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We consider determining the steady-state trapping rate k associated with diffusion-controlled re-
actions among static, spherical traps with a polydispersity in trap size. Both discrete and continu-
ous size distributions are examined. Theoretical methods, such as rigorous bounds and survival-
probability theory, as well as computer-simulation techniques, are employed to address this prob-
lem. It is found that the trapping rate for the polydisperse system generally increases or decreases
(relative to the monodisperse case) depending upon whether the relative interfacial surface area in-
creases or decreases.

I. INTRODUCTION

The subject of diffusion-controlled reactions in disor-
dered heterogeneous media is a problem of long-standing
interest and has received considerable attention in recent
years. ' A diffusion-controlled reaction is one in which
the time required for the two reacting species to diffuse
into the same neighborhood is the rate-limiting step, the
reaction time being negligible in comparison. Diffusion-
controlled reactions arise in a host of phenomena in the
physical and biological sciences, including radiation darn-
age, heterogeneous catalysis, liquid droplet combustion,
colloid or crystal growth, and cell metabolism, to men-
tion but a few examples. In many instances, one of the
two reacting species is very large in comparison with the
other, and can be considered to be static. It is therefore
reasonable to consider a medium of static traps (sinks)
which are distributed throughout a region containing
reactive particles. The reactant diffuses within the trap-
free region but is instantly absorbed upon contact with
the surface of any static trap. At steady state, the rate of
reactant production exactly equals the rate of removal
(trapping) by the sinks.

Smoluchowski derived an expression for the trapping
rate (rate constant) k for a dilute distribution of equisized
spherical traps such that trap interactions can be neglect-
ed. At higher concentrations, the trapping rate will be
affected by a competition between neighboring traps and
will depend upon the density of traps. At arbitrary sink
concentrations, the rate constant depends upon an
infinite set of correlation functions which statistically
characterize the microstructure. In general, this set of
functions is never known in practice. Thus, there are
presently no exact analytical predictions of k for even
simple random-media models (e.g., random distributions
of equisized spherical traps) at arbitrary trap concentra-
tions. There are approximate techniques, however,

which enable one to estimate k for a wide range of sink
densities, including efFective-medium theories and
random-walk methods.

If we accept our inability to predict the trapping rate
exactly for high trap densities, it follows that any
rigorous statement on the subject must be in the form of
an inequality, i.e., a rigorous bound. Rigorous bounds on
effective properties of random media serve three pur-
poses: (l) they may be utilized to test the validity of a
theory or computer experiment, (2) as successively more
microstructural information is included, the bounds be-
come progressively narrower, ' and (3) one of the bounds
can typically provide a good estimate of the property for
a wide range of volume fractions, even when the recipro-
cal bound diverges from it." Reck and Prager' were the
first to obtain variational bounds on k. Doi found a
difFerent lower bound on k. ' Talbot and Willis' subse-
quently obtained a Hashin-Shtrikman-like lower bound
on k. More recently, Rubinstein and Torquato'
developed general variational principles from which they
were able to derive four difFerent classes of bounds, both
upper and lower bounds. ' '

In addition to such analytical methods, computer-
simulation "experiments" can be conducted in order to
yield "exact" data for the effective trapping rate for sys-
tems of arbitrary trap density, penetrability, and distribu-
tions of trap shapes and sizes. These data can then be
used to test various analytical predictions. Recently,
several Monte Carlo studies ' ' have reported results
for the trapping rate among equisized spherical traps.

This paper studies the determination of the steady-
state trapping rate k of a system of static, perfectly ab-
sorbing, spherical traps with a polydispersity in size. We
shall employ both analytical methods (random-walk tech-
niques and rigorous bounds) and computer-simulation
techniques to examine the question of what the efFect of
polydispersity on the trapping rate is.
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In Sec. II we discuss our model systems (fully pene-
trable and totally impenetrable spherical traps with a size
distribution) and the normalization for the trapping rate.
Section III describes our computer-simulation techniques
to obtain the trapping rate for our models. In Sec. IV, we
describe the calculation of a two-point lower bound for
fully penetrable spheres of two different sizes. Section V
presents the extension of Richards's theoretical results
for fully penetrable spherical sinks to a distribution of
trap sizes, including continuous size distributions. Sec-
tion VI reports our simulation as well as analytical re-
sults, and discusses the effects of polydispersity on the
trapping rate k. Finally, in Sec. VII, we make concluding
remarks.

p; R;
i =1

s= gp;4~R; (2)

particles, respectively. As mentioned in Sec. I, the bulk
properties of a random medium depend upon an infinite
set of statistical correlation functions. The simplest and
most basic of these functions are the volume fraction of
one of the phases, say, phase 2 (the particle phase), which
we denote by Pz, and the specific surface s, the interface
area per unit volume. It is useful to explicitly state these
functions for our model systems. For totally impenetr-
able spheres, we have the simple results

II. MODEL SYSTEMS AND TRAPPING RATE
NORMALIZATION

where p, is the number density of type-i particles. For
fully penetrable spheres,

We shall consider the trapping of reactants among stat-
ic, spherical traps with a discrete or continuous distribu-
tion in size. Although all subsequent theoretical results
will be presented for fully penetrable (spatially uncorre-
lated) traps (see Fig. 1), we shall present some simulation
results for the case of totally impenetrable (spatially
correlated) traps. These two models are the extreme lim-
its of the general penetrable-concentric-shell model' in
which the impenetrability parameter A, varies continuous-
ly between zero (in the case of fully penetrable particles)
and unity (in the case of totally impenetrable particles).
Thus, we will be examining the effect of penetrability as
well as polydispersity on the trapping rate.

Consider a system of N spheres consisting of p different
sizes. Let N, and R; be the number and radius of type-i

4~
(t z

= 1 —exp —g p; R;
3

t 4m.s= gp 4mR; exp —gp; R,
i=1 i=1

(4)

s =p4~(R'),
and for fully penetrable spheres

All of these results are readily extended to the case of a
continuous distribution in size characterized by a proba-
bility density function f (R). For totally impenetrable
spheres,

Pz= 1 —exp —p (R )

s =p4m(R')exp —
p (R')

3

where p is the total number density and

(R")= f R "f(R)dR .

From the equations above, it is seen that both Pz and s
are larger for totally impenetrable particles than for fully
penetrable particles at fixed density p.

A particularly useful probability density function (and
one we employ in Sec. V) is the Schulz distribution '

m

(m —1)! (R )
Rm —1

Xexp( —mR/(R )), m ~2, (10)

FIG. 1. Realization of a system of fully penetrable disks of
two different radii R, and Rz. Here the volume fraction Pz is
about 0.3, R2/R

&
=0.5, and p&/p&

= 8.0. p; is the number densi-

ty of the type-i particles.

which normalizes to unity. The moments of the Schulz
function are

(R.)
(.+m —1) (R).
(m —1)!m"
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significantly reduce the computing time required to test
for trapping. ) We consider up to five diff'erent step sizes.
This is carried out for 50 diFerent configurations. For
each step size, the number of steps taken before being
trapped is averaged over all walks and configurations and
the scaled trapping rate is determined from (18). The
value of k reported in Sec. VI is obtained by extrapolat-
ing the data to the limit a /R;„~0. On a VAX 3200 the
CPU time required for each volume fraction varied from
3—6 hours, depending on the volume fraction and the
step sizes used. Table I lists the step sizes employed in
our simulations.

IV. RIGOROUS LOWER BOUND ON k

0.2
0.3
0.4
0.5
0.6
0.7

2.61
3.16
3.97
4.96
6.52

3.15
4.76

TABLE I. Computer-simulation results for the scaled trap-
ping rate k /k, for bidispersed systems of fully penetrable
(A, =O) and totally impenetrable (A, =1) traps with R2/R

&
=0.5

and p2/p, =8. Here P2 is the trap volume fraction, and R; and

p; denote the radius and density of type-i particles.

Doi, ' and later Rubinstein and Torquato' using a
difFerent approach, found that the trapping rate k for sta-
tistically homogeneous media of general topology was
bounded from below by

1

k )DP, f F„(r) F„—, (r)+ F„(r) dr1

4~r s s

(19)

The functions F,„(r),F„(r), and F„(r) are the void-void,
surface-void, and surface-surface correlation functions,
respectively. The asymptotic behavior as r

~

—+ m& of
these correlation functions is given by

F,„(r)~Q„F„(r)~sP„F„(r)~s

where P, is the volume fraction of the void phase (trap-
free region) and s is the specific surface (i.e. , the area of

the interface per unit volume). Following Rubinstein and
Torquato, ' we refer to (19) as a two-point "interfacial-
surface" lower bound. Note that for statistical isotropic
media (which is what is considered below), the correla-
tion functions depend only upon the distance r =

~
r ~.

Application of bounds of the type (19) in the recent
past has been virtually nonexistent because of the
difficulty involved in ascertaining the associated correla-
tion functions. Torquato has recently developed a for-
malism to obtain and compute F„,F„,F„(and their
higher-order generalizations) for distributions of identical
particles from a general n-point distribution function H, .
The extension of this methodology to particles with a size
distribution is quite straightforward and details will be
omitted here.

Consider evaluating (19) for a bidisperse system of fully
penetrable spheres. Then using the formalism of Ref. 25,
it can be shown that

F„(r) = exp[ —(p, V',"+p, V2" )], (21)

4m 3 3rF„(r)=exp. — p,R, 1+
3 1

3 3 337 I"

16R ',
' ' 4R,

X 4m p1R1
r R2

4 2 4
-+—+p R +—,0&r &2R, (22)

4m 3 3I.=exp ~
— p1R 1 1+

3 4R1

R1 2+2p2R2 4~ plR1 +—+p2R2, 2R2&r &2R1
16R 1

2 4
(23)

=exp (piR i +p2R 2 ) [4w(p, R i +pzR 2 )], r ) 2R
t

Sm 3 2 2

3
(24)

R1 I R2 y
p[ —(piV2 '+p~V2")]. 16~' p&R, + —+p,R, +— + (piRt+ppR2) ', 0&7 &2R~

2

+p2V2 )] ' 6 ptR~ + — +p2R2 + p, R', , 2R, ( (2R,
2 4 7"

(25)

(26)

=exp[ —(p&VI" +p&V2")][16' (p,R, +p&R&) ], r ) 2R2 (27)
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where

V"(r)= R' 1+ '" r 3

0&r &2R,.
16R;

(28)

3
R, , r) 2R,. (29)

is the union volume of two spheres of radius R; separated
by a distance r. The result (21) for F„(or more pr'e-

cisely, its continuous distribution analog) was first given
by Stell and Rikvold. Results (22) —(27) are new, how-
ever. With the above forms of the correlation functions,
it is a simple matter then to insert them into integral (19),
and numerically integrate it to determine the value of the
bound for a given value of $2. These results are summa-
rized in Sec. VI.

V. SURVIVAL-PROBABILITY THEORY

Richards derived a theoretical expression for the trap-
ping rate k for a distribution of equisized fully penetrable
spheres by obtaining the survival probability for a ran-
dom walker. The resulting relation for k has been shown
to agree quite well with simulation results. ' ' In the
same paper, Richards also derives an expression for the
trapping rate for a system of fully penetrable spheres with
a discrete size distribution, namely, he found

where

r
1 —&eye~ erfc(y)

(30)

P
I =4mD g p;R;, (31)

y =8(AD)'~'g p;R;, (32)

and

2&r (33)

Here erfc(y) denotes the complimentary error function of
argument y. Now using the notation of Sec. II and the
dilute Smoluchowski result (14), we can recast the above
equation for the trapping rate as

where

= '9

~z 1 —&vrye erfc(y)
(34)

g=p (R'&, (35)

and (R ) is given by Eq. (15). Note that for small trap
densities, expression (34) for the scaled trapping rate
gives

k = 1+g3p2+ .
S

which to the same order is identical to the corresponding
nonanalytic expansion for equisized traps, i.e., po-

lydispersity effects are contained in higher-order terms,
represented by the ellipsis. We should note here that
bound (19) gives an order Pz correction to k/k, . As is
now known, ' ' it is difficult to construct variational trial
fields for bounds which incorporate nonanalytic terms
due to screening.

Given the discussion of Sec. II, the extension of (34) to
the continuous case is quite straightforward. One simply
employs the continuous formula for the moments of R
[i.e., Eq. (9)], which arise in (34), instead of the discrete
version, Eq. (15). The dimensionless quantity y is explic-
itly given by

2p'~~ j"R'f (R)dR
0 (36)

( f Rf(R)dR)'i

where f (R) is the continuous probability density func-
tion described above Eq. (5). In Sec. VI, we shall evaluate
(34) for both bidispersed and continuous polydispersed
media.

VI. RESULTS AND DISCUSSION

Here we present computer-simulation results, calcula-
tions of the interfacial-surface bound (19), and evalua-
tions of Richards's expression (34) for polydispersed sys-
tems of spherical traps. We examine both bidispersed
and continuous polydispersed cases.

A. Bidispersed media

Figure 3 compares our simulation results for the scaled
trapping rate k/k, with the lower bound (19) and expres-
sion (34) for a bidispersed distribution of fully penetrable
spheres in which R2/R, =0.5 and pz/p, =8. If the
spheres were totally impenetrable, then this case could be
interpreted as corresponding to one in which exactly half
of the spheres of a monodispersed system (and thus half
the volume of the spheres) are broken down into spheres
of half the radius but eight times as dense as the larger
species (or, alternatively, half of the spheres are consoli-
dated to form an equal volume of spheres of twice the
original radius). Now since the spheres are actually tak-
en to be fully penetrable to one another, such an interpre-
tation is correct only at dilute conditions since for such
microstructures the reduced density for type-i particles
p, 4~R; /3 is not g.enerally equal to the volume fraction
for type-i particles [see Eqs. (1) and (3)]. From Fig. 3 it is
seen that the prediction (34) happily lies above the
rigorous two-point lower bound. Three-point lower
bounds, such as multiple-scattering bounds, ' should pro-
vide significant improvement over the two-point
interfacial-surface lower bound computed here. The ex-
act Monte Carlo data for fully penetrable traps are slight-
ly below the prediction of (34). Thus, relation (34) pro-
vides a good estimate for the trapping rate for this bi-
dispersed system, as was the case for the monodispersed
system. ' '

Also included in Fig. 3 are two Monte Carlo simula-
tion points for a distribution of totally impenetrable
spherical traps of two different sizes. As for the fully pe-
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RP2

pi Ri
R

1+ P2 2

pi
(39)

For bidispersions in which kz /kM is approximately a
constant over the range of Pz, one can estimate k~ /kM by
evaluating it at Pz=0,

k~K= lim
okM

Il =1+2S(S—1) . (43)

The second term of (43) gives the contribution to K due
to polydispersity effects. Note the monotonic dependence
of K on S. The constraint (pz/p&)(R, /R, ) =1 was also
used to generate the curves of Fig. 4. It is seen that for a
wide range of parameters, Eq. (43) gives a good approxi-
mation to k~ /kM.

Expression (39) is obtained from Eqs. (13) and (14). Note
that if R

&
)R 2, the ratio K & 1 and is a monotonically in-

creasing function of both pz/p, and Rz/R „and if
R, & R2, the ratio K & 1 and is a monotonically decreas-
ing function of both pz/p& and R z/R, . It is of interest to
relate L to the ratio S. Observe that S has the same gen-
eral properties as K, i.e., S is a monotonically increasing
function of its variables with the minimum S =1 located
at pz/p& =Rz/R, =1 when R, )Rz, and is a monotoni-
cally decreasing function of its variables when R, & R, .
Combining (38) and (39) yields

B. Continuous polydispersed media

The trapping rate of continuous distributions of trap
sizes for fully penetrable spherical traps can be evaluated
using expressions (30) or (34) and (36). The trapping rate
for several cases of the Schulz distribution (10) was calcu-
lated for different values of m. The trapping rate for each
case was lower than the monodispersed case, and in-
creased with increasing m. This again confirmed expect-
ed behavior, i.e., the trapping rate increases or decreases
as the relative specific surface increases or decreases, re-
spectively.

Pz zR

pi' Ri (40) VII. CONCLUSIONS

where

Pz 2R RP2
(41)

Now (40) is not an explicit relation in terms of S, since S
itself changes as a function of pz/p, and Rz/R, . Howev-
er, such an explicit expression can be obtained by impos-
ing a reasonable constraint relation between the ratios
pz/p, and Rz/R &. For example, a meaningful constraint
is to require that if pz/p& increases, then R z/R, must de-
crease and vice versa. (If both variables decreased simul-
taneously, for example, then the effect of polydispersity
would be minimum, i.e., the deviation of E and S from
unity would be small. ) Hence, suppose one imposes the
constraint (pz/p&)(Rz/R, ) =const, then using the above
relations one can obtain K explicitly in terms of S. For
simplicity, if we take the aforementioned constant to be
unity [i.e., (pz/p, )(Rz/R, ) =I], which states that the
reduced densities of each type particle are equal, i.e.,
4m.p&R &

/3 =4m.pzR z /3, then

We have generated exact computer-simulation results
and calculated rigorous two-point lower bounds and
theoretical results for the trapping rate of a system of ful-

ly penetrable and totally impenetrable spherical traps, po-
lydispersed in size. Simulation and survival-probability
results satisfy the rigorous two-point interfacial-surface
lower bound for a distribution of fully penetrable spheri-
cal traps of two different sizes. The survival-probability
expression only slightly overestimates the trapping rate
for fully penetrable traps as determined from simulations,
verifying the validity of the theory for polydispersed
media. We have extended Richard s survival-probability
theory to accommodate continuous size distributions of
fully penetrable spherical traps. It is noted that there are
still no theories capable of predicting the trapping rate
for totally impenetrable traps at moderate to high densi-
ties. In each of the cases examined in this study, it was
seen that the trapping rate (relative to the monodispersed
case) increased or decreased according to whether the rel-
ative interfacial-surface area increased or decreased, re-
spectively.

1+(1—2S)z
2S

and (40) yields

(42)
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