize that the crossover
in the line shape starts nearly at g, whereas the
linewidth still scales with the isotropic critical dynamic
exponent z =3 in this wave-vector region. These results
have been presented already in a recent letter.’’ The nu-
merical integration of the MC equations?®2’ was repeated
in Ref. 43 leading to a confirmation of our results.

To facilitate the analysis of experiments, we give here
an approximant for the transverse scaling function versus
the scaled time variable 71

FIG. 6. Scaling function of the transverse Kubo relaxation
function vs 7 =A;,q% at T=T,+0.5 K for ¢ =0.018 A~!
(——), ¢=0.025 A~} (— — —), ¢=0.036 A7 (—.—.—.),
and ¢ =0.071 A7 (—--—wo— o —),

E. FREY, F. SCHWABL, AND S. THOMA
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0 0.5 1.0 1.5 2.0
t (nsec)

FIG. 7. Transverse Kubo relaxation function ®7(q,g,t) at
g=0.024 A1 ( )and ¢ =0.028 A1 (—.—.—. ) for dipo-
lar ferromagnets vs time in nsec. The dashed line is the Kubo
relaxation function for short-range exchange interaction only at
g =0.024 A~'. Data points from Fig. 1 of Ref. 15.

_TZT

— (3.1)
a +b'rT+c7'2T

¢T('rT)=exp

The parameters a, b, and ¢ are given in Table II. We
have to emphasize that Eq. (3.1) is a purely numerical ap-
proximation and one should therefore refrain from a
physical interpretation. The range of validity is restrict-
ed toy 20.5 and 7, =4.5. This function, especially, does
not show the proper exponential decrease for very large
times.

Finally, let us compare the theoretical and experimen-
tal linewidths for Fe, EuO, and EuS precisely at the criti-
cal temperature. In Fig. 8 the transverse linewidth at 7,

FIG. 8. Scaling functions vs y “'=gq /g, at T, (in units of the
theoretical nonuniversal constant A) for (i) the HWHM of the
complete solution of the MC equations for the transverse Kubo
relaxation function ( ), (ii) transverse (—. —.—- ), and (iii)
longitudinal (— — —)linewidth in Lorentzian approximation.
Experimental data for EuO (O0; Ref. 19, O; Ref. 14) and Fe (A;
Ref. 13).
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obtained in the Lorentzian approximation is compared
with the HWHM resulting from the complete solution of
the MC equations. Whereas these two functions are quite
similar in shape, their asymptotic values differ by a factor
of 1.2. The experimental data in Fig. 8 are divided by the
theoretical values of the nonuniversal constants. Thus,
there is agreement between experiment and the HWHM
of the complete MC solution without adjustable parame-
ters.

C. Constant energy scans, exemplified for EuS

In conventional neutron scattering experiments one
measures the scattering function S 7(q,»)

(J)/kBT

ST(q,w)“ZkBTq"sz(x,y)FT(q,m)—l—;TMB—T ,

(3.2)

where the spectral weight function FT(g,w) is related to
the real part of the transverse Kubo relaxation function
by

Fl(g,0)=Re[®T(q,0)]
I S
Ag*QT(x,y)

A possible way of examining the line shape are constant-
energy scans for the scattering function S7(q,w).
Characteristic quantities in these scans are the peak posi-
tion g, and the HWHM Agq. For an isotropic ferromag-
net the peak positions scaled by the factor (A /w)?’* and
drawn versus the scaled frequency w&°/2/A should follow
a single scaling function.?>%% In constant-energy mea-
surements above T, for the Heisenberg ferromagnet EuS
Boni et al.?? found that the peak positions do not obey
the scaling law of an isotropic ferromagnet.

One of the most striking new features introduced by
the dipolar interaction is the generalized dynamical scal-
ing Eq. (2.17) with the additional scaling variable
Yy =qp/q. In conventional constant g scans plotted
versus the scaling variable x =1/(q§), the linewidths are
not represented by a single scaling function but by a
series of curves as exhibited in Fig. 3 of Ref. 26, where
each curve corresponds to a fixed temperature. As noted
recently®’ and to be shown next, the failure of the isotro-
pic scaling law in constant-energy scans can also be attri-
buted to the influence of the dipolar forces.

Introducing polar coordinates r =(x2+y2)!? and
g=arctan(qp€) the generalized scaling law for the Kubo
functions and characteristic frequencies leads to the fol-
lowing scaling law for the peak position in constant-
energy scans

"o:[(1/‘10§)2+(‘10/q0)2]1/2 ,

Re[¢7(x,y,v7)] . (3.3

ro 2.7{ (3.4)

S - E—
TAET gy |

as can be inferred easily from Egs. (2.12) and (2.17a).
This implies for g,
2/5

Al =g

(0]

90 (3.5)

()
2 A(§—2+q5)z/2 ] .
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Hence if Eq. (3.5), containing the two-parameter scaling
function @, is plotted versus w&>/2/A a set of curves
parametrized by the scaling variable ¢ is obtained. In
Fig. 9 the scaled peak position go(A;, /®)*> is plotted
versus d=w&’?/A;,, for the following set of scaling
variables ¢ = (a) 1.490, (b) 1.294, (c) 0.970, and (d) ¢=0.
Case (d) corresponds to an isotropic ferromagnet; i.e.,
gp=0. Ap,, is related to A by A;,,=5.1326A (see also
Sec. IIID). The above values for @ correspond in the
case of EuS (gp=0.27 A™', £,=1.81 A) to the tempera-
tures 7= (a) 1.017T,, (b) 1.067T,, and (c) 1.217,. Due to
the generalized scaling law Eq. (3.5), the curves coincide
with the isotropic theory for high frequency, but deviate
for small frequency. The closer to T, the larger the fre-
quency, where the deviation sets in. The comparison of
experiments with Fig. 9 must not be extended to arbitrary
large @, but has to be restricted to regions where the con-
ditions £7!, g <<gp, is met [see discussion of relation
(3.8)].

The steep drop off of the scaled peak positions at par-
ticular @ dependent values of & can be understood as fol-
lows. Because of the dipolar forces the order parameter
is no more conserved. Hence, the scattering function
S 7(g,w) remains finite for vanishing wave vector. As can
be seen easily from Eq. (3.2) the frequency dependence of
ST(g =0,w) is given by

Lo

w?+T3

ST(g=0,0)x for T>T, , (3.6)

where T’ denotes the relaxation rate of the nonconserved
order parameter in the hydrodynamic region. Since Iy is

proportional to £ 2 Eq. (3.6) reduces to

1.5

Go (Aol W)

0.5+l vt
102 10" 10%
W

T T T na

FIG. 9. Scaled peak positions go(Ap,/®)?’° for constant-
energy scans of the scattering function for the complete solution
of the MC equations vs the scaling variable & for ¢= (a) 1.490,
(b) 1.294, (c) 0.970, and (d) for the isotropic case, i.e., =0. In-
set: ST(g,w)/S7(0,w) in arbitrary units vs 1/ for ¢=1.294 for
some typical values of the scaled frequency [&=10%/1" with
L =8 ( B 10(———), 12(—+—-—. ), 14 (— - —-- —), and
16 (—---—---—) indicated in the graph by crosses].
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; (3.7)

STg=0,0)x 1 for T=T, .
1)

The constant-energy scans have a maximum at ¢ =0 and
for sufficiently large w a local maximum at finite ¢q. If @
decreases, the former strongly increases while the latter is
shifted to smaller g. As a result of this competition only
the maximum at g =0 survives for low frequencies. In
order to substantiate this, typical constant-energy scans
are shown in the inset of Fig. 9, where S (g,0)/S7(0,0)
(in arbitrary units) is plotted versus 1/7 for ¢=1.294 and
for a set of scaled frequencies (®=10%/1° with L =8, 10,
12, 14, 16 indicated in the graph). The corresponding
scaled peak positions are indicated in the scaling plot by
crosses. This behavior explains why the scaled peak posi-
tions for dipolar ferromagnets show such a steep drop off
at small frequencies. We do not attempt to fit tempera-
tures as 2.0T, by our critical theory. Due to the form of
ST(q,0)/57(0,w) shown in the inset of Fig. 9, we consid-
er half-widths in constant-energy scans less significant
and refrain from presenting such plots.

We further note that the characteristic deviations from
the isotropic theory exhibited in Fig. 9 result from the
crossover in the time scale and not so much from the
crossover in the shape function. To demonstrate this, we
show in Fig. 10 the scaled peak positions go(Ay,,/@)*”>
in Lorentzian approximation. Compared to Fig. 9 the
maxima are overemphasized in Fig. 10, but the portions
with the steep slope are nearly identical. the differences
of the exact mode-coupling theory and the Lorentzian
approximation can also be seen in the insets of Figs. 9
and 10.

We close this section with some remarks about the nu-
merical procedure used in solving the MC equations in
the present case. In Fig. 9 the scaled peak positions are
given for fixed scaling variables ¢. As expected, in the re-
gion of large & these curves approach the isotropic result.
In this limit the scaled peak positions are of the order
O(1), which implies

Vo= > ~& ?tang .
90

(3.8)

Y@, T, <<1 )=%T'2/5

a

f dup —3/5 2

Q"‘(r @)

— 2/5 a(

H@sTy)

2/5

where i=r(7,/un)*’> and the nonzero vertex functions

vg,(y,p) are given by

bir(p,p)=%, (3.10a)
4

vLT(y,p)—%Jr% , (3.10b)

vrr(vp) =+, (3.10¢)

X ¢P
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10°2 10 10%

FIG. 10. The same as in Fig. 9 for the scattering function re-
sulting from the Lorentzian approximation.

Thus y, tends to zero for &®— « and fixed scaling vari-
able ¢. By additionally fixing g, i.e., for a special sub-
stance, this would imply that g leaves the first Brillouin
zone. There is, however, another point of view namely
interpreting the limit y,—0 as the fictitious limit g, —0,
or in other words looking at a series of different sub-
stances with decreasing relative strength of the dipolar
interaction. Furthermore, the limit g, —0 implies £— oo
for fixed @, as is obvious from the definition of ¢.

It would be tedious to solve the MC equations for a se-
quence of g, with finite cutoff as in Sec. II. Instead we
restrict ourselves to sufficiently small wave vectors g such
that p..,=¢qpz /9py =qpz /g may be replaced by infinity.
By extending the p integration to infinity one has to take
care of the fact that the transport coefficients y*(x,y,7,)
become singular at 7,=0. In order to explore the kind of
singularity, let us study the behavior of the transport
coefficients at very small scaled time variables. By mak-
ing the substitution u=7,p°’? in the integral of Eq. (2.21)

and introducing polar coordinates r=(x2+y?)!/?
tanp=(y /x)=gqp& one finds for 7, << 1,
\ X 9)X° (B, )
A"(r,cp)
o,p)
B, @, ”___EL ¢° |g, q),'u_JiL
Q% Q%r,p)
(3.9)
|
=T - 2p*
er<y,p)—%+§ . (3.10d)

Hence, for small times the transport coefficients are a
product of a singular part 7,2/ and a part 7%(r,¢,7,),
which is finite for 7,—0. One should note that this
singular behavior is only due to the isotropic terms in the
vertex functions, whereas the dipolar term y*/p? leads to
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a regular time dependence. In the presence of a cutoff
the singularity is absent and 7, 2/° is replaced by a con-
stant for times smaller than a microscopic time
? micro =(Dq%7)~1,* where D is the diffusion constant at
qpz- We have incorporated these analytical results in the
procedure for solving the MC equations with infinite

cutoff.

D. Comparison of the HWHM with the Lorentzian
linewidth, exemplified for Fe

In this subsection we compare the HWHM of the
Kubo functions resulting from Egs. (2.21) and (2.22) to
¥for determined by Eq. (2.28). The solid lines in Fig. 11
represent the scaling functions y{,.(x,y) for the trans-
verse linewidth in Lorentzian approximation,?®?’ where
the curves are normalized with respect to their value at
criticality

yI (x =0,y =0)=5.1326 .

In the case of Fe curves a, b, ¢, and d correspond to the
temperatures T —7,=1.4, 5.8, 21.0, and 51.0 K. The
nonuniversal frequency scale is then found to be
Aro,=5.1326A=107.2 meV A%/?, whereas the experi-
mental value is

A, =130 meV A3/2 .

expt

Now we return to the solution of the complete set of
MC equations (2.21) and (2.22). The HWHM T}(q) for

x=1/q¥

FIG. 11. Scaling function of the transverse linewidth in
Lorentzian approximation ( ) and of the HWHM of the
complete solution ( —- —. —.) vs the scaling variable x =(g&) ™"
for a set of temperatures [T —7,= (a) 1.4 K, (b) 5.8 K, (c) 21 K,
and (d) 51 K]. The Resibois-Piette function ( ) and the
HWHM from the complete solution of the MC equations
(—-—-—-) without dipolar interaction is also plotted (e). Ex-
perimental results for Fe from Refs. 13 and 14 [T—T.= (O)
14K, (0)5.8K,(A)21.0K, (0) 51.0K].
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the real part of Laplace transformed transverse Kubo
functions is defined by

Re[®T(0=T{y)]=1Re[®(0=0)], (3.11)

and obeys the scaling law

Tiw(9)=Apwg Y frw(x,¥) - (3.12)

In Fig. 11 the scaling function yw(x,y) (dashed-dotted
line) is plotted for the same temperatures. The scaling
function is normalized such that yﬂw(x =0, y =0)=1,
which gives for the nonuniversal frequency scale

Agw=1.3TA[, =147 meV A2

a value which is in reasonable agreement with experi-
ment. The Lorentzian linewidth and the HWHM have
nearly the same (g£) ! dependence. Especially for small
wave vectors, the difference comes about only because of
the different nonuniversal frequency scales. Figure 11 is
in accord with Fig. 4 of Ref. 43.

In spin-echo experiments on Fe (Refs. 13 and 14) the
transverse Kubo relaxation function versus time ¢ has
been measured for the above temperatures. From these
the linewidth I“eTxpt was extracted by fitting the observed
data with an exponential function exp[ —T'[,,(¢)t]. The
corresponding scaled linewidths are also shown in Fig.
11. For a detailed analysis of such spin-echo experiments
it would be recommendable to reanalyze the experimental
data with the shape functions calculated in this article.
Furthermore, the experimental definition of the linewidth
does not correspond to the definition of the HWHM of
the real part of the Laplace transformed Kubo function.
Therefore, the comparison of theory and experiment is
preliminary.

As can be inferred from Fig. 11 the complete solution
of the mode-coupling theory is in reasonable agreement
with the experiment close to T, (T —7T,=1.4 and 5.8 K)
and gives an improvement over the Lorentzian approxi-
mation. The minor differences may be due to the follow-
ing reasons. (i) As mentioned above, the measured scal-
ing functions of the transverse relaxation function were
fitted to an exponential line, which is not the correct
shape. (ii) Because the dipolar crossover temperature T,
of Fe is 8.6 K, static crossover effects not taken into ac-
count in the experiments may cause some changes.
Furthermore, the nonuniversal scale of the correlation
length £, is affected by experimental uncertainties. A
change in £, would lead to a horizontal shift of the data
points in Fig. 11.

Larger differences show up for temperatures more
separated from 7T, (T —T,.=21 and 51 K), which cannot
be accounted for by the shape crossover or static cross-
over effects. here the measured linewidths are larger than
the theoretical. In order to explain this, it is necessary to
take into account the van Hove terms and further relaxa-
tion mechanisms due to irrelevant interactions, which
nevertheless may play an important role for temperatures
well separated from T, (see Sec. IV).
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IV. INFLUENCE OF VAN HOVE TERMS
AND STATIC IRRELEVANT INTERACTIONS

A. The influence of van Hove terms on the critical dynamics

In this section we study the influence of van Hove
terms on the critical dynamics. In the early history of
critical dynamics it was believed that the Onsager
coefficients L *(¢q) would be uncritical and that the critical
slowing down of the transport coefficients H%(q,g,t)
would result solely from their inverse dependence on the
static susceptibilities; i.e.,

E. FREY, F. SCHWABL, AND S. THOMA 40
L a
Hg,g,0)=—2"D _5;) . @.1)
x“(g,8)

Contributions to the transport coefficients of that type
are called van Hove terms. Such contributions are al-
ways present and are generated by fast fluctuations,*® ™%

* which originate from additional irrelevant terms in the

Hamiltonian and from higher-order decay processes con-
tained in the Hamiltonian (2.5). By including the van
Hove term (4.1), Eq. (2.10) remains unchanged while Eq.
(2.11) is replaced by

3
F“(q,g,t)=H“(q,g,t)+2J2kBTfBZ-(—% S 08, (k,q,g,0)(8% T+ 5% T6PL57L)
v B,o

B o _
w XX (g =kb8) gpx o o (|q—Kl,g,1)

(4.2)

X%(q,8)
where the second term on the right-hand side is the mode-coupling term of Eq. (2.11). Retaining only the first term in
the transport coefficients would result in the van Hove theory for the critical dynamics. However, close to T, the van

Hove term is small compared to the mode-coupling contribution and Eq. (4.2) reduces to Eq. (2.11).
Due to the dipolar interaction the order parameter is no longer conserved; hence, the Onsager coefficient L(q) is a

finite constant L independent of g, whereas for a conserved order parameter one would have L (g)=Lg>.
From Eqgs. (2.10) and (4.2) one finds MC equations for the scaling functions, which are given by (2.22) and

z—2 1

YHx, Y, Ty) = hy?  f——————
X% (x,y)Q0%x,y)

&(7y)

BlX Y (Do | X YV
2 S PAP  P
o +1 Pcut _ — —
+2 | ——— d dpp=? 3 95,(y,p,m) (87 T+8=TePLso L) =
ary) J_ dnf “dpp 520 (.M FTP)
X ¢ %,%,Taﬁ(x,y,p) ¢° L_,pL_,Taa(x,y,p,) , 4.3)
[

where without the van Hove term, Eq. (2.21). The latter is
L represented by the dotted curve in Fig. 12. In Fig. 12 we
h=——. (4.4)  have also displayed the experimental data of Mezei'> !
Agp on Fe. Close to T, (T —T,=1.4 and 5.8 K) the van

Taking typical background values for L from ESR experi-
ments!® 4 is found to be of the order # =0.05,...,0.1.
We have solved Egs. (2.22) and (4.3) for h =0.1. The re-
sulting scaling functions for the transverse linewidth with
(dashed-dotted) and without (solid) the van Hove term
are displayed in Fig. 12. In the case of Fe (g, =0.045
AL £,=0.82 A) the set of curves correspond to the
temperatures 7 —7,.=1.4, 5.8, 21.0, and 51.0 K. The
van Hove terms lead to an increase of the linewidths pro-
portional to its strength A. As the critical temperature is
approached the influence of the van Hove terms de-
creases. Furthermore, we note that the linewidth result-
ing from Egs. (2.22) and (4.3) is almost the same as if one
simply would have added the van Hove linewidth
h 172

=L 45
5.1326 fa(x’y) ( )

to the self-consistent solution of the MC equations

Hove terms are negligible. But for larger temperatures
(T —T,=21.0 and 51.0 K) the van Hove terms drastical-
ly increase the linewidth. As can be inferred from Fig. 12
we are able to give a good description of the experimental
data with quite reasonable a value of # =0.1. The minor
discrepancies remaining closer to 7, we have commented
on in Sec. IIT C. We recall that changes in the critical ex-
ponent v and in &, lead to horizontal shifts of the data
points.

Let us finally add a comment on the magnitude of and
on the role played by the van Hove terms. Their contri-
bution to the linewidth can be regarded as a background
contribution. In order to substantiate this point of view
let us look at ESR experiments, for which one is able to
determine the Onsager coefficient at zero wave vector. In
analyzing those experiments one subtracts from the data
a temperature-independent background term Ly,.'® The
remaining critical part of the Onsager coefficient shows a
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FIG. 12. Scaling function of the transverse linewidth result-
ing from the solution of the complete mode-coupling equations
neglecting ( ) and having regard of the van Hove term with
h =0.1(—-—-—.) vs the scaling variable x =(g&)~! for a set of
temperatures [T —7T,.= (a) 1.4 K, (b) 5.8 K, (c) 21 K, (d) 51 K].
Experimental data on Fe (Refs. 13 and 14) as in Fig. 11. The
dotted curves are obtained if one simply adds the van Hove
term to the self-consistent solution of the MC equations (see the
text).

temperature dependence, which is very well described
within our MC theory (see Refs. 27, 50, and 10). It is nat-
ural to identify this background value L, with the above
defined Onsager coefficient L entering the van Hove term
[Eq. (4.1)]. If one compares neutron scattering data for
the linewidth with the critical theory (Fig. 11) one should
also subtract such background terms from the data. Oth-
erwise, one has to compare with a theory containing such
terms (Fig. 12). Similar precautions have to be taken if
one compares results from neutron scattering and ESR
measurements.

B. The influence of terms irrelevant
for the statics on the critical dynamics

In this section we will analyze whether static irrelevant
interactions can be incorporated into the MC approach
and how the critical dynamics are affected. To start with
we give a brief definition of the item irrelevant in the con-
text of Wilson’s g space RG procedure.

The renormalization-group transformation®! H'=R oH
is defined by integrating out the spin components .S;* with
A/b =q = A followed by a rescaling of the wave vector
g —bg and spin S7—§,S;. Here b (b>1), §, are rescal-
ing parameters and A is the cutoff in g space. The
transformed Hamiltonian then is given by

exp(R,H)= [T II [ dSZexp(H)
a A/b=q'=A S:—»ng;‘

(4.6)

This transformation implies a scale transformation for
the coupling constants u; according to
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p=b"u, , 4.7)
near the fixed point of the RG. The coupling constant u;
is called relevant for y; >0, irrelevant for y; <0 and mar-
ginal for y; =0. This implies that the fixed point values
for all irrelevant coupling constants is zero.

By transforming the dipolar interaction into the wave-
vector space and expanding it around g =0 one finds
three kinds of couplings [see Eq. (2.3)]: (i) the long-range
dipolar coupling g (g%g?)/q>, (ii) the short-range “pseu-
dodipolar” coupling hg%”?, and (iii) the cubic term
f(g®)*8°8. For the dipolar coupling constant g the RG
transformation gives g’'=b2""g; i.e., g is relevant. The
only fixed points are g*=0 and g*=o. For g =0 the
pseudodipolar interaction transforms according to
h'=b""h with A, <0. Thus A is an irrelevant variable.
For g#0, h becomes negligible with respect to g after a
few iterations.’? Similarly to A, f also turns out to be ir-
relevant.®

Let us now consider the structure of the MC equations,
if such irrelevant terms are retained in the Hamiltonian.
For simplicity let us exemplify the main features for the
pseudodipolar interaction

hq®qPs*(q)SP(—q) ,

which may also result from some average over the spin-
orbit interaction in itinerant ferromagnets.54 Then, in the
equations of motion,?®?’ g has to be replaced by g +hk?
and the term

3 k
“‘Jf d k3 _L 2_1 29
(27) k 2 |q—k|
has to be added to the right-hand side of the equation of
motion for the transverse spin components. By a simple

extension of our previous calculation the vertex functions
are modified according to

{Si 1St} (4.8)

0= (20784 (1—) |87+ L
X(1+h8PE)28%T | (pn—1)% , (4.92)
DEr= [20(1—9%*E)—(1—7?) 1+—15— aa’Ty

2

2
X |pn—1+ y? +2p (4.9b)

Since the pseudodipolar interaction enters the vertex
functions as th“, its contribution to the linewidth will
come mainly from the zone boundary. However, the
Hamiltonian (2.1) was obtained by an expansion with
respect to g, which will overestimate the zone-boundary
contributions. If one nevertheless would solve the MC
equations with the vertex functions (4.9a) and (4.9b),
which is trivial to do, the influence of the pseudodipolar
interaction on the linewidth will be overestimated. For a
proper treatment of irrelevant terms one has to know the
correct Hamiltonian over the whole Brillouin zone.
Qualitatively speaking, any static irrelevant term pro-
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viding an additional relaxation mechanism gives an addi-
tive contribution to the linewidth, which is noticeable as
one leaves the critical region. A thorough microscopic
analysis of those interactions by RG or within MC theory
is meaningful only on the basis of the complete Hamil-
tonian over the whole Brillouin zone. In the absence of
such a Hamiltonian it is much more sensible and reliable
to incorporate these terms globally by a van Hove term
as in Eq. (4.3).

V. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the mode-coupling
theory of real ferromagnets including the short-range ex-
change and the dipolar interaction. In order to study the
line-shape crossover the full mode-coupling equations
without the Lorentzian approximation had been solved.

By incorporating the linewidth crossover in the time
scale we have found that close to T, the transverse Kubo
function versus the scaled time variable 7, shows a pro-
nounced shape crossover from a nearly Gaussian shape
(with small damped oscillations at larger times) to an ex-
ponential shape by passing from wave vectors larger than
qgp to smaller wave vectors. The line-shape crossover
starts in the vicinity of the dipolar wave vector g, in con-
trast to the linewidth crossover, which starts at a wave
vector almost 1 order of magnitude smaller. At these
temperatures the shape of the longitudinal Kubo function
versus the scaled time variable 7; is Gaussian for small
times and contains damped oscillations at larger times.
Passing to smaller wave vectors the minima of the oscilla-
tions are shifted to smaller times.

The situation is quite different for temperatures well
separated from the critical temperature. Then the shape
for the longitudinal and transverse Kubo function is
nearly the same and the shape crossover is much less pro-
nounced. Even for wave vectors much smaller than the
dipolar wave vector the shape resembles a Gaussian more
at small times. Since the influence of the dipolar interac-
tion on the critical dynamics becomes weaker as the tem-
perature is increased, this is exactly what one would have
expected from heuristic arguments.

The half-widths obtained by the complete mode-
coupling theory are very similar to what one finds by the
Lorentzian approximation. At small wave vectors only
the nonuniversal frequency scale is modified. This is very
reassuring since most of the previous applications of the
theory to neutron scattering, electron-spin-resonance,
magnetic relaxation, and hyperfine interaction experi-
ments have been based on the Lorentzian approxima-
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In the present paper the main emphasis is put on the
comparison with neutron scattering experiments. It is
gratifying that the present theory®’ reproduces the ex-
ponential decay of the shape function determined by
spin-echo experiments.'®

A second issue is the peak positions in constant-energy
scans which do not follow the isotropic scaling law. The
presence of the second length scale g, besides the corre-
lation length £, led to a generalized scaling law for the
peak position. Because of the dipolar interaction the or-
der parameter is not conserved and thus the structure
function S7(q,w) is nonzero at ¢=0. For T=T,,
ST(0,w) is proportional to 1/w?, which results in a strong
increase of S7(0,w) at small frequencies. The competi-
tion of this increase with the local maximum at finite ¢
finally leads to a steep drop off of the scaled peak posi-
tions at small frequencies.

The preliminary comparison of our theoretical results
with spin-echo measurements of Mezei on Fe gives a
reasonable quantitative agreement of theory and experi-
ment for temperatures close to the Curie temperature.
Probably the agreement can be improved taking into ac-
count static crossover effects and by reanalyzing the ex-
perimental data with the known theoretical shape func-
tions. For temperatures more separated from T, larger
discrepancies were found. They may be attributed to the
van Hove background terms. Their influence has been
analyzed in the previous section. The van Hove terms
lead to an increase of the linewidth as one leaves the criti-
cal temperature. By approaching the critical tempera-
ture the linewidth corrections due to the van Hove terms
become negligibly small.

With these theoretical results at hand, available experi-
ments could be analyzed more accurately. In addition,
some of the predictions as, for instance, the behavior of
the longitudinal correlation function, could be tested.

Note added in proof. The shape crossover was also
considered in two recent papers by Aberger and Folk
[Physica B 156&157, 229 (1989); J. Phys. (Paris) Collog.
C 8, 1567 (1988)]. A review of the dipolar crossover has
been given by Frey and Schwabl [J. Phys. (Paris) Colloq.
C 8, 1531 (1988)] and Schwabl [J. Appl. Phys. 64, 5867
(1988)].

ACKNOWLEDGMENTS

This work has been supported by the German Federal
Ministry for Research and Technology (BMFT) under
Contract No. 03-SC1TUM-0.

IR. C. Reno and C. Hohenemser, Magnetism and Magnetic Ma-
terials (Chicago, 1971), Proceedings of the 17th Annual
Conference on Magnetism and Magnetic Materials, AIP
Conf. Proc. No. 5, edited by D. C. Graham and J. J. Rhyne
(AIP, New York, 1972).

2A. M. Gottlieb and C. Hohenemser, Phys. Rev. Lett. 31, 1222
(1973).

3C. Hohenemser, L. Chow, and R. M. Suter, Phys. Rev. B 26,
5056 (1982); Phys. Rev. Lett. 45, 908 (1980).

4C. Hohenemser, N. Rosov, and A. Kleinhammes, Proceedings
of the International Conference on Nuclear Methods in
Magnetism, Miinchen, 1988 [Hyp. Int. (to be published)].

5J. Kétzler, G. Kamleiter, and G. Weber, J. Phys. C 9, L361
(1976).

6J. Kotzler, W. Scheithe, R. Blickhan, and E. Kaldis, Solid State
Commun. 26, 641 (1978).

7. Kétzler and H. von Philipsborn, Phys. Rev. Lett. 40, 790
(1978).



40 SHAPE FUNCTIONS OF DIPOLAR FERROMAGNETS AT AND. ..

8). K6tzler and W. Scheithe, J. Magn. Magn. Mater. 9, 4 (1978).

SR. A. Dunlap and A. M. Gottlieb, Phys. Rev. B 22, 3422
(1980).

103 K 5tzler, Phys. Rev. B 38, 12027 (1988).

M. F. Collins, V. J. Minkiewicz, R. Nathans, L. Passell, and
G. Shirane, Phys. Rev. 179, 417 (1969).

120, W. Dietrich, J. Als-Nielsen, and L. Passell, Phys. Rev. B
14, 4923 (1976).

I3F. Mezei, Phys. Rev. Lett. 49, 1096 (1982).

14F, Mezei, J. Magn. Magn. Mater. 45, 67 (1984).

I5F. Mezei, Physica B 136, 417 (1986).

16F, Mezei, in Magnetic Excitations and Fluctuations, edited by
U. Balucani, S. W. Lovesey, M. Rasetti, and V. Tognetti, Vol.
II of Springer Proceedings in Physics (Springer-Verlag, Berlin,
1987).

I7F. Mezei, Proceedings of the International Conference on
Magnetism, Paris, 1988 [J. Phys. Colloq. C8, 1537 (1988)].

18y, P. Wicksted, P. Béni, and G. Shirane, Phys. Rev. B 30, 3655
(1984).

19P. Boni and G. Shirane, Phys. Rev. B 33, 3012 (1986).

20p. Boni, M. E. Chen, and G. Shirane, Phys. Rev. B 35, 8449
(1987).

21p. Béni, G. Shirane, H. G. Bohn, and W. Zinn, J. Appl. Phys.
61, 8 (1987).

22p. Boni, G. Shirane, H. G. Bohn, and W. Zinn, J. Appl. Phys.
63, 3089 (1988).

23p, Resibois and C. Piette, Phys. Rev. Lett. 24, 514 (1970).

248, Ma and G. F. Mazenko, Phys. Rev. B 11, 4077 (1975).

25H. Iro, Z. Phys. B 68, 485 (1987).

26E. Frey and F. Schwabl, Phys. Lett. A 123, 49 (1987); E. Frey,
Diploma thesis, Technische Universitdt Miinchen, 1986 (un-
published).

27E. Frey and F. Schwabl, Z. Phys. B 71, 355 (1988).

28R Wegner, Z. Phys. 216, 433 (1968).

293, Hubbard, J. Phys. C 4, 53 (1971).

30A. Cuccoli, V. Tognetti, S. W. Lovesey, and R. Vaia, Phys.
Lett. A 131, 57 (1988).

7213

31A. Cuccoli, V. Tognetti, and S. W. Lovesey, Phys. Rev. B 39,
2619 (1989).

32y, Dohm, Solid State Commun. 20, 657 (1976).

33J. K. Bhattacharjee and R. A. Ferrell, Phys. Rev. B 24, 6480
(1981).

34R. Folk and H. Iro, Phys. Rev. B 32, 1880 (1985).

358, W. Lovesey and R. D. Williams, J. Phys. C 19, 1253 (1986).

36U. Balucani, M. G. Pini, P. Carra, S. W. Lovesey, and V. Tog-
netti, J. Phys. C 20, 3953 (1987).

37E. Frey, F. Schwabl, and S. Thoma, Phys. Lett. A 129, 343
(1988).

38R. Folk and H. Iro, Phys. Rev. B 34, 6571 (1986).

39A. Aharony and M. E. Fisher, Phys. Rev. B 8, 3323 (1973).

40A. D. Bruce, J. M. Kosterlitz, and D. R. Nelson, J. Phys. C 9,
825 (1976).

4IE. Frey and F. Schwabl, Proceedings of the International
Conference on Magnetism, Paris, 1988 [J. Phys. Colloqg. C8,
4569 (1988)].

42F. Mezei (private communicaton).

¢, Aberger and R. Folk, Phys. Rev. B 38, 7207 (1988).

44C. Aberger and R. Folk, Phys. Rev. B 38, 6693 (1988).

45M. Manson, J. Phys. C 7, 4073 (1974).

46K . Kawasaki, J. Phys. A 6, 1289 (1973).

4TH. Mori, Prog. Theor. Phys. 33, 423 (1965).

48K. Kawasaki, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic, New York,
1976), Vol. 5a.

49K. Kawasaki, Ann. Phys. (N.Y.) 61, 1 (1970).

0FE. Frey and F. Schwabl, Proceedings of the International
Conference on Nuclear Methods in Magnetism, Miichen,
1988 [Hyp. Int. (to be published)].

SIK. G. Wilson and J. Kogut, Phys. Rep. 12C, 76 (1974).

52A. Aharony, in Phase Transitions and Critical Phenomena,
edited by C. Domb and M. S. Green (Academic, New York,
1976), Vol. 6.

53A. Aharony, Phys. Rev. B 8, 3349 (1973).

54J. H. van Vleck, Phys. Rev. 52, 1137 (1937).



