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Anisotropy of the resistivity and susceptibility of Kondo systems
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Previous models for the anisotropy of the resistivity and susceptibility of Kondo systems are
based on the Anderson model, which includes a crystal-field term and isotropic mixing. We deter-
mine the effects of anisotropic hybridization on the resistivity and susceptibility of Kondo systems
and find that there are significant differences between the results of the two models.

I. INTRODUCTION

The primary focus of the theoretical studies of Kondo-
type systems has been to understand the crossover from
weak to strong coupling. This has largely been achieved
on the single-impurity problem and is still an active area
of investigations for the lattice problem. Another charac-
teristic of these systems, in particular the cerium Kondo-
type compounds, has been their magnetic anisotropy as
displayed by interalia, the resistivity and susceptibility,
e.g. , for CeA13, CeCu6, and CeCuzSi2. ' " The explana-
tion for the anisotropy of the resistivity is usually based
on a combination of a crystalline electric field and the
resonant Kondo scattering as first given by Cornut and
Coqblin for high temperature, as compared to the Kon-
do temperature Tz, and more recently further developed
by Hanzawa et al. for T «T~. The ingredient that is
missing in previous treatments of the anisotropy of
Kondo-type systems is the anisotropy of the conduction-
local state mixing interaction. Takahashi and Kasuya
proposed anisotropic p fmixing to expl-ain the anoma-
lous magnetic properties of the cerium monopnictides;
recently we showed that quite aside from the crystalline
electric field, the anisotropy of the mixing interaction
alone is able to account for the splitting of the f levels in
cerium Kondo compounds. Also, Schmidt, Ulrich, and
Muller-Hartmann have just considered the orbital anisot-
ropy of Kondo ions.

Here we will derive the anisotropic resistivity and sus-
ceptibility of Kondo compounds containing cerium that
come solely from the mixing interaction. It is natural to
anticipate that the resistivity will be anisotropic if the
mixing interaction is, because this mixing is the source of
scattering, and thereby resistivity, in the Anderson model
of Kondo systems. The other major source of anisotropy
is the crystalline electric field. As we are unable to reli-
ably estimate this in metallic systems, we will not include
it; rather we focus on the anisotropy of the mixing in-
teraction. In the following section we derive the density
of states for the local 4f electron that is needed to calcu-
late the resistivity and susceptibility. In Sec. III we cal-
culate the resistivity parallel and perpendicular to the
principal symmetry axis of a single crystal with tetrago-
nal or hexagonal symmetry, and consider in particular
cerium in LaA13, and in Sec. IV we do the same for the

susceptibility. In the concluding section we discuss our
results, and compare them with previous theoretical re-
sults. We find that the contributions of anisotropic hy-
bridization are significant.

II. MODEL HAMILTONIAN
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where m represents a linear combination of cerium
4f '~j=

—,', m1 ) states which transform according to the
irreducible representations of the point-group symmetry
at the sites of the local states. The anisotropy of the mix-
ing parameters V is given by its dependence on the in-
dex m. This was recently calculated for CeA12 and
CeA13. The relation between c k and ck is
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where

(o ~m, ) —= (l=3,s= ,', m, =m, —o-, m, =o ~j
=

—,', m, )

is a Clebsch-Gordan coe%cient, and (mj ~m ) represents
the linear combination of ~mj ) states in ~m ). We can
also relate ck~ to ck~ by

lf ik R,.
ck = d Ake 'c&~ . (2.2b)

In our treatment we will neglect the correlation between
local states as well as the interference terms coming from
scatterings at different sites. Furthermore, we set
Ef Ef and focus on the splitting coming from the an-
isotropy of the mixing interaction. From our previous
studies, we find this is reasonable as the anisotropy from
the mixing interaction is able to account for the 4f-level
splittings observed in Kondo-type systems.

For the Hamiltonian, Eq. (2.1), the fully dressed
conduction-electron propagator is

To describe cerium Kondo systems we use the Ander-
son model with infinite U (intra-atomic Coulomb energy)

. and anisotropic mixing,

= Q EkCkock + g ef f'+f'
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Gk '(E)=Gk '(E) —4vrc, g (o ~m )(m ~m )(cream')(m'~m ) Y3' (k)Y3' (k)V Gf (E),
m. m'. m

(2.3)

where Gf (E) is the local 4f propagator for the state
~m ), and c; =N; /N, is the concentration of the Kondo
ions. The spectral function pf (E) is approximately cal-
culated by 1/N expansion methods. ' To order 1/N, we
can write it as a sum of spin (Kondo) and charge reso-
nances

1
pf (E)= ——ImGf (s)

gS +gC
(s —e* ) +I * (E—e ) +(Nl )

(2.4)

I

levels we find the total spectral density off states is

1 —nf(0) N I *
=XPf mPfm X

(
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The valence of the f electron nf can be calculated from
nf = —BED/Ref 'F. or s* &0)&EO:Tp we find to O(1)

X0I 0/m T0
nf(0) = (2 g)

(1+NOI o/nTp)

where cf =cf, c* =—c —E0, and A ', 3 ' are the weights
of the spin and charge resonances. Here E0 is the
ground-state energy of the model Hamiltonian, Eq.
(2.1),

EO=Ef+min[X (Ef ) —T ]:sf +Xo( Ef ) To

where

(2.5a)
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where N(0) is the single-particle density of states, N the
degeneracy of the mth level, D the half-width of the con-
duction band that is taken to be Hat, and T0 the low-
temperature Kondo energy scale. It is found by evaluat-
ing Eq. (2.5b) for the ground state designated by "0",i.e.—vr Ef [/ivTO= T o. It is diferent from the TO=De
used in Ref. 8, where it represents the Kondo energy
scale for an isotropic (unsplit) system.

If the 4f-level splittings are much larger than the Kon-
do energy scale, i.e., if 6 0 ——X —X0))TQ cf ))c*,
and if the widths I * are O(1/N ) of e*, then the indiui
dual spectral densities pf satisfy the sum rules at T=O
K.10

0f ds pf (e)=mA ' =nf(0)/N

III. RESISTIVITY

(3.1)

where rk (Ek ) is the relaxation time of conduction elec-
trons,

(Ek ) = ——ImGk (Ei ) .—1 2 —1 (3.2)

It is important to stress that this is the correct formula
for the conductivity of Kondo systems, even in the pres-
ence of inelastic scattering due to crystal-field splittings. '

By using Eq. (2.3) we find

8~
kE (Ek ) — Ci

m. mk m

o mj m~ m cT mj m~'m

X Y, J (k)
I

X Y3' (k)V pf (sk)
where pf (E) is given by Eq. (2.4). In general the integral
over energy in Eq. (3.1) is difficult. To facilitate our cal-
culation we limit ourselves to T=O K, where
K, where

(3.3)

To demonstrate that the anisotropy of the mixing in-
teraction produces anisotropy of the resistivity for
Kondo-type compounds we neglect the interaction be-
tween Kondo ions and assume the scattering from
different sites are uncorrelated. Thus our results are only
valid for dilute systems. In the linear response regime the
conductivity is given by the standard formula'

2 T

rk~(Ei )d k,

and

f dEpf (s)=irA' =1—nf(0) .

(2.6)

By placing these weights in Eq. (2.4) and summing over f
l

and we find

cr„(T=O)= g f k„dAk 8~ c, g (cream, ) (mj~m) ~Y&
' (kl~ V pf (0)

m 4~V
J

(3.4)
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The condition 6„,is found when integrating over the angle Pk. We find for pWv and m~'Wmj in Eq. (3.3) that o. =0.
As an example of the e6'ects of anisotropic mixing on the resistivity we consider systems having either tetragonal

(CeCu2Si2) or hexagonal (CeA13) site symmetry. As our formula for the conductivity is valid only for dilute systems we
are thinking about, e.g. , cerium in LaA13. In these systems the ground state of the 4f electron may be a state that is
nearly pure ~+m ), where m =

—,', + —,', or —,'. The conductivities parallel and perpendicular to the symmetry axis of the
crystal are

and

zz 24cos OsinOdO

2A. , iz(sin 0+4cos 0)+k»2sin 0(1+15cos 0)+5A~izsin 0

(3.5)

0xx 12sin OdO

2A&iz(sin 0+4cos 0)+A3i2sin 0(1+15cos 0)+5k&i&sin 0

The isotropic conductivity o.0 is

2~N(0)ne fi
0

mc;Nfsin q3

where g3 is the phase shift in the j=
—,
' channel, g3=~nf /Xf,

V pf (0),
J J J J

and

(3.6)

Af =Nf V pf(0),
where V and pf (0) are the isotropic mixing parameter and 4f density of states per channel, i.e.,

NfV =gN /V

(3.7a)

(3.7b)

We can parametrize these conductivities as

o„Nf sin (rrnf/Nf )

2 I„,
sin (mnf /Ns)

where

n/2 12(sin 05„„+2 cos 06„,)sin0 d 0I„=
2A, i2(sin 0+4cos 0}+A3i2sin 0(1+15cos 0}+5A&i2sin 0

A:—A, /JI
mf m.

(3.8)

(3.9)

(m. )

0~p 2J + 1 sin [trrnf /(2j + 1 )]
sin (vrnf /2)

(3.11)

is the ground doublet k, X =2 for a doublet, and we
used for the 4f spectral density at the Fermi surface

77nf
pf (0)= sin

J m. m.
J J

From Eq. (3.8) we see that the conductivity depends on
three factors: the degeneracy of the ground-state N, the
phase shift at the Fermi level r)3(0)=ref/N, and the
angular integral I„.

When all the levels are degenerate N =Xf, the A, 's

are all equal, and A =1. Then the angular integral
JI„=1 and we find 0„„=0.0. The opposite extreme is

when one of the doublets ~+m ) is lowest and the others
are much higher in energy, i.e., A =6 . In this limit

J J

I,' ' diverges as x (3.12)

Therefore in addition to making the conductivities aniso-
tropic, anisotropic mixing alters their magnitudes
dramatically. In particular when the ground state is
nominally ~+ —,

' ) or ~+—,') it is important to consider all

I

Whereas the first two factors do not depend on the nature
of the ground doublet, the angular integral varies drarnat-
ically with m . We find

I(1/2) 4 3

I~'/2) =2.8z ' )

I""'=4.1x

Iz diverges as log x

I' ' diverges as log x,
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A and not to approximate them as above i e.,
A-'=6-,

J J
To illustrate the above we consider cerium in LaA13.

In this system the ground state of the 4f ' electron is
nearly ~+ —,

' ), the first excited state ~+—,
' ) is at b, &0=6Q K,

and the uppermost ~+—', ) state is at 62O=88 K.' From
our previous work on the anisotropy of the mixing, we
determined for CeA13 that'

V /V =135
V /V =1.49,

To 3. 14 K

I"*=5K,
r*, =r,*=25 K .

(3.13)

2 pf (Q)
Ai=

v,' pf, (Q)

and similarly

p2 pf (Q)

I'o pf, Q

(3.14)
p2 p8 /(Q2 + +82) =0.056,

I +/(T2+I +2)

Although A, and A2 are small they should not be set to
zero as the ground state is nominally ~+ —,

' ); therefore the
angular integral I„ is sensitive to nonzero values of A,
and Az. For the above values of A we find

I, =3.8 (3.15)

where 0, 1, and 2 are the ground and two excited states.
By placing these values in Eqs. (3.7a) and (3.9) we find for
Ce in LaA13

Ao= 1,

o„/o. = 1.19 .

For cerium in LaA13 we find the resistivity or conduc-
tivity is not that anisotropic. On the contrary, the main
effect of the anisotropy of the mixing interaction in this
system is to change the magnitude of the resistivity by
about a factor of 3. As we will discuss in the concluding
section the major role of anisotropic mixing is to alter the
parameters A, Eqs. (3.14), entering the angular in-

J
tegrals I„,so that they are radically different from those
one would find from a model which had crystalline field
splittings but isotropic mixing parameters.

At the present time it is not possible to compare our
results for the conductivities, Eqs. (3.16), with experimen-
tal data, because data do not exist for temperatures small
compared to TO=3. 14 K. The extant data' is for T ~ 10
K, where T & To. Therefore the effects to the Kondo
scattering are minimal, and our theory does not readily
distinguish itself from others which have isotropic mixing
with crystal-field-split levels.

We have not evaluated the conductivity, Eq. (3.8), for
CeCu2Siz because the mixing parameters V have not
been determined. For this structure there are too many
independent variables to reliably determine the V 's.
Once they are available we can readily calculate the an-
isotropy of the resistivity by using the formulas in this
section.

IV. SUSCEPTIBILITY

To obtain the magnetic susceptibility we take two
derivatives of the ground-state energy of the Hamiltonian
for our systems, Eq. (2.1), with respect to the field. We
previously found this energy EQ in the absence of a field.
When we focus on the susceptibility coming from the lo-
cal f electrons, ' "the ground-state energy in the pres-
ence of a field for the Hamiltonian Eq. (2.1) is

and

I =3.2 .

f(Ek —a .H —H.p H)dEk
Eo= g

vr DEO ef +uk —X (Ef )
(4.1)

On comparing with Eqs. (3.12) for m =
—,
' we note these

values lie between the two extremes of isotropy I„=1
and an isolated ~+ —,

' ) ground state. By placing these
values for I„ in Eq. (3.11), we find the conductivities
parallel and perpendicular to the c axis of the crystal are

where

a =gp~(m J~m )
(4.2)

P =(gp~ )' g (m
~
J~ m') ( m'~ J~m ) /(E E,), —

m'Wm

and

o.„=2. 85o.o,
oxx 2 4oo ~

(3.16)
and we have neglected the term of O(H ).

As it is defined EQ is an intrinsic function of the field
H. By taking two derivatives with respect to the field and
using Eq. (2.5), we find the zero-field susceptibility at
T=O K is given as

a'E,
T=Q

aII„'

7T TO N TQ I
1+ +

XO F'0 ~0 iVO 6 0 I 0

N To I (a~ )—2P~O" +
m&0 0 mO 0 mo

(4.3)
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where 5 0—=X —Xo are the 4f-level splittings, and
a",P"" are components of a and P, see Eq. (4.2).
When 6 0))T0 we can identify the term proportional to
(aio) /To as the Kondo-type susceptibility, while the
remaining terms are Van Vleck —type corrections due to
the upper f levels removed from the ground state in our
model by the anisotropy of the mixing interaction.
When there is no splitting of the 4f level, the above for-
mula reduces to the isotropic susceptibility at T=0 K

and

pl= 2a'+5 (a' b—')'
( )22=

2, 4 6 gI'B
21 20

By using the T0 and I we previously found for CeA13,
see Eq. (3.13), and the actual splittings 6&0=60 K and
620=88 K, ' we find

y~~= 0. 53(gp ii) /K,
yo( T=0)=

—,
' j(j+ 1)(gp~ )~/To . (4 ") and (4.7)

~0) =a ~+-', )+b ~+-', ),
1)= I+-,'),

i 2) =a +—,
' ) b

i
+ —,

' ),—
(4.4)

Our result, Eq. (4.3), is in overall agreement with the sus-
ceptibility derived by Hanzawa et al. ' Differences ap-
pear because our treatment of the Kondo effect is
different from theirs.

By using Eq. (4.3) we have calculated the susceptibility
of CeA13 at T=O K for the magnetic field parallel and
perpendicular to the c axis of this compound. As the sus-
ceptibility is more sensitive to the precise composition of
the states than the resistivity we use the following states
for the ground, first, and second excited states of CeA13
(Ref. 13)

pi=0. 15(gpii) /K .

The ratio of the susceptibilities,

(4.8)

is in excellent agreement with the experimental value ex-
trapolated to zero temperature of (3.6), but the absolute
values are about twice as large as the experimental ones. '

We have repeated this calculation for CeCu2Si2. For
this compound with tetragonal symmetry there are three
doublet as for CeA13 with a =0.83 and b =0.56, see Eqs.
(4.4), &,0=140 K, b, 2O=364 K, and TO=10 K. ' As
610 620 ))T0 we can neglect the contributions to the sus-
ceptibility from the excited states, i.e., the g ~o in Eq.
(4.3), and we find

where a =0.97 and b=0.24. These states are spatially
quantized along the c axis of the crystal; therefore, we
must be careful when the field is perpendicular to the c
axis to use the proper linear combinations of these states,
so that the perturbation, i.e., gpBHJ, does not connect
degenerate states. This is readily done for the previous
states by taking the symmetric and antis~mmetric com-
binations (properly normalized by 1/v'2) of the states
~+m ) in Eqs. (4.4). For the field parallel to the c axis we
find

(ct~() )'
y„„(T=0 ) = —

213~()
i' .

0

By using this abridged formula we find

y„=O. 16(g, us )'/K,
pi=0. 11(gpii) /K,
x =j~ =1.45 .
XJ

(4.9)

(4.10)

~J' =+( ,'a'
l b')g V~-—

~I =+-,'go s

aJ =+(—', a —', b )gp~, —

and

PI', = —PJ= — '
(gp, )',

20

Plj =0

2b +5 (a b)—
10

while for the field perpendicular to the c axis we find

a', =a,'=&5abg ps,

(4.5)

(4.6)

The experimental data of the susceptibility for CeCu2Si2
are'

y~~
=0.062(gpii) /K,

pi=0. 048(gps ) /K, (4.1 1)

V. DISCUSSION OF RESULTS

=1.2.
XJ

Our calculated ratio of the susceptbilities parallel and
perpendicular to the principal axis is in good agreement
with the observed ratio. However, the absolute values of
the susceptibilities are about twice as large as those mea-
sured.

We note that our calculated values for the susceptibili-
ties of both CeA13 and CeCu2Si2 are about twice as large
as those observed. We do not have an explanation for
this.

2a2

~10 ~21
(gp& )', We have determined the effects of anisotropic hybridi-

zation on the resistivity and susceptibility of Kondo sys-
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tems. As the conduction electrons are scattered by the
mixing interaction in the Anderson model, it is natural to
expect that the resistivity would be anisotropic. In addi-
tion, we previously found that anisotropic mixing was a
major source of the 4f-level splittings observed in cerium
Kondo systems. Systems with crystal-field-spli. t magnetic
ions are known to yield anisotropic resistivities and sus-
ceptibilities. Therefore the question arises whether one
could explain these properties for Kondo systems on the
basis of crystal field -split -levels (of arbitrary origin) with
an isotronic mixing interaction. Indeed this is the model
used up until now to explain the anisotropy of the resis-
tivity, e.g. , see Refs. 5 and 6, and the susceptibility Ref.
15. In such a model all the mixing parameters V are the
same so that the parameters I =+X(0) V

~

are identi-
cal. When the degeneracies of all the split levels are the
same, as they are for the cases we are considering (they
are all doublets), the parameters A, Eq. (3.14), aref
given by

(I* ). 2 e 2m. iso To+(I p )i~a
(A );„= (5.1)

for 6 o ))( I *
);, . The ( I );, are determined from

Eq. (12) of Ref. 8 with the same Kondo temperature To
and crystal fi'eld splitt-ings -b. 0 that we used in the calcu-

J
lation with anisotropic mixing, and we find

(I o )„,=4.5 K,
(I *, );„=(I~ );„=14 K,
(I i 2),„/(10);„=3

(5.2)

The equivalent expression when anisotropic mixing is
present, see Eqs. (3.14), can be written as

A
J 0

(5.3)

where we took b, o))I, and from Eq. (3.13) we have
J J

2
Vi, z =1.5,
V0

(5.4)

and

=5.
0

By inserting the same Kondo temperature and crystal-
field splittings in the two expressions, Eqs. (5.1) and (5.3),
we find the A 's for the isotropic mixing are 2—,

' times
J

smaller than for those with anisotropic mixing.
With the model used in Ref. 6, we find

Tp
A

2A
J

(5.5)
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and we find this is about 60 times smaller than the
correct parameters, Eqs. (3.14). As the angular integral
I, diverges for the ground state of cerium in LaA13 when
A& =A2=0, a finite conductivity along the z axis depends
critically on the small but finite values of these A' s. Even
though the A 's are small for the model with anisotropic

J
mixing, A, =0.056 and A2=0. 031, the models with iso-
tropic mixing have even smaller parameters. Therefore
the conductivity O.„will be considerably larger in these
models. The integral I, converges even for a pure ~+ —,

' )
ground state, I' ' '=4. 1 [see Eq. (3.12)], and for cerium
in LaA13 we find I =3.2. Therefore the smaller parame-
ters A in the models with isotropic mixing change I

J
by at most from 3.2 to 4.1.

We conclude that by fixing the Kondo temperature and
crystal-field splittings, the models with isotropic mixing
have much larger conductivities than the model with an-
isotropic mixing, particularly along the c direction (z
axis), thereby increasing the anisotropy of the conductivi-
ty. On the other hand the susceptibility, see Eq. (4.3), is
relatively unaffected by the anisotropy of the mixing in-
teraction provided one accouats for the crystal-field split-
tings. If one reverses this procedure, i.e., uses known
data to fix the model parameters A, we would find that

J
the ratios (To/b, 0) found by using isotropic mixing,

J
see Eqs. (5.1) and (5.5), are 2.5 —60 times larger than for
the model with anisotropic mixing, Eq. (5.3).

To summarize, the Anderson model of Kondo systems
with anisotropic mixing produces an anisotropy of the
resistivity, which is quite different from the model in
which one splits the 4f level, and uses an isotropic mix-
ing interaction. As data on the conductivities are una-
vailable, we are unable to decide which model is better.
A more realistic calculation in which we relax our as-
sumption cf =sf will no doubt yield better results; after

. all, one has additional parameters to play with. The one
thing that is clear at this time is that the isotropic mixing
interaction yields linewidths I, Eq. (5.2), which are too
small. Anisotropic mixing is an effect that should be con-
sidered in any crystal-electric-field-type calculation of
heavy fermions.
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