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Theoretical basis for the Vogel-Fulcher-Tammann equation
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The lattice model for linear polymeric glasses proposed by Gibbs and Di Marzio several decades
ago is used to calculate the average relaxation time for the structure of the model as a function of
temperature. Using the fact that the model exhibits the existence of a temperature Tp for which the
configurational entropy of the system vanishes, we identify this temperature with the threshold of
infinitely long relaxation times. Using the analytical parameter-free expression for the specific heat
for temperatures above Tp, we show that (i) there are substances for which a Vogel-Fulcher-
Tammann-like (VFT) equation is accurately obeyed in the range T & T~, where T~ is the experimen-
tal glass transition temperature. On the other hand, in the range Tp (T & T a modified VFT equa-
tion is suggested.

I. INTRODUCTION

where $0=/(t =0) and ~ is a parameter often interpreted
as the average relaxation time of the relevant processes
occurring during the glass transition. Equation (1) was
first introduced by Kohlrausch in his studies on viscoe-
lasticity and later on by Williams and Watts to describe
dielectric relaxation. Further views on this equation as
well as the attempts that have been made to derive it
from various models have been recently discussed in the
literature.

Our concern here is mainly with the parameter ~ which
appears in Eq. (1). As has been well known for over half
a century, such a parameter is a function of temperature.
This dependence has also been empirically described in
several ways. In 1921, Vogel" proposed for it a simple
Arrhenius behavior later used by Tammann and Hesse'
and independently by Fulcher. ' This is known as the
Vogel-Fulcher-Tammann (VFT) equation, namely

'(T) =~oexp
T To

~„o'., To) 0 .

The nature of the relaxation processes which govern
the behavior of a viscous supercooled liquid as it ap-
proaches its glass temperature remains essentially un-
known. Yet, it is surprising that a large number of exper-
iments using different types of techniques devoted to the
examination of the response function of the system to an
external perturbation can be described by the stretched
exponential function,

P(t) =Poexp —(t/r)~, 0&P(1,

A similar empirical relation was proposed by Williams,
Landel, and Ferry' (WLF), later modified by Naray-
anaswamy, ' to account for the inhuence of the thermal
history on the relaxation times. An account of these
latter formulas applied to other relaxation processes has
been given by Scherer. ' But in spite of the success of
these equations in their various contexts, very little is
known about the underlying microscopic mechanisms.
Very recently, careful experiments carried out on super-
cooled glycerol and propylene glycol using two different
spectroscopies, specific-heat spectroscopy' and ultrason-
ic attenuation, ' have revealed two interesting aspects
about this puzzle. First, that for both of these glass-
forming liquids the peak frequency, whose inverse value
is identified with ~ as a function of the temperature, may
be fitted both using the VFT equation and a scaling law
as arises from fluctuating hydrodynamics. ' Experimen-
tally, reasons are given to prefer the former over the
latter one. ' Second, the relaxation times of glycerol ob-
tained by using five different techniques may be also fitted
over nine decades of frequency with a power law and a
VFT equation. The conclusion which is extracted from
this work is that the relevant relaxations for such sub-
stances in the glass transition are governed by a single re-
laxation mechanism.

From the theoretical point of view, little effort has been
spent on elucidating the temperature dependence of ~,
after the pioneering work of Adam and Gibbs' based on
a microscopic model for the glass transition proposed
thirty years ago by Gibbs and Di Marzio. In Adam-
Gibbs' work the WLF formula was obtained and
throughly compared with the then available experimental
results. On the other hand, the Gibbs-Di Marzio model,
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which is a parameter-free model, is well known to repro-
duce a reasonably large number of the equilibrium prop-
erties of glasses. ' Also, the Adam-Gibbs formulation
has been recently used to justify some of the empirical
equations for ~ using ad hoc assumptions on the behavior
of the specific-heat dependence on the temperature
around the transition temperature.

Among the most outstanding predictions of the
Gibbs-Di Marzio model is the specific-heat discontinuity
at the glass transition to a rather good accuracy. But
also, the analytical form of this thermodynamic function
is given from a critical temperature, defined in the model
as that for which the configurational entropy vanishes, up
to a temperature characteristic of the supercooled liquid
but higher than the transition temperature. In this work
we show a rather amazing property of this function,
namely, if used in its full form to compute the relaxation
time using the Adam-Gibbs method and without any fur-
ther approximations, then in the interval T & Tg, where

Tg is the transition temperature, one recovers an equa-
tion which is analytically different but essentially behaves
as the full VFT equation. Otherwise in the interval
To & T & T, where To is the temperature for which the
configurational entropy vanishes, a modified VFT-type
equation is obtained but with a temperature-dependent
parameter in the exponential. Since these equations con-
tain no free parameters one can compare them with the
experimental results for available glass-forming materials.
The agreement is surprisingly accurate.

To keep this paper self-contained, in Sec. II we surnma-
rize the main features of the Adam-Gibbs and Gibbs-Di
Marzio results useful for our calculations, in Sec. III we
give the main results and their comparison with experi-
ment, and in Sec. IV we add some pertinent remarks on
the nature of these results and provide a comparison with
other work.

z; AC
S, —S, =f dT

a
(5)

remembering that S, ( To ) =0.
In order to evaluate Eq. (5) we need an expression for

AC which we draw from the Gibbs-Di Marzio model.
C

Yet, an explanation is pertinent due to the physical na-
ture of the VFT equation. The denominator that appears
in the exponential of Eq. (2) contains the term T —To
where To is the temperature that corresponds to the one
at which the configurational entropy vanishes since in
this model the underlying relaxation mechanisms are as-
sociated with the number of available configurations.
Then, if we restore to the explicit form obtained for the
specific heat by Di Marzio and Dowell, [cf. Eq. (31)]we
see that

ECp = +BX—CX
X

where

X =T/Ts, (7a)

Ac.A=R
2

f ( I f), — (7b)

T, is an appropriately chosen temperature and
K =2.3036pS,*/k a quantity directly calculable from the
equilibrium data of each substance and tabulated in their
paper. The whole problem of obtaining the explicit form
for r(T) rests on the calculation of the term in large
parentheses, and this is done using the well known ther-
modynamic equation

II. SUMMARY OF RESULTS
8 =4RT her, (7c)

W'(T)=D exp( K/TS, ), — (3)

where D is a constant, K is a quantity to be defined in Eq.
(4), and S, is the molar configurational entropy of the sys-
tem. Since the relaxation time r(T) is reciprocally pro-
portional to W( T), they arrive at the expression

r(T) 1

r(T, ) T,S,(T, )

1

TS, ( T)
(4)

The following results will be stated without any proof;
the interested reader may refer to the original papers
where a rather clear justification of each formula is given.
Adam and Gibbs compute a quantity W(T), the average
transition probability, as a function of the temperature
which has the form

C =4. 17Bha . (7d)

Ac. is the energy difference for gauche and trans-isomers,
f is the number of bonds "ffexed, " and ha is the bulk
thermal expansion coefficient. In Eq. (6) the terms that
arise from the vibrational contributions to the specific
heat have been ignored since they do not contribute at all
to the configurational entropy.

We are, therefore, assuming here that Eq. (6) is valid
throughout the temperature interval To & T & T,
(To = T2 in the Gibbs-Di Marzio theory).

Inserting Eq. (6) into Eq. (5) and making use of the ex-
plicit values so obtained for S, ( T, ) and S, ( T) one is final-

ly led to the result that, the so-called logarithmic shift
factor is given by,

r(T) 1

r(T, ) T,S,(T, )

1

T(T —To)[[(A /2T To)+C](T+To)+8 )

(8a)
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where

S,(T, )=(T, —To) +C (T, +To)+B .
2T TQ

(8b)

III. NUMERICAL RESULTS

In Table I the values of A, B, and C are given for six
typical polymeric substances. Their calculation is based
upon the results obtained by Di Marzio and Dowell
who required the substances in evaluating the discon-
tinuity of the specific heat at the glass transition. The
particular criteria used in selecting each one of them is
given in the discussion of Eqs. (32a)—(32c) of their work "
and the ensuing results tabulated in that same paper
(Table II Ref. 24). The last column in this table
represents the estimated error for the difference between
the experimental specific heat and that calculated
theoretically according to Di Marzio and Dowell.

For our purposes we now rewrite Eq. (7a) in the follow-
ing form:

K
F(T)(T—To)

where

F(T)= y+BT — y
a CT

2TQ 2
(10a)

Equation (8a) is the main result of this paper. It
expresses the logarithmic shift factor as a function of
temperature in the whole range TQ & T & T, and further,
it contains no adjustable parameters.

viding the temperature interval into two regions, namely
1&x &1.75 and 0. 1&x &1. In both intervals the data
have been fitted to a straight line using the least-squares
method. The results are shown in Tables II and III, re-
spectively. In the former case which corresponds to tem-
peratures larger than T, precisely the range in which one
expects the VFT equation to hold true the behavior of
F '(T) is practically a constant. This implies that the
model predicts a value of the constant in the exponential
of the VFT equation which is equal to the constant K in
Eq. (9) times the constant term in the straight line equa-
tion of Table II. This value is listed in Table IV, where in
the first column an experimental value for this constant
has been taken from the work of Hodge. The
discrepancy with K is between a factor of 5 and 10. How-
ever, the results quoted by Hodge depend on a parameter
Ah/R which is related to the annealing time. The
values for this parameter are given in the second column
of Table IV. Thus, one could inquire on the values of the
parameter Ah/R which would lead to the values of K
predicted by our model. These are given in the fourth
column of Table IV. In conclusion, considering the
characteristics of the Gibbs-Di Marzio model, we may as-
sert that it predicts with rather good accuracy the behav-
ior of the substances considered above Tg, as far as the
VFT equation is concerned.

In the second case, for temperatures below T, the
slope of the straight line is no longer a constant. In fact
it differs by approximately a factor of 10 from the corre-
sponding values above T .

However, the temperature dependence of the logarith-
mic shift factor in the temperature range TQ & T & Tg,
where F ( T) varies appreciably with T may be con-
veniently cast into a different form. Indeed it is clear that
one can write

and

TQ TQy= 1+—= 1+ X
T T

(lob)

ICT~=~Qexp
G(T)(T To)—

where now

Clearly, Eq. (9) is of the VFT form provided one can
identify the temperature interval in which F(T) behaves
practically as a constant within the experimental error.
As it turns out this behavior is readily exhibited by six
substances here examined, namely, polyisobutylene (PIB),
polystyrene (PS), polyvinylchloride (PVC), polymethyla-
crylate (PMA), polyvinylacetate (PVAC), and po-
lymethylmethacrylate (PMMA).

The behavior of F as a function of X =T/T for the
materials quoted in Table I has been analyzed by subdi-

G(T)=F(T)y (12)

Equation (12) has to be understood as a proposal to de-
scribe such temperature dependence of the relaxation
time below the glass-temperature T transitions. Due to
the lack of experimental data in this region its assessment
remains an open question.

The whole analysis shows then that the VFT is strictly
valid in the range where T ) T~ (T = T +50), whereas
between the temperature TQ and the glass temperature a

TABLE I. The values of parameters A, B, C, Tg, and To for six polymeric substances.

Material

PIB
PVAc
ps
PVC
PMMA
PMA

244 824
558 150
834 774
722 454
857 304
457 056

0.0133
0.0133
0.0066
0.0099
0.0099
0.0133

0.000 02
0.000 02
0.000 005
0.000 012
0.000 012
0.000 02

Tg

202
305
373
347
378
276

To (K)

132
244
311
289
332
217

Estim.
error %%uo

7.5
4.9
8.5

20
33
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TABLE II. In the first column the least-squares fit for the
function F '(x) [given by Eq. (10a)] is presented for tempera-
tures T ) T~. In the second column, the percentual mean error
in this fitting is reported.

TABLE III. In the first column the least-squares fit for the
function F '(x) [given by Eq. (10a)] is presented for tempera-
tures T (T~. In the second column, the percentual mean error
in this fitting is reported.

Material

PS
PVAc
PMA
PMMA
PVC
PIB

Least-squares fit

F '(x) =0.0137X+0.0883
F '(x) =0.0171X+0.0772
F '(x) =0.0137X+0.0791
F '(x) =0.0189X+0.0876
F '(x) =0.0211X+0.0780
F '(x) =0.0083X+0.0656

Mean
error %%u~

0.33
0.22
0.35
0.17
0.18
0.58

Material

PS
PVAc
PMA
PMMA
PVC
PIB

Least-square fit

F '(x) =0.0826X+0.0314
F '(x) =0.0759X +0.0294
F '(x) =0.0748X +0.0288
F '(x) =0.0866X +0.0324
F-'(x) =0.0800X+0.0308
F '(x) =0.0587X +0.0234

Mean
error %%uo

10.10
9.74
9.76
9.86
9.14

10.12

modified Arrhenius-type equation is valid, but the con-
stant term in the exponential has to be replaced by the
function given in Eqs. (11) and (12). An expression simi-
lar to that given by Eq. (11) has been recently derived us-
ing the method of stochastic matrices for disordered sys-
tems.

IV. CONCLUDING REMARKS

tion time ~ or for its inverse related to the diffusion
coefIicient has been also reported recently in the litera-
ture. Indeed, the viscosity of supercooled liquids has
been reexamined using concepts developed for energy
transport in random media to find the equation

i)( T)= 10'"exp To
1 1

The value of this calculation relies on the fact that at
least for the substances here examined the Gibbs-Di Mar-
zio model provides a reasonable explanation of the tem-
perature range over which the modified VFT equation as
expressed by Eq. (9) agrees with experiment. Considering
the fact that this model is free from adjustable parame-
ters this result may be added to the list of accomplish-
ments of the model in providing an adequate description
for the equilibrium properties of glasses. However one
should not take this result as universally valid for all
glass-forming supercooled liquids. Two substances re-
cently studied, glycerol and propylene glycol, have not
been included in our comparison because of the lack of
appropriate data relevant to the theoretical model. In a
recent study on the temperature-dependent distribution
of relaxation times in glycerol using light scattering, a
second-order polynomial in T is taken to fit the data for
inc but this is done so only for computational conveni-
ence. It remains to be seen if for this substance and oth-
ers Eqs. (9) or (11)hold true.

Furthermore, it is also interesting to point out that a
quadratic dependence in the temperature for the relaxa-

where i) is in P (poise), fits the experitnental data of inor-
ganic and organic glasses. This result thus points out a
T /Tp dependence of the exponential in the expression
for r [cf. Eq. (11)]. An independent justification for these
results has been also obtained from a study of the ergodic
behavior in supercooled liquids and glasses where,
moreover, the ideas of Adams and Gibbs in which all our
work is based are dominated by Auctuations of finite
length within which the particles are strongly correlated.

These departures from the Arrhenius rate law behavior
of the viscosity, observed as the temperature T is ap-
proached, are also emphasized by Angell ' simultaneous-
ly with the virtues of the Adam-Gibbs ideas behind the
temperature dependence of the structure relaxation time
given in Eq. (4). Also, these same ideas have been con-
sidered from a different point of view by Mohanty.

We would like to emphasize the fact that in this calcu-
lation the significance of Tp becomes meaningful. It is
usually argued that the empirical significance of this tem-
perature is unclear. ' ' According to our results for all
those materials described by the Gibbs-Di Marzio model
Tp is precisely the temperature which corresponds to

TABLE IV. In the first and second column, the experimental VFT constants and its corresponding
cooling rate are given as reported in Ref. 25 ~ In the third and fourth column, the theoretical and the re-
quired cooling rate are presented.

Material

PVAc
PVC
PS
PMMA

Experimental

VFT constants

6.8992 X 10
2.7225 X 10
2.52 X 10
6.6792 X 10

Cooling Rate
hh
R

88X10'
225 X 10
175 X10'
138X10'

Theoretical

VFT constants

1.0578 X 10
0.3686 X 10
0.6141 X 10'
0.5527 X 10

Required
Cooling rate

hh
R

13.4923 X 10'
30.4297 X 10
42.6458 X 10
11.4194X 10
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infinite relaxation time or S, (To ) =0.
We also like to point out that this calculation super-

cedes previous efforts made to derive the VFT equation
from the Adam-Gibbs theory, ' ' insofar as that no trun-
cations have been made on the full temperature depen-
dence of the speci6c-heat expression. These truncations
are necessary when the original VFT equation namely,
Eq. (2), is the result.

Finally, we would also like to mention other attempts
made to derive the VFT equation using different models.
One of the best known is based on the association of the
free-volume concept which relates the relaxation time
and the probability distribution of free volume with per-

colation theory. ' ' According to these ideas, the theory
correctly predicts the preexponential factor in Eq. (2) and
that the viscosity should have the same form as ~ in the
region of T . Other derivation is based on ideas related
to the Landau-Ginzburg theory but we shall not discuss
it here.
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