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The composite-spin representation of the spin-1 Heisenberg chain is used to transform it through
the Jordan-Wigner transformation to the one-dimensional fermion gas. To properly include the xy
couplings between spins, we also consider the bosonized version of the fermion model. Phase dia-
grams deduced from the two versions of the fermion model are compared against numerical results
for finite Heisenberg chains. One of the symmetries of the spin model is lost in the fermionization,
and this leads to a topologically incorrect phase diagram in at least one part of the parameter space.
There are clear indications of significant coupling of spin and charge degrees of freedom in the fer-
mion model and of strong renormalization of the coupling constants in the continuum limit. The
existence of the Haldane gap is discussed in connection with these results.

I. INTRODUCTION

It is well known! that in one dimension (1D) fermions
can be transformed to bosons and that spin models can be
related to either of the two descriptions. These interrela-
tionships between different models have made it possible
to predict?”* properties of a variety of spin models.
Apart from a few special cases the transformations are
not exact, however, and there remains the possibility that
some properties of the original models are not properly
reflected in their transformed counterparts. This could,
in particular, be the case when a lattice model has been
mapped? 7 to a field theory. Renormalizations necessary
to define the proper continuum limit are not easily han-
dled and the relationships between the parameters of the
models are difficult to establish. The true equivalence of
the models may be questionable.

It is therefore of interest to study the related 1D mod-
els independently and to try to establish whether the pre-
dicted equivalence of properties is indeed realized. In
this paper we shall do this by comparing the spin-1
Heisenberg chain and the 1D fermion gas model. The
spin-1 Heisenberg chain, in a composite spin representa-
tion, can be written’~® as two coupled spin-1 chains. In-
troducing for each of the spin species a Jordan-Wigner
transformation to spinless fermions, and then identifying
the two kinds of fermions with the two spin components
of the same fermion, a mapping to the 1D fermion gas
model can be achieved. Apart from the exchange cou-
plings between the transverse components of the two
S =1 operators, the couplings of the spin model can be
identified with the interaction terms of the fermion prob-
lem. The latter problem has been studied’ in detail, and a
lot of information is available about its phase diagram.
We shall compare this phase diagram with the phase dia-
gram of the spin model, which is obtained by extrapolat-
ing the finite-chain results.

To study the effect of the exchange couplings between
the transverse components of the two S =1 operators we
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have used Abelian bosonization®~’ of fermion operators,
even though it is strictly speaking valid only in the scal-
ing limit of small gaps. By combining the boson and fer-
mion results we can then construct the phase diagram of
the fermion model which is to be compared with the nu-
merical results. The phase diagram of the fermion model
thus constructed will include some of the renormalization
effects which are necessary in the continuum limit, and
comparison with numerical results will reveal those re-
normalization effects which are still missing. This com-
parison will also indicate to what extent the spin and
charge degrees of freedom are independent of each other.
In a sense this work complements earlier studies®™’
which were concerned only with the topology of the
phase diagrams.

The paper is organized such that in Sec. II we intro-
duce the spin-1 Heisenberg model in the composite spin
representation and derive the equivalent fermion model.
In Sec. IIT we derive the bosonized version of the fermion
model and in Sec. IV we describe briefly the phase dia-
grams resulting from these two models. The properties
of the original spin-1 model have been calculated numeri-
cally for finite chains, and the results of these calculations
we describe in Sec. V. Comparison of analytical and nu-
merical results is made in Sec. VI.

II. FERMION REPRESENTATION
OF THE SPIN-1 MODEL

The anisotropic Heisenberg chain can be described by
the Hamiltonian

N
H=—3[J,,(S/S},+8}S), ) +J,8:87,, —D(S7)1],
ji=1

2.1

where we have assumed an xy symmetry so that there are
only two exchange constants J,, and J, and a single-ion
anisotropy with a characteristic energy D. For spin-1
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operators a composite-spin representation can be given in
terms of two spin-; operators o ; and 7;. Replacing S; by
o ;+7; the Hamiltonian can be written in the form

H=H, +H_+H, +H_ , (2.2)

where

N
Hop=— 3 [3a] B +aj B ) +IPaiB 1
j=1

—DPaipr] . (2.3)

Here we have introduced the usual raising and lowering
operators a® =a*+ia’ and generalized the coupling con-
stants to allow a departure from (2.1).

It was shown in Ref. 8 that in the case when the cou-
plings J;’;ﬁ, J, and D% are independent of the super-
scripts a@ and 3, the ground-state properties of the
composite-spin model are identical to those of the origi-
nal spin-1 model with couplings ny, J,, and D, at least
for small D. The additional local singlets due to the
composite-spin representation will lead to extra levels
which are, however, separated from the ground state by
an energy which is proportional to the largest of the pa-
rameters J,,, and J,.

As in Ref. 8 we shall now simplify the model by assum-
ing that there are only six different coupling constants
such that

N
H,,=—3 [%ny(afaj‘ﬂ-f-o;afﬂ)-{-Jzajajﬂ
j=1
—D(o%)]
and (2.4)
N ’ + - -+ ’
H,,=— 3 [3)ylo] 1 to; ) +H0%m
j=1
—D'oiri] .

H_ and H_, can be found from these expressions by in-
terchanging all the o and 7 operators. The last term in
H,, (and H_ ) is constant when o =7=1, and we shall
fix the energy scale by choosing J,,=1. We are therefore
left with four independent coupling constants, Jy,, J,, J,
and D'.

H,, and H,_ correspond to independent spin-1
Heisenberg chains, while H,,. and H_, describe the cou-
pling between them. Next we shall make a Jordan-
Wigner transformation to fermions. For a single spin-
chain the transformation is to spinless fermions. In our
case!® the o spins can be transformed to up-spin fermions
and the 7 spins to down-spin fermions. The correct com-
mutation relations are satisfied if we choose
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j—1
+_ .1 . t
o =cj exp zvzcntcﬂ] ,
n=1
- A
O =exp |—im 3 ¢,1Ch1 i1
n=1
=t o
Oj_chch % N
A (2.5)
bt ISt o ot
Tj —C€ji €Xp lﬂ-zcnlcnl_}_lﬂ'zcnwnr ’
n=1 n=1
_ izl ¥ XN +
T; = €Xp | TIT X €y Cpy —IT 3, Cu1Cuy [Cfy s
n=1 n=1

=T 1
T Ty

where ¢ JTU and c;, are the usual fermion creation and an-
nihilation operators.

In terms of these operators H,, and H_ . can be writ-
ten in a simple form,

N
— T T
HUO’+HTT—_ 2 %(Cjacj+1,o+cj+l,acja)

— i 1yt _1
J, (€joCic = 7NC11,0Cj 41,07 7) >

(2.6)

where a constant proportional to D has been dropped.
The first term describes the hopping of electrons, while
the second term is a Coulomb coupling between electrons
on neighboring sites.

Using the same transformation for A, and & _;, the
transverse exchange would lead to a hopping term with
spin flip and a complicated phase factor. We shall
neglect this term first and consider only the longitudinal
part. The transformed Hamiltonian in terms of fermions
then takes the form

H3,+H?,

N
=7 i 1yt —1
=—J; 2 (Cj Cjo 7)(Cj+1,~ocj+l,~a 7)
i=lo

N
+D" S (cle T e

1 1
jo~jo ?)(C/,—U j—o i)‘

(2.7)

j=1l0

The fermion model is usually given in the momentum
representation. The first term in (2.6) is the free-particle
contribution with a cos(ka) spectrum. We assume that
the ground state is nonmagnetic with (o?%)={(75)=0,
which corresponds to a half-filled band. Linearizing the
spectrum around the two Fermi points tkp=*7/2a,
and assuming that in the interaction terms the important
processes are those where all the participating fermions
are close to one of the Fermi points, the Hamiltonian
H,  +H_+H? +HZ? takes the form of a general in-
teracting 1D fermion problem® with backward, forward,
and umklapp scattering terms. Using the notations of the
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“g-ology”” model, the couplings can be identified as

B gy, —200;-D"), EL=yi+D1),

U UF
§A=§2~l‘=—2(];—"l)'), &.:2(JZ'+D'),

Vg Vg Vp (2 8)
a4y, BL o y-D).

Ur UF

As pointed out by Fowler!! and Schulz,’ the derivation of
84, needs special care. The Hartree-Fock corrections to
the self-energy have to be analyzed carefully. In the spe-
cial case when J,=J,, the model is equivalent to the
half-filled extended Hubbard model with U =2D and
V = —J, as the on-site and intersite Coulomb couplings,
respectively. In this case the equivalence is valid also for
the lattice version of the model, and not only in the con-
tinuum limit.

III. BOSON REPRESENTATION

As mentioned above, the coupling J;, between the two
spin species cannot be given in a simple form in the fer-
mion language. We shall try to estimate its effect with
the help of the bosonized version of the fermion model.
The bosonization rules are well documented,>%7%12 but
since different authors use a somewhat different notation,
we give our version here.

The fermion density operators

PU(P)Z %CII +p,acka
are separated for small momentum p into two contribu-
tions, coming from the neighborhood of the +kj and
—kp Fermi points,

poP)=p4 (p)F+p_ ,(p). (3.2)
The charge and spin density operators are defined for the
right-going and left-going fermions as

(3.1

1
Pi(P)zv—E[Pi,T(p)—*_pi,l(P)] ,

) (3.3)
0i<p>=\/—5[pin<p>—pi,¢_(p)] .
Boson phase fields are then introduced by
a .
,. CxP —glpl—tpx
(x)=—L <7
9plx) 47 L E’ P
X[p+(p)+p_(p)],
-1 27 ey
m(x) Ve L %exp 5 lp[—ipx
X[p+p)—p_(p)],
(3.4)
a .
,. P — 5 lpl—ipx
(x)= 1 T
%o Var L % p
X[o+(p)to_(p)],
1 27 _ay .
Tolx) == Lg,exp 5 Il —ipx

X[o(p)—o_(p)],
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where «a is a cutoff parameter. The field variables ¢, and
¢, and the related canonical momenta 7, and 7, satisfy
canonical commutation relations. To express the fermion
operators in terms of the phase fields, two extra variables,

Xp and x,, are needed,

exp

— 2 lpl—ipx
2

0
Xptx) Viar L %" p

X[p+(p)=p_(p)],

(3.5)
. exp | =5 lp|—ipx
Xo(x)= \/__:7 2—127:% D
X[o(p)—a_(p)].
These variables satisfy
mo(x)= a)g,ix)’ To(x =-—a—)(g£2 . (3.6)

With these definitions the g-ology model of 1D fermions®
can be written as

H=H.+H, , 3.7)
with
2
9¢,(x)
H,=[dx1|4,m7(x)+B, ¢é’x ]
+C, [ dx cos[ V874, (x)] (3.8)
and
3g,(x) |°
P9
H,= [dx 1 |A4,7%x)+B, gx }
+C, [ dx cos[ V87, (x)] , (3.9)
where
A,=vp 1*27TUF(2gz‘g1||_g4““g41) )
B, =vp |14+ = (20, g1 +gu +
p_VUF 21er(g2 8y t84yt8a) |
2
C, =738,
P 2 2
(2ma) (3.10)
_ 1
A, =vp 1+27Tvp(g1||+g4||_g4i) ’
B,=vp 1_"2“7“7_;(81”‘“84”‘*'841) ’
7 Qra)tM
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The velocities of the charge- and spin-density modes are

2
U,=vg 1+ (g4u+g41)
1 271172
— ?";};—(zgz_glu) ] ’
1 ; (3.11)
u,= 1+—2;;(g4"—g41)
B 1 271172
2mvg 2o S ’

Inserting from Eq. (2.8) the spin-coupling equivalents of
the g-ology couplings we find for the velocities of the two
modes

5 172
U,=vp —*;(2JZ+JZ'—D’) )
) - (3.12)
u, =vg ~—1;(2JZ—JZ’+D’)] ,
while
C,=C,~J,+D' . (3.13)

These results are straightforward generalizations of those
obtained by Schulz.”

The bosonized Hamiltonian presented above is the
equivalent of the g-ology model. In that model there are
no umklapp processes between fermions of identical spin
if the interaction is local. In the spin model the interac-
tion is between neighboring sites, and as shown by den
Nijs,? a careful analysis will lead to umklapp processes
even for spinless fermions. Using the same arguments,
the longitudinal parts of H,, and H . will lead to an ad-
ditional term H i,y in the Hamiltonian which will cou-
ple the charge- and spin-density degrees of freedom,

J J— —
H “T—;?fdx cos(V 8w, )cos(V 87, )

umklapp =

(3.14)

The numerical results will indicate how important this
coupling is. Note, however, that there may be other
sources for the coupling between charge degrees and spin
degrees of freedom, e.g., the finite bandwidth of the fer-
mion model. These effects will not be analyzed here.

We still have to consider the transverse part of the cou-
pling between the two spin species,

H, =H,+HY
=1, 3o}
J

- -+ + - -+
Timto 7t o o) .

(3.15)

As shown by Schulz,” in boson variables this operator

takes the form

H,=— [ dx cos(vV2mx,) . (3.16)

(ra)?
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Collecting all the terms, the bosonized version of the
spin-1 composite spin Hamiltonian becomes

H=H,+H,+H 3.17)
with
2
1 9¢,(x)
H,= [dx [2 mlx)Ful | =
(zm)z cos(\/_877¢p)’ ,
56.(x) | (3.18)
- 112 2 | 99X
H, fdxlz 7Ta(x)+ug‘ o ]
+ 5-cos(V 8w, )
7ra)

where u, and u,, are given by (3.12) and H ,pyqpp 18 given
by (3.14).

In comparison with earlier work we have derived the
bosonized Hamiltonian for a more general choice of cou-
plings. We have also shown explicitly that, due to um-
klapp processes, there is a coupling between the charge-
density and spin-density sectors. Its effect is difficult to
estimate analytically. In Sec. IV we shall analyze the
model without H ;1app-

IV. PHASE DIAGRAM OF THE FERMION MODEL

The 1D fermion model has been analyzed® in detail in
various approximations. The bosonized form of it
separates into charge-density and spin-density degrees of
freedom: the charge-density part depends on couplings
81, —28 and g;, while the spin-density part depends on
gy and g,,. This separation is found® also in the scaling
equations for these couplings.

It is known from the scaling equations that the um-
klapp processes are irrelevant and the charge-density ex-
citations are gapless if
Similarly, the backward scattering processes are ir-
relevant and the spin-density excitations are gapless if

lgil=<gy - 4.2)
Otherwise in either one or both sectors a gap appears.

The stability of the fermion model poses additional
conditions on the couplings. These conditions are most
easily found in the bosonized version of the model. Ve-

locities u,, and u, both have to be positive, i.e.,
L 28, <1+——
2oy 81— <821 = Py (g4||+g41) ’
| (4.3)
|g1|;l—1+ (84“ ga1)
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must be satisfied for the continuum limit model to be val-
id.

Transformation of the g couplings to the couplings of
the spin model is given by (2.8), and through these rela-
tions the phase and stability boundaries can be
transformed to the corresponding boundaries in the
spin-1 model. Equations (4.3) mean that the continuum
limit description is valid if

41, 4+2(J!—D")<m, 4J,—2(J.—D")< (4.4)

In the spin language these boundaries correspond to tran-
sitions to a new type of order, e.g., ferromagnetic order-
ing.

Provided that the conditions (4.4) are satisfied, ¢, i
the H, of (3.18) is a free massless field if J; +D’=0. Oth-
erw1se a gap is generated by the operator cos(1/87r¢
furthermore,

4J,+2(J,—D")<2|J+D’| . 4.5)

H given in Eq. (3.18) contains two operators which can
be relevant, cos(V/ 87 8¢, ), with a coefficient proportional
to (J/+D’), and cos(V 2wy, ), with a coefficient propor-
tional to Jy,. Considering first the case when J;, =0, H,,
describes then a free massless field for J,=D’=0. Other-
wise the operator cos(V/ 87¢,) will generate a gap if in

addition

4J,—3(J,—D")<2|J;+D’| (4.6)

is satisfied.

We show in Figs. 1 and 2 the phase diagram of the spin
model in two special cases, namely, for J,=J, and for
D’'=0. The phases of these diagrams are characterized
by vanishing or finite values of the charge-density gap A,
and the spin-density gap A,. In both cases the lines

where u, or u, vanishes separate a phase in which
w2k \<<
Ag#0 Ug=0
D' J Ag=0
Ag=0
Ag=0
o Bg=0
4¢#0
Ag#0
-n/2k
-m/2 (o] /2
Jz
FIG. 1. Phase diagram of the fermion model in the J,D’

plane for J;, =0 and J,=J,. In the shaded region the model is
unstable. The different phases are characterized by vanishing or
finite values of the charge-excitation and spin-excitation gaps,
A, and A, respectively.
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/2t
Ug=0
.
Jz A¢#0
Ag#0 £g=0
Ag#O
Ag
0 o
\Ag=0 Ag=0 N 7,
Agxo /
4g=0
Ag#0
Ag#0 Ugsd
/2t
1 1
-m/2 (0] /2
Jz

FIG. 2. Phase diagram of the fermion model in the J,J,
plane for J;, =0 and D’'=0.

(0%)=(7%)=0 from a phase in which this does not
hold. To the right of the line u p=0, a ferromagnetic
phase appears with {o?) + {7%)70, while to the right of
the line u, =0, {(o?) +(77) =0but {(o?) —(77)7#0. The
first case corresponds to a ferromagnetic phase, while the
second phase is a so-called impurity phase. The ground
state of the impurity phase is a singlet which is formed of
the local impurity singlet states arising from the two
spin-1 operators.

In both of the Figs. 1 and 2 there are three gapless re-
gions. In one of these three regions A, and A, both van-
ish, in one of them Ap is finite, and in one of them A, is
finite. There is also a massive region where both gaps are
finite.

To see the difference between the phases corresponding
to these various regions, one can analyze three correla-
tion functions as discussed by Schulz.” These are

G, (x,0)={(S"(x,£)S ~(0,0)) ,
G(x,0)={[ST(x,)]*[S (0,0)]*) ,
G,(x,t)=(S%x,1)S%0,0)) .

4.7)

Using the composite-spin representation, the Jordan-
Wigner transformation, and the bosonization rules, these
correlation functions can be expressed in terms of boson
phase variables and can be evaluated. Depending on
whether the charge-density or spin-density excitations
have vanishing or finite gap, an algebraic or an exponen-
tial decay of correlations will be found. Without going
into details, the general behavior of the correlation func-
tions indicates that in our calculations of the energy gaps
of finite systems, three kinds of excitations have to be
considered: (i) excitations with one spin flip (S ), (ii) ex-
citations with two spin flips [(S *)?], and (iii) excitations
without a spin flip (S7?).

Note that the model discussed until now, i.e., J,:y=O,
corresponds to the extended Hubbard model with on-site
and intersite Coulomb couplings, where

U=2D', V=—J,=—J,;

z

(4.8)
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respectively. The region where A, and A, both are finite
corresponds to the charge-density-wave (CDW) phase.
The region where A, is finite but A, vanishes corresponds
to the spin-density-wave (SDW) phase. The region where
A, is finite but A, vanishes corresponds to the singlet
pairing (SP) superconductivity, while the region where
both gaps vanish is that of the triplet pairing (TP) super-
conductivity. The boundary between the CDW and SP
phases (¥ =0 and U <0) is known to be exact, while the
other boundaries (U ==2V) are only approximate.'?

We now turn to the case when J;,70. In the H, of
(3.18) there are now two possibly relevant operators. As
was shown by den Nijs,® this model has the symmetry of
an Ising model and one of the two operators is always
relevant. The scaling dimensions of the two operators
cos(V'8w¢,) and cos(V 27y, ) become equal at

2

u
o =1—3(2JZ-J;+D')=4.
o

Uf

(4.9)

For small values of 2J, —J,;+ D' the dominant perturba-
tion is cos(V'2my,) which produces a gap for the spin-
density excitations. An ordered state can appear only for
large negative values of 2J, —J,+D'.

The phase diagram for an arbitrary finite J,, is given in
Figs. 3 and 4 for the cases J, =J, and D'=0, respectively.
As noted before, the effects of the J,, coupling cannot be
analyzed in the fermion model, and we have to use the
bosonized version of the model to estimate these effects.
As the spin-density sector of the model is always massive,
it is the charge-density sector which will determine the
phase boundaries. In those parts of the phase diagram of
the bosonized model which are not affected by the J,,
coupling, we will still use the fermion results described
above. The extra phase boundaries induced by the J;,
coupling are accepted in their bosonized form and, there-
fore, will not include any renormalization effects. Using
the same arguments as before it follows that an extended

w2 Ug=0
D' singlet 2

singlet 1

- ordered

-m/2 (o] w/2

-n/2

FIG. 3. Phase diagram of the fermion model in the J,D’
plane for J;,0 and J,=J,. The boundary of the ordered phase
is shifted upwards to be seen in the figure.

7155

n/2k ordered
2 Ug=2 Us=0
z
singlet 2
planar
(o]
singlet 1
Ueg=0
-1T/2 r //
-mw/2 0 w/2
. Jz

FIG. 4. Phase diagram of the fermion model in the J,J,
plane for J;,0 and D’'=0. The boundary of the ordered phase
is shifted downwards to be seen in the figure.

region with a singlet ground state will appear already for
small Jy,. As J;, increases the boundary of the ordered
phase is perhaps renormalized, but as J;, goes to zero,
the width of the singlet region should not vanish.

The phase diagram of Fig. 3 differs from that given by
Schulz’ in the extents of the planar phases. This
difference arises from the fact he did not take into ac-
count the renormalization of the couplings when deter-
mining the phase boundaries which are not affected by
the J;, coupling, while we used conditions (4.1) and (4.2)
which result from a renormalization-group calculation.
The second planar phase of Schulz is also missing in our
phase diagram. It results from two-spin-flip processes
and shows up only in the secondary gap. Therefore it ap-
pears in our numerical results, but not in the fermion
model results where primary gap is the relevant quantity.
The difference between the two planar phases can be
found in the bosonized version of the model by looking at
the asymptotic behavior of correlation functions.” In the
present analysis we resort to the bosonization results only
when the fermion model cannot be used and, therefore,
we have left out the second planar phase in Fig. 3.

Until now the umklapp processes described by H pmyiapp
in (3.14) have been completely neglected. This operator
which couples the charge-density and spin-density excita-
tions may modify the picture considerably. A conse-
quence of this coupling is that the boundary of the fer-
romagnetic phase, which is determined by u o =0, can be
renormalized by the J;, terms even though these terms
appear only in the spin-density sector described by H,.
The boundaries of the other phases can be shifted as well.
Analytic evaluation of the effects of this coupling is
difficult, but our numerical results described in Sec. V
will indicate the importance of this coupling even though
we will not analyze its effect separately.

V. NUMERICAL RESULTS FOR THE SPIN-1 MODEL

In this section we describe our numerical studies of the
Hamiltonian (2.2). The ground-state and low-lying exci-
tations are calculated by exact diagonalization of the
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Hamiltonian for finite chains containing N < 10 sites with
periodic boundary conditions. The states of the system
can be classified by their momentum k by the z com-
ponent of their total spin S7, and by their symmetry un-
der interchange of the o ; and 7; spins.

The ground state of a finite chain is either in the
SZ,.,=0 or in the S, =N subspace. The latter state is
an aligned ferromagnetic state. The stability region of
the ferromagnetic phase can be easily obtained from the
crossover between the two subspaces. The lines along
which the lowest energies of the S7, =0 and S, ==*N
subspaces are equal converge very rapidly towards their
infinite chain length positions. In the parameter range
where the ground state is an S7; =0 state, the ground-
state wave function is translationally invariant (k =0)
and is symmetric under the interchange of o; and 7;.

The first excited state above this ground state will have
different quantum numbers in different regions of the
phase space. It can, e.g., be a state with zero, one or two
spin flips, having thus S7, =0, £1, or £2. In the first
case the wave function either has momentum k = or is
antisymmetric under the interchange of o; and 7;, or
both happen.

For a finite system the first excited state is separated
from the ground state by a finite gap. If in the thermo-
dynamic limit this gap remains finite, the ground state is
a singlet. Otherwise, if the gap vanishes exponentially
fast as the system size increases, an ordered phase devel-
ops. If the vanishing of the gap is given by a power law, a
state with critical behavior is found.

We shall use below the following notation. AEg, is the
energy difference between the ground state and the lowest
excited state in the sector S7, =0 which is symmetric
with respect to o; and 7;. AE(, is the energy difference
between the ground state and the lowest excited state in
the sector S7, =0 which is antisymmetric with respect to
the interchange of o; and 7;. AE,, is the gap to the
lowest-lying state in the S7, ==*1 sector and AE, is the
gap to the lowest-lying state in the S, ==%2 sector.

As a study case we will first consider Hamiltonian (2.2)
with J;=J, and explore its phase diagram in the J,D’
phase. At J;, =0 the model is equivalent to the extended
Hubbard model, as mentioned above, and the phase dia-
gram of this model has been studied by various
methods'* ™! including finite-chain calculations. From
our numerical results for the stability of the ferromagnet-
ic phase, and for the chain length dependence of the vari-
ous gaps, we find the phase diagram shown in Fig. 5. It
shows a considerable similarity with the phase diagram of
Fig. 1 obtained in the continuum limit.

In addition to the ferromagnetic phase there are four
other phases. In the antiferromagnetic phase the gap
AE{, vanishes exponentially fast with the chain length
leading thus to an ordered state. In the planar 1 phase
the spin-flip gaps vanish proportionally to the inverse
chain lengths. In the planar 2 phase AE,, remains finite,
but AE,, will vanish for infinite chains. Finally, in the
phase denoted as impurity planar phase AE{, vanishes as
1/N. The antisymmetric combination of o; and 7; gives
a local singlet which should not be present in a true

J. SOLYOM AND J. TIMONEN

40
T
1+ 4
impurity planar
D'
\
o planar 1
antiferromagnet \ | ferromagnet
-1+ planar 2 4
A 1
-1 0 1
Jz

FIG. 5. Phase diagram of the composite-spin model in the
J.D' plane for J;,=0and J,=J,.

spin-1 model, hence the name impurity phase.

Apart from the ferromagnetic phase where conver-
gence is fast, the phase boundaries cannot be determined
with high precision from a finite-size calculation. As an
illustration we show in Fig. 6 the scaled mass gap ratios
(N +2)AE(N +2)/NAE(N) for J,=J}=—0.5 and for
varying D’. The solid line is the ratio for the AE,, gap,
the dashed line is that for the AE§, gap, while the ratio
for the AE§, gap is shown as a dashed-dotted line. The
phase boundaries are determined by the condition that
the scaled mass gap ratio is unity. From the available nu-

scaled mass gap ratio

0. 8 1 L

FIG. 6. Scaled mass gap ratios for the gaps AE, (solid lines),
AE7, (dashed lines), and AE§, (dashed-dotted lines) vs D’ for
J,=J;=—0.5 and J;, =0, comparing chains with N =4, 6, and
8 sites to chains with N +2=6, 8, and 10 sites.
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merical results the transition from the antiferromagnetic
phase to the planar impurity phase cannot be located pre-
cisely. It can be deduced, however, that for
J,=J,=—0.5 this transition is close to D’'=0.5, and
that the spin-flip gap vanishes at the transition point.
For large negative values of J,, where the phase transi-
tion in the extended Hubbard model is known to be of
first order, this softening of the spin-flip excitations will
not happen. On the other hand, for J, >0 the spin-flip
excitations are soft over an extended range of D as shown
in Fig. 7 for J,=J,=0.2. It is also seen in this figure that
the two-spin-flip excitations are soft over a larger range
than the one-spin-flip excitations, thus giving rise to the
planar 2 phase.

When the J;y term is introduced as a perturbation, a
phase diagram like the one shown in Fig. 3 should be ob-
tained. On both sides of the line J,+D’'=0 a singlet
ground state should be found, and the ordered antiferro-
magnetic phase should be pushed further towards nega-
tive J,, while the boundary of the ferromagnetic phase
should remain unchanged.

The numerical results do not quite agree with the ex-
pectations. The discrepancy could, however, be ex-
plained as a renormalization of the coupling constants.
The ferromagnetic phase boundary is shifted as J, in-
creases, indicating that Jy,, which acts in the spin-density
sector, affects also the charge-density sector. This means
that there is a coupling of charge and spin degrees of
freedom, probably through the umklapp processes which
have been neglected until now. The impurity planar
phase disappears as expected, and above the line
D'+J,=0 all excitations acquire a gap. The boundary of
the antiferromagnetic phase is also shifted, although pro-
portionally to J,;y, which is in contrast with the continu-
um limit result. We show in Fig. 8 the phase diagram es-
timated from finite-size scaling for J;, =0.2. To illustrate
the difficulties in determining the phase boundaries we

1.05

100+

scaled mass gap ratio

0.95
-1 (0] 1
Dl

FIG. 7. Scaled mass gap ratios for the gaps AE,; (solid lines),
AE,, (dotted lines) and AE§, (dashed-dotted lines) vs D’ for
J,=J,;=0.2 and J,,=0. For AEy, and AE§; the comparison is
shown only for N =8 and N =10.
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FIG. 8. Phase diagram of the composite-spin model in the
J, D' plane for J,=J; and J;,=0.2.

show in Fig. 9 the scaled mass gap ratios for
J,=J,;=—0.5. Comparison with Fig. 6, which shows
the scaled mass gap ratios for the same J, but for J,, =0,
indicates clearly that for a finite J;, the gap AE, is finite
for D'> —J,. Similarly AE}, increases with J;, and
therefore in an infinite chain this gap becomes finite at a
smaller value of D' than AE{,. On the other hand AE,
decreases when J;, is introduced. From numerical re-
sults alone one cannot say for sure that the spin-flip gap
vanishes at only a single value of D', which would result
in a line between the two singlet phases where the gap
vanishes. Nevertheless, we have assumed this to be true
in drawing Fig. 8 to be consistent with the continuum-
limit results.

When J;,=1 the model is equivalent to the spin-1
Heisenberg model with single-ion anisotropy, and the

ENZ
1_~(4.86)
I’/
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scaled mass gap ratio
—
o
T

o
©

FIG. 9. Same as Fig. 6 but for J,,=0.2. The scaled mass gap
ratios for AE{, are not shown since they are much larger than
unity.
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phase diagram given by Botet et al.!¢ and by Schulz and
Ziman!’ has to be recovered. The spin-1 phase diagram
differs from Fig. 8 only in the positions of the transition
lines; the topologies of the phase diagrams are the same.
To have a clear picture of the kind of numerical evidence
on which the spin-1 phase diagram is based, we show in
Fig. 10 the scaled mass gap ratios of AE,; and AE{; as a
function of D, again for J,=—0.5. The spin-flip gap is
clearly finite for D >1 and D < —1; in between these
values, however, it extrapolates to a very small value and
the scaled mass gap ratio is close to unity. In comparison
with the results for J;, =0, the actual gaps are flat over a
large range of D. It is exactly this behavior that led the
authors of Ref. 18 to question the existence of the Heisen-
berg singlet phase. If we assume that extrapolation from
the available chain lengths gives the correct behavior,
then the obtained phase diagram is indeed in agreement,
at least topologically, with the phase diagram of the fer-
mion version of the model.

Next we consider another parametrization: we choose

‘=0 and determine the phase diagram in the J,J,
plane. Taking first the special case J;, =0, the phase dia-
gram estimated from the finite-chain calculations is
shown in Fig. 11. By a canonical transformation Hamil-
tonian (2.2) can be transformed at J;, =0 to a similar
Hamiltonian with J, replaced by —J,, and the phase dia-
gram respects this symmetry. The quantum numbers of
the eigenstates are changed under this transformation, so
the nature of the ground state of the model depends on
the sign of J,. We find seven different phases, of which 4
are ordered phases and 3 are planar phases, in agreement
with the fermion problem whose phase diagram is shown
in Fig. 2. For J,,J; >0 there is a ferromagnetic phase
whose boundary can be determined with a rather good
accuracy from the finite-chain calculations. The counter-
part of this phase for J; <0 is a state where the o ; spins
are aligned ferromagnetically, while the 7; spins are all
aligned in the opposite direction.

For J,,J; <0 there is an antiferromagnetic ground
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FIG. 10. Scaled mass gap ratios for the gaps AE,, (solid
lines) and AE7, (dashed lines) for J,=J,;= —0.5 and J;, = 1.
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FIG. 11. Phase diagram of the composite-spin model in the
J.J; plane for D'=0 and J;, =0.

state. The first excited state in finite chains is symmetric
under the interchange of o; and 7; and antisymmetric
under time reversal. The gap to this state vanishes ex-
ponentially with the chain length. For J, >0 another an-
tiferromagnetic state is found. Here, however, the first
excited state is antisymmetric under the interchange of
o;and 7;.

In the middle of the phase diagram of Fig. 11 we have
three planar phases. In the planar 1 phase all the gaps,
AE,,, AEy,, AE}, and AE{, vanish as 1/N. In the pla-
nar 2 and planar 3 phases only AE{, vanishes as 1/N.
Extrapolations for locating the boundaries of these
phases are very uncertain. To indicate the difficulties in
the extrapolation we show in Fig. 12 the scaled mass gap
ratios for all four gaps at J,=0.2 as a function of J,. To
have a simple picture we show the results only for N =8
and 10. If the planar 2 and planar 3 phases exist, they do
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FIG. 12. Scaled mass gap ratios for gaps AE, (solid line),
AEy, (dotted line), AE}, (dashed line), and AE§, (dashed-dotted
line) vs J; for D'=J,, =0 and J, =0.2, comparing chains with 8
and 10 sites.
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so in a narrow region only. The antiferromagnetically or-
dered phase is present for large values of J, even for
J, >0, while in the continuum limit model J,=0 is the
phase boundary.

When J,,70 we would expect that for J, <0, singlet
phases appear on both sides of the J, =0 line (cf. Fig. 4).
The results for the scaled mass gap ratios at J,=—0.5
are shown in Fig. 13. There is in fact a region near
J,~—0.5 where the scaled mass gap ratios are larger
than unity for all gaps. For long enough chains this is
presumably the case also around J; ~0.5. There is, how-
ever, a wide range of J,; where the scaled mass gap ratio
for spin-flip processes is less than unity. The reason for
this is that, as was already seen in the case of the other
parametrization, the introduction of the Jy, coupling in-
creases the gaps AE{, and AE{, but the spin-flip gaps
are decreased.

To have an estimate for the phase diagram when
J):y =0.2, we show in Fig. 14 the phase boundaries deter-
mined from the condition that the scaled mass-gap ratios
calculated for chain lengths of 8 and 10 sites are equal to
1. If we use the same criterion to determine the phase
boundaries for varying chain lengths we find that, as the
chain length increases, the width of the planar phase de-
creases, the width of the singlet phase increases, and a
second singlet phase will appear. If these tendencies
reflect the true asymptotic behavior, we should find for
J,,=0.2 an asymptotic phase diagram similar to the one
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FIG. 14. Phase boundaries in the J,J, plane for J;,=0.2
determined from the condition that the scaled mass gap ratio
for chains with 8 and 10 sites should be equal to unity.

shown in Fig. 15. This phase diagram is in qualitative
agreement with the fermion-gas prediction.

As J,, tends towards 1 all phase boundaries are shifted
but not very much. However, a qualitatively new feature
in the phase diagram appears at some value of J;, <1
which we cannot determine precisely: a third singlet

1 1 1

0 , 05 1
Jz

FIG. 13. Scaled mass gap ratios, using the same conventions as in Fig. 12 for D'=0, J,,=0.2, and J,= —0.5.
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FIG. 15. Phase diagram expected for an infinitely long chain
with Jy, =0.2.

phase appears between the impurity antiferromagnetic
phase and that part of the planar phase which asymptoti-
cally becomes the second singlet phase of Fig. 15. As the
chain length increases, the planar phase in the J, <O re-
gion is reduced to two narrow “fingers” between the
three singlet phases, and if we assume as before that the
widths of these fingers are asymptotically zero, we find
for J;,=1 an asymptotic phase diagram which is shown
in Fig. 16.

Even the topology of the phase diagram of Fig. 16 is
different from that of the fermion-model phase diagram
shown in Fig. 4. In the fermion picture there is only one
line which separates two singlet phases and along which
the gap vanishes, while the lattice spin calculation gives
two such lines. When J;,=1 the lattice Hamiltonian is

Jz
impurity
2F antiferromagnet ferromagnet
planar
(o]

N

singlet

singlet

impurity 1

antiferromagnet antiferromagnet

FIG. 16. Phase diagram expected for an infinitely long chain
with J;, =1.
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symmetric with respect to J, and J,, and the phase dia-
gram of Fig. 15 reflects this symmetry. In the continuum
limit J, and J, appear differently in the fermion descrip-
tion and this symmetry is lost. The existence of two sing-
let phases, suggested by the fermion model in the contin-
uum limit, is incompatible with the symmetries of the
original spin model which has either one or three (on
present evidence) such phases.

VI. DISCUSSION

We have compared phase diagrams predicted by the
fermion representation, and its bosonized version, of a
1D composite-spin- model with results from numerical
calculations on finite chains. Our aim was to check to
what extent the continuum-limit results agree with those
obtained on lattices. The composite-spin model con-
sidered is the one that has been studied recently® in our
attempt to see if and how gaps are generated in integer-
spin models.?™*

To make matters simpler we have chosen two particu-
lar parametrizations for the composite-spin model. First
we consider the case of finite D’ with J,=J;, and J,, is
switched on gradually. It is not always easy to deduce
the correct infinite-chain length behavior from the avail-
able data. It is in fact known'® for models which are
soluble by the Bethe ansatz that the true asymptotic be-
havior sets in for very long chains. The use of the cri-
terion that the scaled mass gap ratio should be unity at
the transition point can lead to incorrect estimates for the
phase boundaries. This is in particular the case for
Kosterlitz-Thouless—like transitions, where the scaled
mass gap ratio should be unity over an extended range of
couplings. For this reason the phase boundaries which
we have found for the planar phases are not very precise,
but they seem to be in qualitative agreement with expec-
tations based on the fermion-model results. There are re-
gions on both sides of the J, +D’'=0 line in the phase di-
agram where the scaled mass gap ratio is larger than uni-
ty, although for all gaps by only a few percent. Further-
more these regions grow with increasing chain length. It
is conceivable that the spin-flip gap will vanish in the
thermodynamic limit along a single line for J, <0, and
that singlet phases appear on both sides of this line. If
this scenario is true for any finite J;,, as suggested by
Schulz,” then the continuum-limit fermion model should
give a qualitatively correct description of the properties
of the composite-spin model, and hence of the properties
of the usual spin-1 Heisenberg model when J,, =1.

The results we find for the second choice of parameters
cannot be interpreted as easily, however. We take D’'=0
and analyze the phase diagram in the J,J; plane as J,, is
switched on. For small values of J;, the phase diagram
seems to be in agreement with the fermion-model predic-
tion. Using similar arguments as in the previous case, we
conclude that as Jy, becomes finite, singlet phases appear
on both sides of a line which is close to J; =0 for J, <0.
When J;, =1, these arguments result in three singlet
phases, in clear contradiction with the topology of the
phase diagram of the fermion model in the continuum
limit, which has only two singlet phases. The fermion
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model at J;,=1 is in the strong-coupling limit and one
could argue that the weak-coupling results do not apply
here. We think rather that this discrepancy points to an
inherent deficiency of the fermionized (or bosonized)
equivalent of the spin problem in the continuum limit. A
symmetry which is present in the spin model is lost in the
continuum-limit fermion model. Exchanging on every
second site the o; and 7; operators, the Hamiltonian (2.4)
is transformed such that J,, and J;y, and J, and J,, are
interchanged. Thus the model with J;,70 and J,,=0
has the same phase diagram as the model with J,,7-0 and
J,y, =0 if only J, and J; are interchanged. We know from
the numerical calculations and from the equivalent ex-
tended Hubbard model that no singlet phases exist when
J,, =0. Therefore there are no singlet phases when
J,y =0 and J,,70, and a finite J,, should only renormal-
ize the velocities of the charge-density and spin-density
degrees of freedom without giving rise to relevant opera-
tors. This means that it would not be possible to generate
singlet phases in the fermion model. This argument is
not rigorous, but it shows that the continuum limit can
be misleading because of the approximations involved in
the course of transforming the original lattice model of
Eq. (2.4) into the continuum model of charge-density and
spin-density degrees of freedom given by Egs. (3.17) and
(3.18).

Another indication for J;y not necessarily generating a
gap can be obtained from the numerical results. When
J,, becomes finite the gaps AEg, and AE{, are increased,
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and the phase boundaries of the ordered phases move
away from the D’'+J,=0 line. On the other hand the
spin-flip gaps AE,; and AE, are decreased together with
the related scaled mass gap ratios.

Throughout the analysis reported in this paper we have
used argumentation similar to that which finds
D'+J,=0 to be a critical line separating two singlet
phases. When this argumentation is applied consistently
to the numerical results of the spin-1 model considered
here, it seems to result in conflicting interpretations of
the data in some parts of the phase space. A convenient
explanation to these conflicting results would be the ap-
pearance of marginal operators which in short chains
would completely mask the true asymptotic behavior.
However, in the framework of the present analysis these
marginal operators would appear in a rather peculiar
way.

As is evident from our results for the behavior of vari-
ous phase boundaries when the exchange parameters of
the model are changed, there is also another possible ex-
planation to the conflicting results which is worth consid-
ering. It seems that the charge-density and spin-density
degrees of freedom are much more strongly coupled than
is generally believed. It is very likely that this coupling,
together with the inclusion of renormalization effects, are
needed to recover in the fermion language the proper
symmetries of the lattice spin model. More work is clear-
ly needed to validate the fermion-gas description of spin
models.
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