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By extending recent proposals for choosing the phases in resonating-valence-bond ground states
to the case of excited states, we show for these wave functions that the hole excitations are charged,
spinless fermions and the spin excitations are neutral, spin-2 bosons. We also show that for a sys-

tem with periodic boundary conditions, all states are at least fourfold degenerate.

I. INTRODUCTION

There has recently been some controversy concerning
the statistics of the excitations of the resonating-valence-
bond (RVH) state of the two-dimensional square-lattice
spin- —,

' Heisenberg-Hubbard model originally proposed by
Anderson. ' Kivelson et al. argued in the case of the
original "s-wave" RVB state that there are neutral spin- —,

'

excitations ("spinons") which are fermions (as earlier sug-
gested by Anderson) and spinless charged excitations
("holons") which are bosons. More recently, Laughlin
has suggested, motivated by wave functions originally
proposed for the triangular lattice case, that the two
types of excitation obey neither Fermi nor Bose statistics
but obey —, statistics, i.e., exchange of identical particles
produces a factor +i. (The general possibility of fraction-
al statistics in two dimensions is discussed in Sec. III.)
This conclusion is apparently supported by Marston in
quite a different approach. The purpose of this paper is
to reexamine this question by a Berry phase calculation
using the best RVB wave functions presently available.
We find, in contrast to earlier proposals, that the spinons
are bosons and the holons are fermions. We also give a
new bosonic representation of the RVB states, which may
be useful in generalizations to higher spin, and show that
when the system has periodic boundary conditions, there
is a four-fold degeneracy of the RVB ground and low-
lying excited states.

configuration is then a state in which each site is paired,
as in (1), with a neighboring site, thus forming a pattern
of bonds which do not touch (Fig. 1). Since (1) is an-
tisymmetric on interchanging i and j, a direction must be
specified for each bond; we do this, slightly modifying
Sutherland's prescription, by taking each bond to be
directed from left to right, or down to up, where the ar-
row for (1) is directed from j to i Su.therland's wave
function is then a superposition of these bond states with
equal weight. Since valence-bond states are generally not
orthogonal, calculation of the norm or spin correlations
of this wave function is nontrivial. The calculation of the
overlap of two given valence-bond configurations ~a),

~
b ) is, however, quite straightforward and gives

a)

II. TRIAL WAVE FUNCTIONS

A. Ground state

We begin by discussing some representations which
have been used in the literature for states with short (i.e.,
nearest-neighbor) valence bonds. Sutherland took up
Anderson's suggestion of using, as a ground state for the
square-lattice spin- —, Heisenberg model, a linear combina-
tion of all valence-bond configurations with equal weight,
but with a specific choice for the relative phases of the
configurations. More precisely, for a pair of spins at lat-
tice sites i,j, a valence bond is a singlet state

[i j]=(1;l —1; tj )/&2

in an obvious notation. A nearest-neighbor valence-bond

(~ a)

FIG. 1. Two valence-bond configurations ~a ), ~
b ) and the

"transition graph" for their overlap (b ~a ).
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(2)

The sign may be restored if each bond configuration is
multiplied by a configuration-dependent phase factor.
From the mean-field solutions' of s+id or "Aux" sym-
metry, we guess that a possible choice is to build up the
phase by multiplying ~a ) by a factor of g equal to 1 for
each "horizontal" (i.e., parallel to the x axis) bond, and i
for each "vertical" (y axis) bond. " The Sutherland wave
function then resembles a Gutzwiller projected Bardeen-
Cooper-Schrieffer (BCS) type pair wave function of s +id
symmetry

g; „(iiji)g;„,(i2,J2)
configurations

(5)

where g; =0 if i,j are not nearest neighbors.
That the inclusion of the phases g;, as in (5), cancels

where u labels the (nonintersecting) loops in the "transi-
tion graph" (Fig. 1) formed by drawing all the bonds in
both ~a ) and ~b ), and 2L (u) is the length of loop u (if a
bond appears in the same position in both

~
a ) and

~
b ), it

forms a dimer in the transition graph, i.e., a loop with
zero area and L = 1). Spin correlations can be calculated
similarly. The result for the energy is that it takes the
form of a sum of negative terms; this was the motivation
for the sign choice.

Liang et al. used a slightly di6'erent way of directing
the arrows on the bonds, always taking them to point
from (say) a site on the 8 sublattice to one on the 3 sub-
lattice. This gives the same result for overlaps (2) as
Sutherland's and can be seen to give the same RVB state
by comparing, in each approach, overlaps of each bond
configuration with a reference state whose sign is seen to
be the same in each method. This method can be easily
generalized to include bonds of arbitrary length that
connect the two sublattices. The motivation for this
choice was that each bond configuration individually has
the Marshall sign; it is known that the whole wave func-
tion must have this sign if it is to be the ground state of
the nearest-neighbor Heisenberg model. The states with
longer bonds can give very low energies, even when
there is no long-range Neel order, although the lowest en-
ergy (and the true ground state) of the nearest-neighbor
Hamiltonian is believed to be obtained for states having
Neel order.

The nearest-neighbor bond state can also be written us-

ing a fermionic representation for the spins. A bosonic
representation is also useful and will be presented later in
this paper.

A spin of —,
' at each site can be built up by acting on an

empty lattice with fermion creation operators c; carry-
ing spin a=+—,', with only one operator at each site. A
singlet pair is then

(ij ) =(c~&ct& —c;~c &
)/&2, (3)

and is now symmetric under i~j, so the bonds no longer
carry arrows. Bond configurations now have overlaps

the phases (4) from the overlaps of valence-bond
configurations can be established as follows. For a dimer
of length 2L =2, the phase in (4) is positive and the fac-
tors ~g; ~

=1 are also positive. The next simplest case is
a square, I. =2, where the product of g; 's and g,*'s
around the loop must provide a minus sign. It is easy to
see that this is the case. For longer loops, one works by
induction, showing that increasing the area (number of
square plaquettes) bounded by the loop by 1 changes the
sign by —1. Thus, for a loop u, the product of g's and
g s ls

1)A(u)

where 3 (u) is the area enclosed by u. In general, 3 (u) is
not necessarily equal to 1 L(u)(—mod 2) but one can show
for non-self-intersecting loops traced on the square lattice
that

2 (u) =S(u)+L (u) —1,
where S(u) is the number of sites lying strictly inside u.
For the ground state (5), a loop can only enclose other
loops, and so S(u) is even, which completes the proof
that (5) has the correct phases. Note that (5) is real even
though individual g's may be complex.

B. Excited states: Holons and vortices

We now wish to extend this construction to simple ex-
cited states. The basic excitations of our nearest-
neighbor RVB state are "holons" in which a spin is miss-
ing from one site and a11 other spins form nearest-
neighbor bonds as before and "spinons" in which one
spin is left unpaired, all other spins forming bonds. Our
basic assumption is that a good low-energy trial wave
function for states with a single spinon or holon can be
found by again applying Sutherland's prescription for
choosing the phases. ' This seems particularly reason-
able for the holon, since the Marshall sign argument ap-
plies as well to a Heisenberg model with vacancies as to
the original (nearest-neighbor) model. (We neglect for
the time being the Hubbard hopping term for the hole. )

Consider a static holon first. In Sutherland's language
(1), the result (2) still applies and we have our holon wave
function. In the fermionic picture, however, we must
reexamine, in the presence of the hole, the argument that
(5) gives the correct phases with g, =1, i for horizontal,
vertical bonds. We see that a loop enclosing the hole en-
closes an odd number of sites, and so the phases in (5) are
not generally correct as they stand; the overlaps are
wrong by a factor of —1 for each loop surrounding the
hole. This problem may be corrected by a nontransla-
tionally invariant choice of the g; s which amounts to a
"vortex" in the phases, centered on a plaquette next to
the hole. A simple choice is to take such a plaquette and
make a "cut" along links of the dual lattice from that pla-
quette to infinity (dashed line in Fig. 2). On each link of
the original lattice that crosses the cut, g, for that posi-
tion is multiplied by —1. Then, in the self-overlap of the
hole-valence bond state, a loop surrounding the hole
must cross the cut an odd number of times and so there is
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of positive terms. However, in the spinon case, we must
confront a nonorthogonality problem. We wish to have a
set of orthogonal trial spinon states, one associated with
each site in the lattice. Unfortunately, a valence-bond
configuration with an unpaired spin at one position is not
generally orthogonal to another configuration with the
spin at another position; the overlap analogous to (4) now
contains an open line segment of length 2I. terminating at
the free-spin positions, contributing a factor

2) L—
FIG. 2. X is the center of a vortex, in a plaquette of the lat-

tice; the dashed line is the "cut": the g;,. factor for a link cross-
ing the cut is multiplied by —1.

an extra factor of —1 for each loop, while loops not sur-
rounding the hole cross the cut an even number of times
and are multiplied only by +1. This then corrects the
phases, making all terms in the selfoverlap positive, as in
Sutherland's prescription for the ground state.

The reason for the term "vortex" becomes clearer if we
make a gauge transformation. Since all sites except for
the hole site are occupied by a fermion, a position-
dependent gauge transformation of the fermion operators
just multiplies the state vector by an overall phase; it does
not change the relative phases. The phase change of the
fermions can be absorbed into the g; 's giving

iO,. +i 0.
8gJ RIJ (7)

where 0;,0 are the gauge parameters for the sites i,j. In
this way one can obtain different choices of g,. s giving
the same relative phases and hence the same wave func-
tion up to an overall phase. For example, one can move
the cut of a vortex to a different location, but not elimi-
nate it. The position of the cut has no physical
significance, and there is no tension or other energy asso-
ciated with it.

A particular choice of gauge transformation can spread
the factor of —1 for a loop surrounding the hole smooth-
ly around the loop. Take 8; =8(R;), where

8(R)=—,'tan (&)
X X

where R,- is the position of site i, R' ' is the position of
the hole, and the discontinuity of 8 (of magnitude vr) is
taken to lie on the cut. By (7), the phase of, e.g. , a hor-
izontal bond now varies "smoothly" (in small steps) as
the position of the bond is moved around the hole, and
changes by 2~ on completing a circuit. This shows that
we indeed have a vortex, with an effective Aux of —,

' quan-
turn since a bond consists of two charges. '

C. Spinons and vortices: Orthogonality questions

The above prescription obviously works equally well
for a "spinon" in which the hole is replaced by an un-
paired spin —,', ensuring that the self-overlap of the sum of
valence-bond configurations including the vortex is a sum

to (4) (note that the free spins must be on the same sublat-
tice, giving a line of length 2L, =even, to give a nonzero
overlap). On summing over bond configurations, with or
without the vortex in the phases, it appears that the over-
lap cannot fall less rapidly than exponentially with the
separation of the unpaired spins.

From these nonorthogonal spinon states, we -wish to
construct orthogonal, localized spinon states (Wannier
states). This may be done using standard methods, based
on the Fourier transform of the overlap as a function of
separation. Given that the overlap falls exponentially
with separation of the unpaired spins, the Wannier states
have an unpaired spin localized near the center of the
Wannier wave packet. This localization is exponential if
the Fourier transform of the overlap function has no
zeros (as may be the case) or it is power law otherwise. .

Localization in the sense of square integrability of the un-
paired spin (and accompanying vortex) near the nominal
center of the Wannier wave packet is essential for the fol-
lowing calculation of statistics, which is otherwise not
defined (see Haldane and Wu' for an example of this
effect). We will assume this localization holds, in which
case we need not work explicitly with the Wannier states.

Similarly, we may ask whether the holon state includ-
ing the vortex is orthogonal to the holon state with the
vortex omitted. If it is not, the Hamiltonian will connect
these two states, and since, as we will see, the vortex con-
tributes to the statistics, a mixture of the two states
would not have well-defined statistics. Also, even in the
absence of holes, we may consider vortices as excitations
of the ground state, and ask whether vortices at different
points are orthogonal, analogously to the spinon states.

To answer these questions, consider a state with a pair
of vortices (and no holes), the vortex locations (on the
dual lattice) being connected by a "cut" on which bonds
have reversed sign. In the overlap with the Sutherland
ground state, we see that any loop configuration contain-
ing a loop surrounding one vortex core gives zero contri-
bution, while many configurations of loops crossing the
cut give negative or zero terms. We see that the cut does
not drop out, unlike the case of self-overlaps and the
overlap is gauge dependent, though it only varies by an
overall phase under a gauge transformation of the two-
vortex state. Then choosing the cut to minimize the
number of links it crosses, we compare the overlap with
the "loop-gas" partition function ' representing the self-'
overlap of either the ground state or the two-vortex state.
Since some terms on the cut have been replaced by a neg-
ative number or zero, we expect that the overlap is re-
duced in magnitude, and the reduction factor relative to
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the self-overlap of either state fails exponentially with the
length of cut. This occurs because the loop gas ' has a
finite correlation length, and its partition function (the
self-overlap of the ground state) can be written roughly as
a product of factors for each correlation area; each such
area lying on the cut is reduced in magnitude by the zero
terms and cancellations of positive and negative terms,
leading to the exponentially decaying result. Thus, an
isolated vortex in an infinitely large system is orthogonal
to the ground state, and similarly when a hole is present.
A similar calculation for the overlap of a state with a vor-
tex at one point, with a state with a vortex at another
point, shows that they are not generally orthogonal, but
the overlap falls exponentially with separation; one may
then construct Wannier wave-packet vortex states, as for
the spinon. This suggests that the energy of the trial
holon and spinon states could be lowered by not placing
the vortex immediately next to the hole or unpaired spin;
we will not consider this further since it leads to negative
terms in the self-overlaps, contrary to the spirit of
Sutherland's wave function.

III. STATISTICS

A. General discussion

We are now ready to calculate the statistics of the
holon and spinon states constructed above. We regard
statistics of indistinguishable particles as a group-
theoretic property of the system, the symmetry operation
being an interchange of particles along a specified path;
for the spatial dimension d )2, all paths give the same
result, and the group reduces to the permutation group,
while for d =2, this does not occur, and we have the
braid group. ' The wave functions of the system will
then transform under an interchange operation as some
unitary irreducible representation of the group; these rep-
resentations are usually one dimensional, i.e., an inter-
change can, at most, produce a phase factor (see Ref. 16
for a more general discussion). For the permutation
group there are only two one-dimensional representa-
tions, namely the trivial representation, where an inter-
change produces a phase of + 1 (Bose statistics) and the
alternating representation, where a single interchange
gives a phase of —1 (Fermi statistics). In contrast, for
the braid group, i.e., in d =2 there is an irreducible rep-
resentation for each value of the phase factor for the ele-
mentary interchange, giving "fractional statistics. " [It is
assumed that the particles are interchanged with all sepa-
rations remaining large, and that the representation of
the interchange group is well defined in (converges rapid-
ly towards) this limit; this corresponds to the square in-
tegrable property in d =2, mentioned above. In d =1, of
course, this assumption cannot hold, and our notion of
statistics is never defined. Note that for the braid group
the phase, in general, depends on the choice of path; we
take an elementary interchange to be one for which the
path does not enclose any other particles. ]

Since any two particles are indistinguishable, the dy™
namics will generally be symmetric under interchanges,
so the state of the system will be representations of the in-

terchange group; however, it is possible that an effective
Hamiltonian, say, for the dynamics, may not be explicitly
invariant under interchanges of particle coordinates, just
as a result of a choice of basis or gauge for the X-particle
states as functions of the N-particle coordinates. In other
words, multiplication of (say) the two-particle wave func-
tions (a position-space basis state) by a phase that de-
pends on the relative orientation of the two particles
leads to a corresponding change in the Hamiltonian in
this basis, which may render it no longer invariant under
interchanges. An analogous situation for translational in-
variance would be to take a single particle in free con-
tinuous space and make an arbitrary gauge transforma-
tion of the wave function. The Hamiltonian than con-
tains a vector potential (with zero curl) which breaks
translational invariance. The symmetry of the underlying
problem is recovered in this gauge, however, by noticing
that translation of the particle coordinate, followed by a
gauge transformation, returns the Hamiltonian to its
original form. The eigenstates of this Hamiltonian will
be momentum eigenstates of this modified translation
operator, recovering the structure which can, of course,
be obtained more straightforwardly by working in the
gauge where the vector potential is zero.

A similar argument applies to the particle interchange
problem, where Wilczek and others' ' have discussed
the effect of particular singular gauge transformations on
the realization of the interchange symmetry. In this case,
the important part of the vector potential is that which
depends on the relative orientation of the two particles,
which can be picked out by examining the Hamiltonian
when the particles are well separated. Again, the sim-
plest picture is obtained by first gauging away this vector
potential, so that the Hamiltonian is explicitly invariant
under interchanges. In this case, the statistical phase can
be read off from the change in the wave function under
the interchange of particles along an anticlockwise path
in d =2 not enclosing any other particles; in the Bose or
Fermi case, the result is path independent. Even if one
uses a different gauge, one still recovers the same result
by ensuring that the transformation leaves the Hamiltoni-
an invariant. Particle statistics in d 2 are therefore a
unique and well-defined property of the system (given the
caveat mentioned earlier). Note that the only use of the
adiabatic argument (a'la Berry) in the present discussion
will be to ensure that an X-body effective Hamiltonian
exists for our many-body "particle" excitations, working
in the low-energy subspace of the trial states constructed
earlier (thus, for example, the kinetic energy of the holon
or spinon should not destroy the character of the static
wave functions constructed earlier).

We note that the above arguments work equally well
on the lattice as in free space, and that the "dangerous"
parts of the effective Hamiltonian are those which move
the particles around, such as the kinetic energy, since
these will contain any vector potentials. We therefore
take a definite basis of two-holon states, each basis state
being specified by the position of the two holons, and ex-
amine the hopping matrix elements of the Hamiltonian
between these basis states, looking for any orientation-
dependent phase factors. If the long-distance part of
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these can be gauged out of the Hamiltonian, the statistics
can be read off from the wave functions alone. Since
motion of a particle around another is equivalent to two
interchanges, we can calculate the phase factor for the
former and take the square root; since we follow the
change in phase under small moves, there is no ambiguity
in this. A single particle moving in a loop may pick up a
phase due to an effective magnetic field penetrating the
loop; we are therefore interested only in the change in
phase for such a path due to inclusion of another particle
inside the path.

B. The calculation

As our "particles" we first take the holon states de-
scribed earlier. We will now show how a certain
modification of these states amounts to the desired singu-
lar gauge transformation that renders the effective Ham-
iltonian invariant under interchanges.

In the construction of the holon states, the hole was a
site left unoccupied by a Fermi operator, and the vortex
was created by the operation of introducing the line of
minus signs for bonds lying on the cut (or any gauge-
equivalent prescription). The latter operation may be re-
garded as a singular (multivalued) gauge transformation
on the Fermi operators, which is double valued since the
fiux in the vortex is —,

' a Aux quantum as pointed out ear-
lier. Now let us introduce as a bookkeeping device a
spinless creation operator b;~ at the hole site, so that at
every site a creation operator acts. Since destroying a
spin is described by a Fermi (electron) operator, it is sim-
plest to take b; to obey Bose commutation relations, so
that the destruction operator for physical electrons is
b; c,-; b, is a slave boson creation operator. ' So far we
have done nothing. Now we will make a further singular
gauge transformation, this time acting on the locations of
the holes only, by letting the previously described
vortex-creation operation act on the b;, 's as well as the
c; 's. Then, from the double valuedness of this transfor-
mation for unpaired sites, it follows that when two or
more holes and their vortices are present, motion of one
hole (with vortex) around another produces a phase
change of 2~. This value is found since each "charge"
moving around the other vortex gives a factor of —1, and
there are two of these factors (when moving holes and
vortices, we keep the relative location of a hole and the
attached vortex center fixed). This corresponds to a
phase change of m, i.e., a factor of —1, for interchanging
the holons.

To complete the calculations for the holon, we must
check that these changes in the holon location coordi-
nates leave the effective Hamiltonian (in this gauge) in-
variant. The relevant part of the effective Hamiltonian is
the Hubbard hopping term with amplitude t, which
moves a hole from one site to a neighbor. We will assume
that t is small compared with the Heisenberg coupling J,
so that the earlier energetic arguments are likely to be
valid. [In a realistic Hamiltonian, t J. This would sub-
stantially complicate the holon wave function; for the
sake of a clear calculation, we would prefer to avoid this,
postponing it for further study. (See also Sec. VI.)] Since

IV. BOSONIC REPRESENTATION

We now discuss the relation of our results with a sim-
ple bosonic representation of the spins. Here we inter-
change the statistics of the spin- —,

' and spinless- (hole)
creation operators, so that a spin is represented by the
presence of a Bose operator a; acting on the empty lat-.

tice, while a "hole" is representing by the spinless Fermi
operator f, . Again, the physical electron-destruction
operator is f; a;, which obeys the correct anticommuta-
tion relations. A singlet pair is now

[ij ]=(a;ta
&

—a;&a t )/&2, (10)

which is given a direction as for (1). In this representa-
tion, the Sutherland wave function for nearest-neighbor

it is small, it is sufficient to examine matrix elements of
the Hamiltonian between holon states of different posi-
tion. It is easy to see that a hop by one lattice spacing
generates a state with one bond connecting next nearest
neighbors, which is orthogonal to our basis states. Thus,
we must go to second order to obtain a hopping ampli-
tude of order t /J for hopping of a holon remaining on
the same sublattice. This double hop of a holon produces
either zero or two next-nearest neighbors, which is not
orthogonal to our basis set. Motion of the vortex is ac-
complished simply by adjusting the phases of the bond
states so that the vortex is in the correct position, any ex-
cess phase contributing to the effective hopping element
itself. The key part of the calculation for two holons is
the phase change due to moving a hole in the presence of
a vortex connected to the other hole which does not
move, or vice versa. Since the vortex is now introduced
by a singular gauge transformation acting on hole and
spin alike, the hopping simply interchanges the hole with
a spin, and so the extra phase due to the distant vortex
cancels; the phases of the effective hopping elements are
completely insensitive to the presence of other distant
holons. Thus the Hamiltonian is invariant under inter-
changes, and we conclude that the holons as constructed
here are spinless fermions.

The calculation for the spinons is now very similar.
The vortex-creation operation is redefined to act on the
unpaired spin as well as the singlet pairs. The "hopping"
now arises from the exchange part of the Hamiltonian,
and the spinon remains on the same sublattice when it
hops. The effective Hamiltonian is again invariant under
interchanges. The phases from interchanges performed
on the wave function are as for the holon, but in this case
the interchange also involves changing the order of the
unpaired Fermi operators, giving an extra minus. Thus,
our spinons are neutral spin- —,

' bosons.
To summarize, we have argued that a vortex of —,

' Aux

quantum must be included in the fermionic representa-
tion of the spins to give a low energy for the holon and
spinon. This Aux couples to the unpaired spin and hole,
and reverses the statistics of the holon and spinon relative
to the result obtained if all vortices are omitted. (It is
well known' that a —,'-Aux quantum bound to a charged
particle turns bosons into fermions and vice versa. )
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bonds can be obtained by directing all arrows from the B
sublattice to the A sublattice, and this also works for
longer bonds, as in Liang et al. ; no factors of l, i are
needed. In this case, the self-overlaps of states with holes
or unpaired spins included are all positive as in (2)
without any extra vortices in the phases. It follows im-
mediately that the holons are fermions and the spinons
are bosons. If we do attach a vortex to each particle,
even though this probably raises the energy, the statistics
are again reversed. The important point is that the states
including a vortex in the fermion representation corre-
spond to states without a vortex in the boson representa-
tion, and vice versa; there is complete consistency be-
tween the pictures. As a bonus, the bosonic picture al-
lows us to say that the results are unchanged by including
longer bonds, though we cannot tell what happens if we
go through the phase transition to the Neel state. Also,
since longer bonds can be regarded as singlet pairs of spi-
nons, the vortices should be useful in building longer
bonds into the ground state in the fermionic picture,
which had previously been thought to be difficult.

Before concluding this section, we note that the holon
hopping amplitude can be calculated more easily in the
bosonic picture since we do not have to contend with all
the phase factors —all bonds have positive weight. One
then finds that all contributions to the second-order
effective hopping element have an extra minus sign, so
that the minimum energy cannot occur at holon wave
vector (0,0) or (n, ~). This is in agreement with the re-
sults of several authors that the minimum occurs at
(+sr/2, +sr/2) for a hole moving in either the long-range
Neel ordered state' or the mean-field (s+i'd or flux)
RVB state. '

V. DEGENERACY OF STATES
FOR PERIODIC BOUNDARY CONDITIONS

So far in this paper, there has been no need to specify
boundary conditions. We now wish to examine some glo-
bal properties of the RVB states when periodic boundary
conditions are present. For simplicity, we take the sys-
tem to be a rectangle of sides L,L with periodic bound-
ary conditions in each direction, and L,L even. The to-
tal number of holons and spinons together must then be
even, and because a cut can end only at a vortex, so must
the number of vortices. The argument in this section ap-
plies in either the fermionic or bosonic representation.

The degeneracy of the ground and excited states in the
nearest-neighbor RVB language follows by first noting
that we could insert into the ground state a cut running
in, say, the y direction, which wraps once around the sys-
tem, instead of ending at a vortex. Since cuts may be
moved around by (nonsingular, topologically trivial)
gauge transformations, there is essentially only one way
of doing this, and since pairs of such cuts will cancel
themselves when they run along the same path, the only
gauge-inequivalent possibilities are either zero or one cut
running in the y direction, and zero or one running in the
x direction, i.e., four states in all. As seen earlier, adding
a cut has no effect on the expectation of the energy local-
ly, and here can only produce a minus sign for a loop in a

transition graph that runs around the system in the direc-
tion orthogonal to the cut. Such long loops are very im-
probable in a large system, and so we expect the energies
of our four ground states to be equal when Lz Ly
with exponentially small finite-size corrections.

It remains to be shown that these four states are or-
thogonal. Taking the overlap of two such (normalized)
states, the effect of a cut which appears in one state but
not the other is similar to its effect in the discussion of
the vortex state (Sec. IIC), i.e., the overlap decays ex-
ponentially with the length of the cut, here L or Ly.
These arguments apply without modification to excited
states with, say, a finite number of holon, spinon, and
vortex excitations, so that these states are also four-fold
degenerate.

This result is in agreement with a recent prediction of
Haldane that a disordered state of a half-integer spin
system will have four-fold degeneracy in its ground state.
Earlier, AfAeck ' had shown that any ground state of a
half-integer spin system with periodic boundary condi-
tions and an odd number of rows must have either gap-
less excitations or at least a two-fold degeneracy. Our re-
sult, though restricted to special states of a spin- —,

' system
(we do anticipate generalizations to a higher half-integer
spin and to longer bonds), does not require that the num-
ber of rows (or columns) be odd, and gives a definite re-
sult for the degeneracy (none of our excitations is expect-
ed to be gapless. ).

We note that the degeneracy we have found is a global,
topological property of the system, which does not ap-
pear to reAect any symmetry breaking. There seems to be
no local operator whose expectation value would specify
which of the four states we are in, and so there can be no
"domain-wall" excitations at which the state changes to
another of the set of four. Therefore, we do not expect
important physical consequences of this degeneracy,
which is a consequence of the topology of the boundary
conditions, rather analogous to the degeneracy of the
states in the fractional quantum Hall effect with periodic
boundary conditions.

VI. FURTHER DISCUSSION:
d ) 2 AND UNQUANTIZED VORTICES

Since submitting the original version of this paper,
some further facts have come to light, which will be dis-
cussed here. Following our work, Kivelson has reexam-
ined the hard-core dimer model of Ref. 7 and applied our
results in that model. He argues that when the hole hop-
ping amplitude t is large enough, a vortex unbinds from
(or binds to' ) the hole, which again becomes a boson.
This is clearly in agreement with the general principles
expressed above. He also shows that the existence of —,

'-
flux vortices of finite energy leads to (physical) flux quant-
ization in units of hc/2e. In addition, he argues that in
three dimensions or more, the holon is always a boson,
since there is no simple way to change statistics as there
is in two dimensions (by binding a vortex or flux tube).
While we agree with the latter point, we disagree with the
former, since the methods of this paper can be used to
show that holons are fermions and spinons are bosons in
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all dimensions 3. First we note that, in three dimen-
sions or more, there seems to be no simple, local way to
introduce phases into the fermionic picture of the valence
bonds to recover Sutherland's sign prescription, in con-
trast to our discussion of two dimensions in Sec. II.
Therefore, we will adopt the bosonic picture described in
Sec. IV for all dimensions 3. Since in this picture the
holon involves adding a fermion, and no changes in the
phase factors are needed to maintain the sign prescrip-
tion, the holon is a fermion and similarly the spinon is a
boson. The spin-statistics theorem need not apply,
since "spin" here is an internal quantum number. similar
to isospin, and not necessarily related to spatial rotations
(this is also emphasized by Haldane and Levine, who
have arrived at the same conclusion as this present paper,
by a different method).

Returning to two dimensions, we have also discovered
some further results on ground-state degeneracy, vor-
tices, and statistics. These stem from the observation by
Rokhsar and Kivelson that nearest-neighbor valence-
bond configuration with periodic boundary conditions
possess a pair of integer-valued winding numbers, one for
each of the x and y directions. These may be defined by
attaching an arrow to each valence bond, directed from
the B to the 2 sublattice. Then, for a given bond
configuration on a rectangular system, we count the num-
ber of arrows entering, and subtract the number of ar-
rows leaving, the system at the left-hand boundary, and
call this Q . We do the same at the lower boundary and
call it 0 . If we calculate the overlap of (or Hamiltonian
matrix elements between) two states of different winding
numbers (Q, Q ) we find that the transition graph neces-
sarily contains topologically nontrivial loops that run
around the system, the winding numbers being equal to
the differences in the 0 's and the 0 's between the two
states. Then in a Sutherland-type superposition of
configuration, such loops are very improbable in a large,
two-dimensional system, and so the different winding
number sectors are not mixed by the Hamiltonian; if
nonorthogonality of valence bonds is omitted, the con-
servation of winding numbers is exact for all sizes of sys-
tem.

It now follows, by an argument similar to that in Sec.
V, that there is an effectively continuous degeneracy of
RVB ground states. To obtain this, we have only to
weight the configuration with a pair of phases that are
conjugate to the winding numbers, since the conservation
of winding numbers and the mixing of winding numbers
in the ground state should mean that different phases give
orthogonal states and that the energy does not depend on
the phases. An explicit construction again places a cut at
the left-hand and lower boundaries of the system, and

ia„ ia
multiplies the g; for a bond on the cut by e " (e «) for a
bond "entering" the system, and the conjugate for a bond
"leaving" the system at the left (lower) boundary. The
phases a~, a are arbitrary, and we can see that these fac-
tors are indeed conjugate to the winding numbers. Fol-
lowing the argument of Sec. V, one can show that in the
self-overlap (or energy) of a state, the phases cancel for
loops in the transition graph which are topologically
trivial, because of the bipartite nature of the square lat-

tice, and the fact that the bonds always connect opposite
sublattices. Overlaps of states with different (a,a«) give
factors like exp[i(a, —a,')] (z =x,y) and so by the argu-
ments of Sec. II C these states are orthogonal in the limit
of an infinite system. The special cases a=0, ~ give the
result of Sec. V.

A vortex can be made by having a cut similar to that in
the ground-state degeneracy argument, but ending in a
"core" at a plaquette center (Fig. 2). In this case, bonds
crossing the cut are given a factor e —+' depending on the
sense in which their arrow traverses the cut (which is a
well-defined notion irrespective of the path of the cut).
Again, we can show that this new type of vortex state has
only a finite energy, due to the core, and no energy per
unit length of the cut, and that it is orthogonal to the
ground state. If we attach the vortex to a holon or a spi-
non, then by repeating the argument of Sec. III, we now
find arbitrary (fractional) statistics, given by the phase a.
(Of course, a=ir recovers the previous result. ) Note,
however, that these states give weight cosa to loops sur-
rounding the vortex core, and that Sutherland's prescrip-
tion still leads to unique states as shown earlier.

These results are rather unpleasant, since a degeneracy
of order L, L,~, and the possible existence of bound states
of arbitrary statistics seem unphysical. We believe that
one possible answer is as follows: The nearest-neighbor
bond states (and other states with short-range bonds al-
ways connecting opposite sublattices) have a larger sym-
metry, namely their transition graphs connect sites which
alternate between 3 and B sublattices, allowing the intro-
duction of the cuts with factors e —' depending on the
direction of a bond, as in this section. A more realistic
state would presumably have some admixture of bonds
connecting sites on the same sublattice (a small admix-
ture need not affect the overall Marshall sign of the state).
In this case, winding numbers are only conserved mod 2,
and phases e +—' on a cut do not generally cancel, so that
the small admixture will eventually lead to a (small) ener-

gy per unit length of the cut, unless a=O or ~. The
phases +1 on the cut, as used previously, thus correspond
to the mod2 winding numbers. In this way we arrive
back at the quantization of vortices and only fourfold
ground-state degeneracy. Another possibility, which is
realized for some nearest-neighbor Heisenberg Hamiltoni-
ans, is that the large symmetry is unbroken, but the
ground state has spin-Peierls order, again giving fourfold
degeneracy, this time due to a broken lattice rotational
symmetry.

VII. CONCLUSION

We have found that Sutherland's prescription for the
phases of the valence-bond configurations in the short-
range RVB state leads to holons which are fermions and
spinons which are bosons. We have emphasized the im-
portance of first establishing good trial wave functions,
before statistics of excitations can be determined. Thus,
we cannot rule out the possibility of the statistics being
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reversed again if improving the ground-state and
excited-state wave functions leads to some essential
change, such as the unbinding of vortices from the parti-
cles. Nonetheless, we believe that our wave functions,
with the emergence of vortices as excitations, set the
scene for further investigations.
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