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Spinodal decomposition after a deep quench is studied numerically through the use of a Langevin
Quid model containing a conserved scalar order parameter and a conserved current. The couplings
involving the order parameter and the currents are as in the standard model H (in the taxonomy of
Hohenberg and Halperin), which becomes model B in the limit where current and order parameter
decouple. In this model, the late scaling-regime domain growth is faster not only than in model B,
but also than in a Langevin Quid model with couplings to pressure Auctuations only. In the
intermediate-time regime, the behavior observed is similar to that of model B. A crossover to the
faster dynamics occurs subsequently. The exponent n for the domain growth law /(t) -t' is found
to be n =0.69+0.02 at the longest times considered. The order-parameter correlations and their
scaling behavior are studied. The current correlations are shown to equilibrate rather quickly. Our
results put in doubt the idea of a "universality class" for nonequilibrium Quid models.

I. INTRODUCTION

Spinodal decomposition (SD) is an archetypical non-
equilibrium growth process occurring after a system is
placed into an unstable region of its phase diagram usual-
ly by means of a rapid temperature or pressure quench. '

It occurs in, among other systems, solid or liquid mix-
tures quenched below the miscibility gap, leading to sepa-
ration of the two components, and also in Auids quenched
into the liquid-gas coexistence region. SD is the process
of phase separation characterized by a spontaneous for-
mation of domains which then proceed to grow and com-
bine. This spontaneous formation requires no activation
energy to initiate the separation and therefore does not
depend upon initial large Auctuations in the order param-
eter to begin the ordering process.

SD has been experimentally studied extensively both in
binary alloys ' and in Auid systems. ' After the initial
nucleation of domains, their growth as a function of time
is typically characterized by a power law; If l(t) is a
linear measure of domain size, then l ( t ) —t ", where n is
known as the growth exponent. The reported values of n
are sometimes themselves time dependent. Much em-
phasis has been placed into classifying order growth phe-
nomena into "universality classes" according to the ulti-
mate value of the exponent n for "asymptotically long"
times. Experimental studies of binary Auid systems sub-
jected to deep temperature or pressure quenches ' have
revealed several distinct time regimes and exponents,
among which are an early-time power-law growth, where
a rather small growth exponent n =0.3 or 0.4 is observed,
and a late-time regime in which n =1. Experiments on
binary alloys measure much smaller exponents (e.g. ,
n =0.2 in Ref. 3). It seems physically obvious that
domains can grow faster in Auids because of the freely
flowing matter allowing similar Auid molecules to congre-
gate and permitting the speedy combination of nascent

domains. While there is a wealth of SD experiments in
Auid systems, with the exception of one isolated study
there has been little effort to better understand SD in
Auid-type models through numerical studies.

Analytical work on SD in Auids has been inconclusive
to date, but many compelling questions have been raised.
Siggia predicted for bindary fluids n =

—,
' in the early

stages of the growth process changing to n = 1 asymptoti-
cally. This is compatible with many of the experimental
results for quenches far from metastability and far from
the critical region. ' To predict the growth in the late-
time regime, Siggia showed that tubular domain struc-
tures of one of the phases were unstable to surface Auc-
tuations and would grow with the exponent n =1. In
Ref. 9 it was pointed out that Siggia's derivation might
not be applicable to two-dimensional Auids and, relying
upon a particular approximation to hydrodynamics, rath-
er different growth dynamics were predicted for that
case: n =

—,
' for both the early- and late-time regimes.

This prediction was confirmed in a numerical study of a
stochastic Langevin model of a two-dimensional fluid
performed in Ref. 7 where an exponent n =

—,
' was also

obtained. This value is clearly larger than the value' '"
n =0.3 which one obtains for the standard model (model
8 in the taxonomy of Halperin and Hohenberg' ) of spi-
nodal decomposition in a system with a scalar, conserved
order parameter and no currents. ' Thus the relevance of
currents is well established.

In this work we will explore further the influence of
currents upon SD in fluids by studying a very important
stochastic model of Auid behavior. Because of the com-
plexity of models which would properly account for the
effects of currents, there has been only one simulation of
SD with scalar order-parameter field coupled to a current
vector field. One of the issues we are attempting to
resolve about the role that currents play in SD is whether
the growth kinetics depend on the specific set of cou-
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plings between the fields. The linearized version of the
models studied numerically in Ref. 7 and analytically in
Ref. 9 includes sound modes but not thermal diffusion.
We therefore choose to study here another stochastic
model in which the couplings are chosen in such a way as
to maintain thermal diffusion modes and current dissipa-
tion (e.g. , model H of Ref. 12). This model allows us to
tackle some important universality problems. It is well
known' that the dynamical critical exponents for Auids
are correctly predicted by model H rather than by a mod-
el such as that studied in Ref. 7. It is therefore, a priori,
at least conceivable that the two types of dynamics also
have different properties with regard to growth kinetics.
Further, this model can be reduced to model 8 by turning
off the coupling parameter to the current, which cannot
be done for the model studied in Ref. 7. We can there-
fore directly investigate the inAuence of the currents. We
will see that our results indicate a breakdown of univer-
sality: we obtain an exponent n larger than —,

' and a for-
tiori larger than that of model B.

After this introduction we will present in Sec. II a re-
view of the derivation of the precise model employed in
this work and a discussion of the dimensionless variables
used there. In Sec. III, we will discuss the methods of
our numerical solution performed on a two-dimensional
square lattice for a deep quench through the critical
point. Initial conditions and the temperature quench will
be discussed. The particular choice of parameters will be
justified as will the lattice size and time scales over which
we evolved our system of equations. In Sec. IV we will
present our results. We will analyze the process of
current equilibration through the current-current corre-
lation functions. The ordering and growth of domains
characterized by the values of the order-parameter corre-
lations will be measured and anlyzed in two different
ways. The results of these two methods will be compared
and scaling properties of the growth process will be dis-
cussed. Our results are contrasted with those obtained
for other two-dimensional Auid models.

II. THE MODEL

A very important physical difference between spinodal
decomposition in Auids and in alloys is the existence of
convective phenomena in the former, which requires the
inclusion of currents in the model studied. Physical phe-
nomena such as diffusion of heat and free convective
Aows must be modeled in a Auid system having a two-
phase region if we hope to calculate the correct growth
dynamics. The proper couplings involving the scalar field
variable and the vector current will be included to ensure
that the desired hydrodynamics are present in this model
as explained in the Introduction.

Langevin equation models represent only an approxi-
mation to the actual behavior of Auids. The question of
developing quantitatively realistic and yet relatively sim-
ple models to describe Auids received a great deal of at-
tention years ago in the context of the calculation of
dynamical critical exponents (see Ref. 12 for a review). It
was found that for critical dynamics calculations, a mod-
el with a single scalar density coupled to one current and

including heat transport modes and no pressure Auctua-
tions in its linearized form was sufficient. This is the
model denoted as "model H" in Ref. 12.

While one cannot regard it as being necessarily true,
much less as proved, that what is best for second-order
transitions is also best for first-order ones, inclusion of
heat or entropy transport might be crucial to the process
of spinodal decomposition. It is clearly of great interest
to examine the behavior of models with dynamics of the
H type, and by comparing with the results of Ref. 7, to
determine whether the presence of heat diffusion versus
pressure Auctuations is indeed relevant in SD. For in-
stance, we would like to determine the effect of these
different types of dynamics on the growth exponent n

governing the growth of domain size, l(t) by the power-
law relation l (t)-t". We have therefore chosen to study
a version of model H in this paper. Model H was origi-
nally derived by Kawasaki' and co-workers and, as has
been explained above, has been found to be extremely
successful as a model of the second order phase transition
in binary Auids and liquid-gas systems.

As a first step in reviewing the derivation of the model
equations we recall some elementary aspects of the
Langevin formulation. The Langevin equations are a sys-
tem of coupled differential equations involving a set of
coarse grained variables [y ]. To choose the correct set
of coarse grained variables appropriate to a Auid system,
one should start with the equations of hydrodynamics, '

which are 2+0 coupled equations involving 4+d vari-
ables (entropy, density, pressure, temperature, and
momentum density) in the Quid system; d is the spatial di-
mension of the system. In a binary Auid system, an addi-
tional variable, namely, the concentration, and an addi-
tional concentration continuity equation would also be
included. Two of the scalar variables may be written in
terms of the remaining two independent variables
through the use of thermodynamic relations; the choice
of the independent scalar variables to keep is rather arbi-
trary. In model H only one scalar variable is kept in
decoupling the sound modes from the heat modes, one of
the scalar densities is made a nonAuctuating constant.
Thus the set [y] we consider here will consist of the sca-
lar density P and the vector momentum density
g: [v.]= [4 g].

First, we consider brieAy the equilibrium state. The
equilibrium properties of our model are given in terms of
a free-energy functional F[y ]. The equilibrium aver-
ages ( 3 ),q

of some observable 3 are determined in the
following way:

( A ),„=—J exp( PF[cp ])A [q& ]d [g ],— (2.1)

where @=1/T, the Boltzmann constant being taken to be
unity in the units used here, F[y] is the free-energy
functional, and Z is the normalization
Z = J exp( PF[p ])d [p ]; the integ—ral is a functional
integral. The equilibrium properties that we need to
model properly include the current-current correlations
obeying the equipartition theorem, the presence of or-
dered domains, and the characteristics of the domain



SPINODAL DECOMPOSITION IN A TWO-DIMENSIONAL. . . 7029

walls separating the different Auid components. For the
liquid-gas transition or for most binary Auid demixing
transitions, the coexistence curve in the phase diagram is
asymmetric. In general, the free energy at a temperature
far from the critical temperature T, should be asym-
metric upon change of sign of the order parameter.
However, the symmetric double-well free energy that we
will choose for SD is the same as was used to successfully
model the critical behavior of fluids. This free energy is
of the form

F[g, g] =
—,
' Jd "r 1 g'(r)+up (r) —rg (r)

Po

+Z ~Vy(r)~' (2.2)

where the first term is the kinetic energy contribution and
the remaining terms are a Ginzburg-Landau expansion of
the free energy in powers of the order parameter. The
variable r is positive below T, . This expansion is the sim-
plest free energy one can use to model a symmetry break-
ing phase transition. It is valid both for small f: there
are no terms of higher order than P, and for slowly vary-
ing P: there are no terms of higher derivative than the
~V'l((r)~ . This free energy is minimized when g falls into
the g=+(rlu)'~ wells and is also reduced by lowering
the surface energy associated with the domain walls
which separate the positive g and negative g domains.
Note that po is the average mass density. The absence of
mass density Auctuations in the kinetic energy term is in
contrast to the model studied in Ref. 7.

We now review the highlights of the derivation of the
dynamical equations of the model studied here. We start
from the generalized Langevin equation which is written
as follows:

B,y (r, t) =QI p + V [y]+g (r, t), (2.3)5F[V]
5y r, t

velocities will account for the nonlinear part of the effects
due to collective mass Aows.

The correlation functions for the noise sources in (2.3)
are determined from the Auctuation-dissipation theorem
and they are as follows:

( g (r, t)gb(r', t') ) = —2TI P (r —r')5(t t—'), (2.6)

where T is the temperature and the I"
& operators were

introduced in (2.3). Note that these noise sources are tak-
en to be completely uncorrelated except at the same time
and the same coordinate. Any possible cross correlations
between noise sources are determined by the off-diagonal
elements in I &. The strengths of these noise correlations
are proportional to the temperature. The rate of equilib-
rium of the velocity field can be easily monitored by com-
paring the velocity correlation functions with the temper-
ature by means of the equipartition theorem:

(g, (r, t)g„(r', t') ) = Tp,5,„5 (r r')lit —t'), —(2.7)

[g;(r), f(r') J
=P(r)V", 5 (r' —r), (2.9)

where V'' indicates that the gradient operators only on
the primed coordinates. Using these Poisson brackets we
calculate the streaming velocities:

which must be satisfied at late times when the system ap-
proaches equilibrium insofar as the conservation laws al-
low. The i, k indices indicate Cartesian components of
the momentum density.

Our first task then is the calculation of the streaming
velocities as prescribed above. For the set of variables
[y ]= [lt, g ] the required Poisson brackets are

[g;(r),g~(r')] = —g;(r')V'J5 (r —r')+g (r)V';5d(r' —r),
(2.8)

V [y]=g, Q &(r, r') —g &(r, r')
5, , 5F[(p]

5y& r', t ' '
5y& r, t)

(2.4)

where

Q f3(r, r') =A, &[@ (r, t), y&(r', t) [, (2.5)

the braces signify Poisson brackets and k
& is a sym-

metric matrix of coupling coefficients. These streaming

where the first term on the right is a set of dissipative
terms, e.g. , thermal diffusion and viscous drag effects.
The I & operator determines the form of the dissipation
in this system. If this operator were merely a constant,
the variables would not be conserved. The g (r, t) are
Gaussian noise terms which account for the effects on the
coarse grained variables of all the quickly fluctuating
variables which are not explicitly monitored. The V [g]
are the streaming velocities which are nonlinear, deter-
ministic, mode coupling terms, e.g. , the additional term
in the convective derivative. The streaming velocities are
calculated from the Poisson brackets as follows

+gg &„g;( ) +g~( )&;
6F 6F

5g„ r 5gp 1

(2.10)

V&
=o V f(r) 6F

5g(r)
(2.11)

The constants A, , g, and o are the nonvanishing coupling
parameters k &

for this model. Couplings to pressure
fluctuations have been dropped. Following standard pro-
cedure, ' we take all of these coupling parameters to be
equivalent, o. =/=A, . Therefore, only one parameter k
couples the equations for the various field variables. The
free energy used in the above equations is given by (2.2).

Finally, we require the matrix I
&

which appears in
the right-hand sides of (2.3) and (2.6). Since to our
knowledge there is no information on the beheavior of
these dissipative operators very far from equilibrium, we
simply choose them as given in linearized hydrodynam-
ics, as was done in the study of critical exponents. A
straightforward comparison between the linearized ver-
sion of this model and linear hydrodynamics shows that
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the only nonzero matrix elements are

r« ——rv', (2.12)

I s s =g5;kV +[il(1—2/d)+g]V;Vk =L—
,k, (2.13)

where i) and g are the bare viscosities while I is the prod-
uct of the bare heat diffusion coefficient and the constant

1/r in the free-energy expansion.
Now we are ready to write the Langevin equations for

this particular model. By putting the above streaming
velocities and the dissipative terms derived through the
use of linearized hydrodynamics into the Langevin equa-
tions we get the following set of coupled differential equa-
tions with which we wish to study SD in Auids:

d, g(r, t)=I V —AV f(r, t) +p(r, t),6F 6F
5$(r, t)

'
5g r, t

B,g, (r, t) =ilV +go V; Vk
—Xp(r, t)V;

6F 6F 6F
5g; r, t k

' "
5gk r, t) ' ' 5$(r, t)

Vi, g;(r, t) +gk(r, t)V; +v;(r, t),6F
gkrt ' 5gk(r, t)

(2.14)

(2.15)

where o =i)(1—2/d)+g. The Craussian noise fields in
these equations are correlated as follows:

((p(r, t)p(r', t') ) = —2TI V 5"(r—r')5(t —t'),

(( v;(r, t) vk(r', t')) = 2TL; 5"—(r r')5(t —t'), —
(2.16)

(2.17)

and L,k is defined in (2.13). While the variables used here
are coarse grained, the form of the equations is reassur-
ingly similar to ordinary hydrodynamics. The first term
on the right of (2.14) is the heat diffusion term, while the
second term includes the convective derivative from hy-
drodynamics. The first two terms on the right of (2.15)
are the viscous drag terms from the Navier-Stokes equa-
tion, and the convective derivative and additional non-
linear coupling terms follow the summation.

The above equations, as written, would lead directly to
the standard form of the model H equations' '' if one
were to drop some of the nonlinear convective terms and
make the additional assumption of setting V g=O. We
will keep all nonlinear terms and refrain from making
this additional assumption. ' The latter would lead to
considerable simplification in analytic calculations but
would have the opposite effect in numerical work such as
performed here. Of course, V.g is related through a con-
servation law to the mass density fluctuations whose cou-
pling back to g and g is neglected in the model as studied
here.

Equations (2.14) and (2.15) as they now stand have ex-

1
1/2

(2.19)

where E =(r/u)E'. Putting these rescaled field variables
into (2.2), we get the form for the rescaled free energy F,

F[v»H= , f d"—[&(m' q')+—IVq I'+Ijl']= &F[q—,j],
(2.20)

where O=r/E' is the quantity that gives the relative
depth of the wells in the free-energy functional as com-
pared to the energy needed to form domain walls. The
coupled differential equations are simplified with the sub-
stitution of the rescaled dynamical variables and dimen-
sionless free energy to the form,

I

plicitly four parameters: the diffusion constant I, the
viscosities rf and g, and the coupling parameter A, . In ad-
dition, from the noise correlation relations, we have the
temperature T, and in the free-energy functional F[g,g],
the parameters po, r, u, and E''. The number of parame-
ters can be reduced without loss of generality by rescaling
the variables P and g, and making diinensionless the time
and length scales. The rescaled field variables are given
below in terms of the original variables,

1/2

(2.18)

B,y(r, t)=yV' —gV" y(r) . +p'(r, t),6F 6F
5y r, t) 5j r, t

dj, (r t)= V . +g VV„. —gq(r t)V,
po &j r t k po 5jk r t

6F . 6F—gg Vkj;(r, t) . +jk(r, t)V; . +v,'(r, t),
5jk rt 5jk r t

(2.21)

(2.22)

where the diffusion constant for the rescaled variables is defined, y = I K', the coupling parameter is now

g =A(K/po)'~, and p' and v' are the rescaled noise fields. We are still able to freely set the scale for the time and
length,
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(2.23)

(2.24)

We set the natural length scale 0 ' to unity, ' 0=1. We can then choose as our characteristic time y
' so that the

time is given in dimensionless form in units of the difFusion time for the order parameter, ~=@t. For simplicity, we will
continue to denote by r the dimensionless coordinate. Our (2.14) and (2.15) now take the fully rescaled, dimensionless
form,

B„y(r,t)=V [y (r, t) y(r—, t) Vq—r(r;t)] —gV. [y(r, t)j(r, t)]+p(r, t),
dj, (r, t)=rIV j,(r, t)+&+V, V&j„.(r, t) gy—(r, t)V, [y (r, t) y(r—, t) Vy—(r, t)]

k

—gg [VI, [j,(r)jf, (r)]+jr, (r)VjI, (r)I +v;(r, t) .
k

(2.25)

(2.26)

Here the transport coefficients are dimensionless and, at
8=1, they take the forms rl=g/poy, o =o/poy. Also
g=g/y. The noise sources have also been rescaled.
They are given in terms of the original noise sources as

3/2

(2.27)v, (r, t),

(2.28}

= —2e( jV 5, &+&V,V&)6"(r—r')5l~ —r'),
(p(r, r)P(r', ~') ) = —2@V 5"(r—r')6(~ —r'),

(2.29)

(2.30)

where we have used the dimensionless temperature scale
defined as

(2.31)

Note that there are no cross correlations between the
noise sources associated with the order parameter and
with the currents while there are cross correlations be-
tween the noise sources associated with the different vec-
tor directions of the current. These cross correlations
will complicate the procedure for generating the noise
sources numerically.

The methodology of the solution of the above equa-
tions and the specific values of the parameters used are
discussed in Sec. III.

III. METHODS

The general method we have used for solving the fun-
damental equations (2.25) and (2.26) follows the computa-
tional approaches that were developed in Refs. 7 and 20.
We will discuss in this section only those portions of the
procedure that are specific to the solution of this particu-
lar model. This model as written has four free parame-
ters, g, o, g, and e, whose possible values and effects in
the calculation need now be discussed.

Now the noise correlation functions in these rescaled
equations are easily determined from the relations to the
original noise sources and (2.16) and (2.17). We have the
following correlations:

(v;(r, ~}9&(r',r') )

Previous computational studies of simpler models
which neglected coupling to current fields showed that
the depth of the temperature quench had no discernible
inhuence on growth dynamics with the possible exception
of a quench to zero temperature. The efFect of the depth
of the temperature quench has been studied experimen-
tally in Quid systems. A dependence of the growth ex-
ponent n on the quench depth has been reported by some
authors ' for binary Quid mixtures quenched to very near
the critical point. In our opinion, a sufficiently deep
quench is necessary to ensure that the system is in the un-
stable region where temperature plays little role in the
growth of domains. Investigating a possible quench-
depth dependence near the critical point in the growth
behavior for fIuid models would be a line of work worth
pursuing in the future. Here, we will choose a small
but nonzero temperature to which to quench, @=0.1. It
is important to note that the temperature in our calcula-
tions is set only through the value of the parameter e
which determines the noise correlation strength. The
velocity correlations are not fixed as is the practice in
molecular-dynamics simulations. At long times the
current correlations must tend to the equilibrium value as
given by the rescaled form of the equipartition theorem,

(3.1)

The coupling parameter g is of considerable impor-
tance to this study of spinodal decomposition. When
g =0, (2.25) decouples from (2.26) and becomes the equa-
tion for the scalar field in the standard model B.' Be-
cause the coupling to the currents greatly modifies the be-
havior of the field, the question of the crossover which
must occur as g increases from zero is of great interest.
A study of this crossover phenomenon would require
very great amounts of computer time and will not be pur-
sued here. In this work we wish to consider, as stated in
the introduction, the case where the coupling between or-
der parameter and current is an important factor in the
growth of ordered domains and we will therefore set
g=1.

We have taken the dimensionless shear viscosity value
to be q= l. This parameter (along with o) determines
not only the relative weight of the noise strengths associ-
ated with the two dissipative mechanisms, as can be seen
from (2.29) and (2.30), but also the relative diffusion times
for the variables y and j [see (2.25) and (2.26)]. It seems
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natural to take the relative weights of these noise
strengths to be the same. Though the diffusion time of
the order parameter and the dissipation time of the
current field are taken to be the same, ordering the
domains turns out to proceed more slowly than the
current equilibrates. An interesting extension of this
research would be to investigate the growth kinetics for a
system in which the current dissipation time is markedly
smaller. The value of the other viscosity o' is discussed
below in connection with noise generation.

A very important additional parameter, implicit in Sec.
II, is the dimensionality d. We have performed our cal-
culations in two dimensions. We note here that the
"universality" of the growth exponent n with respect to d
has not been established for any Langevin mode1 contain-
ing currents. Theoretical work ' appears to cast serious
doubts upon this matter. We have studied this model
only for a two-dimensional Auid which begs the question
of the role dimensionality plays in the growth dynamics.
In the future, it would be important to put this or other
Auid models on a three-dimensional lattice and compare
the dynamics. However, given the complexities of such
models, a three-dimensional simulation would consume a
larger amount of computer resources than is now avail-
able to us, and the exploration of the three-dimensional
world will have to await further developments.

The coupled difFerential equations (2.25) and (2.26) are
solved numerically by the Euler method: an iterative ap-
proximation for time integration. In this method„we
define initial conditions for the dynamical variables, as
discussed below, and evolve the system in time using
these equations. These variables are evaluated at succes-
sive times by using their values at the previous time step.
This solution was performed on a square two-dimensional
lattice where periodic boundary conditions were used,
and the differential operators were discretized in the usu-
al way.

Next, the Gaussian noise sources p and v,- must be gen-
erated numerically, being careful to reproduce the proper
correlations. Gaussian distributions can be obtained
from a Aat distribution such as the uniform computer-
generated random numbers. As shown previously, two
Gaussian correlated fields are sufficient to generate the
noise source p with the proper correlation. The noise
fields 0 require the generation of six Gaussian fields in
two dimensions in general but only four are needed in
the particular cases where o. =0 and o. =2. Since the gen-
eration of the Gaussian fields is time consuming, the
simplification associated with the use of these values is
desirable. We have taken in this study o. =2 which will
preserve the coupling between the currents in the x and y
directions.

It must be emphasized here that only one set of param-
eter values has been explored in this work. This raises
the question of universality. We have seen that there is
every expectation that there is no universality with
respect to g at least in the sense that the dynamics of this
model with g =0 should differ from nonzero g. Regard-
ing the remaining parameters nothing conclusive can be
said at present. If there were a continuous change in the
growth kinetics as the parameters are varied, universality

would be totally inapplicable to Auid models.
The initial conditions on the current and order param™

eter were designed to simulate a disordered state. The or-
der parameter was at every lattice site set equal to zero,
which is the condition of thorough mixing above T, that
we wish to simulate initially. This condition is intended
to represent " a high-temperature situation where the free
energy, (2.20), would be a single well centered about
cp=0. The currents were given an initial Ising-like char-
acter. At each lattice site, j and j were initialized ran-
domly to values of +0. 1 with equal probability. The ini-
tial same site current correlation (j,j, ) =0.01 corre-
sponds to that for a very low temperature rather than the
high-temperature state that we wish to simulate initially.
But it was found that initial conditions on the currents
were of little inAuence after relatively short times. The
current correlations equilibrated quickly compared to the
time scale of domain growth regardless of the initial con-
ditions used. Since the variables in this simulation are
coarse grained averages over volume elements, it is not
unphysical to have a nonequilibrium state where the
correlation strength of the average velocities within the
volume elements are small.

The temperature quench is simulated by starting with
the above-described initially distorted state and setting
the noise correlation prefactor to the final temperature.
This is an idealized fast-temperature quench in the sense
that the temperature as measured by the noise fields is in-
stantaneously changed. The response to this change is
reAected in the dynamical variables.

In Sec. IV, we will use some terms that need to be
defined here. We define a "run" as a single numerical
solution to (2.25) and (2.26) beginning with one set of ini-
tial conditions. Our statistical quantities are obtained as
an average over many such runs which amounts to an
averaging over initial conditions and more significantly
an average over the noise Auctuations. We found that
large Auctuations can occur from run to run and that
realiable statistics require averaging over a minimum of
20 runs, although nearly all of the results we present are
averages over 55 to 100 runs. We used a "time step"
6~=0.02, after carefully verifying, by performing calcu-
lations in small systems, that this is a conservative esti-
mate of the largest A~ value which produces averaged re-
sults independent of A~. Any quantity that we measure is
obtained at selected times. We found that collecting the
quantities necessary to perform the analysis in Sec. IV
took a non-negligible amount of computer time, so that it
was not possible to do our analysis at every time step.

The required lattice size A XN is determined by the in-
itially unknown growth kinetics of this system in a trial
and error method. It is a function of the maximum value
~M of the time after the quench and it depends on the ini-
tially unknown growth law, since the characteristic
domain size I (rM) must remain considerably smaller than
the linear system size X. Given fixed computer resources
~M and N must be determined in a self-consistent way.
Beginning with relatively small lattices, we perform the
calculations and the collection of the required informa-
tion (to be described in more detail in Sec. IV) for a fixed



40 SPINODAL DECOMPOSITION IN A TWO-DIMENSIONAL. . . 7033

IV. RKSUI.TS

The main objective of this research is to measure the
growth of domains in our system as the numerical solu-
tion of (2.25) and (2.26) evolves through time. A naive
method would be to look at "snapshots" of the two-
dimensional lattice upon which is represented the value
of the order parameter at each lattice site. The results of
this method would be difficult to quantify, impossible to
average in a meaningful way over multiple runs, and only
useful as a qualitative check of the shape of the domains
and the width of the domain boundaries. The best way to
quantify the measure of domain growth as a function of
time is to look at the equal time correlation functions,
which can be easily averaged over runs, thus achieving in
a practical way the averaging over noise and initial condi-
tions with adequate statistics.

%"e have used two methods of analysis in this work in
order to extract as much information as possible from the
data. The first involves the collection and analysis of
two-point correlation functions. From the point of view
of order growth, the most important of these is the quasi-
static two-point order-parameter correlation function
C(r, ~),

C(r —r', r) = (p(r, r)y(r', r) ), (4.1)

where r and r' are lattice vectors and ( ) indicate an
average over the noise and initial conditions. Alterna-
tively one can study the Fourier transform of this correla-
tion function which is the quasistatic structure factor
C(k, r),

C(k, ~)= gexp[ik (r —r')](y(r, r)y(r', r)),1

r, r'
(4.2)

where the k are the appropriate discrete set of vectors in
the first Brillouin zone. It is sometimes numerically con-
venient to calculate C(k, r) directly as

C(k, ~) = (y(k, r)y( —k, r) ),
where

1
y(k, ~)=—/exp(ik. r)p(r, ~) .

r

(4.3)

(4.4)

time range. If the size of the domains had grown to a
significant fraction of the system size before the end of
that time range, we then tried the same procedure on
larger sizes, since results were in this case contaminated
by finite-size effects. If, on the other hand, the results had
proven free of finite-size effects, but did not exhibit the
expected long-time behavior (i.e., a power-law growth,
scaling) we then increased r~. This procedure establishes
then, in an iterative manner, the optimum values of N
and 7M to be used. As we will see in Sec. IV, a size of
N =75 allows for calcualtions of results free from finite-
size effects to be obtained up to ~M =370 while X = 100 is
required for times to 470 and beyond. We will present
evidence in Sec. IV that the latter value is within the scal-
ing long-time regime. Note that, as N is increased, the
absence or presence of finite-size effects was checked by
comparing results for different sizes.

The Fourier transforms were efficiently performed using
vectorized multidimensional fast-Fourier-transform rou-
tines available for the Cray 2. The correlation functions
C(r, r) and C(k, r) not only provide measures of ordered
domain size, but also of the scaling behavior and of the
extent of the validity of our results near the time when
they begin to be influenced by the finite size of our lattice.

We have also collected and studied the momentum
density correlation functions defined as

C,& (r —r') —= (j;(r, r)j k (r', r ) ) (4.5)

and the corresponding Fourier transforms. Though the
momentum density does not order, the correlation func-
tions C;; are very useful in quantifying how the currents
approach equilibrium. The conservation of momentum
which prescribes that C;, (k =0, ~) is time independent
prevents the C;;(k, r) from evolving to a completely fiat
distribution, the Fourier transform of (3.1).

The correlation functions presented here were circular-
ly averaged to remove the directional dependence of wave
vector k or lattice vector r. The circular average for a
continuous system would be performed by an angular in-
tegration. On a lattice, the circular averaging was per-
formed by summing the correlation functions with argu-
ments k or r which fall within a certain ring of width
equal to the lattice spacing and then dividing by the num-
ber of sites in that range.

The other method that we used to measure the order-
ing evolution involves the calculation of the block corre-
lation functions RM(r) which are obtained by summing
the order parameter over square blocks of a particular
size MXM and averaging the square of this sum over
multiple runs with a normalization as follows:

RM(r) = g y(r, ~)
1 1

(4.6)

(4.7)

Some of the properties of RM(r) are obvious from looking
at (4.6). The block correlation functions measure order
over regions of size M. The quantity RM(r) is larger for
smaller block sizes M. When M))l(7) (the domain size
at time r), the sum over M extends over many domains of
opposite signs and RM(r) is small. In the opposite limit,
no such reduction occurs and R~(r) is larger.

We now begin a discussion of results by presenting
some of the raw data obtained in our calculations. Figure
1 is a snapshot of the values of the order parameter at
several specific times on the real-space lattice for one run.
Examination of such snapshots for different runs shows
that there is really no such thing as a "typical" run,
therefore the reader is cautioned not to draw any exces-
sively general conclusions from the particular shapes seen
in this figure. The two earliest times pictured show an in-
terwoven filamentary domain structure similar to that
found for model B in Ref. 10. As we shall see, we find an

where S(r) is the average over the system of the square of
the order parameter,
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FIG. 1. In these four panels, we show "snapshots" of the
domain structure for an N=100 system at four times, ~=25,
100, 200, and 425 for one run. The sites with plus signs have a
non-negative value of the order parameter. The first two times
(pictured in the upper and lower left panels, respectively) corre-
spond to the earlier-time regime discussed in the text. The
upper and lower right panels are at ~=200 and 425, respective-
ly. At late times, the domain shape is very variable from run to
run. Sometimes there are strips as pictured here; in other runs,
the domains are more circular. %e typically have 4—6 domains
toward the end of our runs.

5.0

0.0 5.0 10.0 15.0 200

FIG. 2. Quasistatic structure factor C(k, r) shown for several
early and intermediate times for N =100 size systems averaged
over 30 runs. The smooth curves are third-order polynomial in-

terpolations to the data measured at discrete values of k. The k
values are normalized by N/2m.

effective exponent n -0.3 in this range. Later, there is a
crossover to faster growth. This time range is displayed
in the last two panels. The domain boundaries have a
width of only a few lattice spacings which is not evident
from this type of picture. Note that the conservation law
appears to be obeyed limiting (y),„„, =0, the initial
average value of the order parameter. The shape of the
domains is irregular, but does not appear to be dictated
by the geometry of the underlying lattice. At time
~=425, we have, as we shall see, a domain size approxi-
mately equal to 18 averaged over all runs. As can be seen
from this figure no quantitative measure of domain size
can be obtained without further analysis. More quantita-
tive measures are obtained from the correlation func-
tions.

In Fig. 2 we show, at early times, the circularly aver-
aged correlation function C(k, r) which is proportional to
the experimentally measured light scattering intensity. '

The growth of order can clearly be seen. Note that the
peak grows higher with increasing time and that its loca-
tion moves toward smaller k. The peak position k „is a
measure of the characteristic length l(r) —I/O, „. One
more necessary check of our calculation can be made
from Fig. 2, namely, that the order parameter is con-
served as expected. C(k=0, r) is the sum of the order-

parameter correlations over the entire system. Since this
quantity was initially zero, it should be zero for all times.
At the longest times studied, as the peak position moves
toward k =0, C(k =O, r) remains less than 10, a quan-
tity numerically quite acceptable as zero in this calcula-
tion as compared to the height of the peak. This method
of analysis of l (r) in terms of k,„(r) is not convenient at
later times because of increasing uncertainties in deter-
mining the precise position of the maximum k,„(r),
which is difficult to interpolate since the maximum is
sharp and the lattice resolution is coarse. The results in
Fig. 2 are for a 30-run average on a X =100 lattice.

A more convenient measure of domain growth can be
obtained from the real-space correlation function. In
Fig. 3 we show the raw data for the circularly averaged
real-space correlation function (Cr, ) rThis correlat. ion
function was obtained by first Fourier transforming the
two-dimensional correlation function C(k, r) and then
performing the circular average. The plotted results
represent averages over 55 runs (K =100). Note that for
later times the system is becoming more ordered as the
peak C(r=O, r) becomes higher at later times and the
first zero occurs at larger distances; the spreading of the
distribution is an indication that the domains are growing
larger. Any measure of the width of this distribution in-
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creases at later times. We will choose the position ro(r),
of the first zero of C(r, r) as a measure of l(r) and will
later show that all lengths are evolving in the same
manner. Analyzing domain size in terms of ro(r) has
none of the finite resolution effects encountered at long
times in the analysis of the 1/k

Let us consider now the block correlation functions.
In Fig. 4 is plotted the raw data of RM(w) versus r for
several values of M. Order as measured by this quantify
is obviously increasing with time. Note that R~(r) is a
decreasing function of M as expected since the ordered
regions are at these times a small fraction of the larger
block sizes. In this scheme one calculates block correla-
tion functions for many block sizes, and so one can better
quantify the measure of the scaling regime as discussed
later. The results shown in this figure are for a 75 X 75
system. Values of R~(r) were calculated for all M in the
range 25 ~ M & 42, but for the sake of clarity, only every
third M value is shown in the figure.

Results for the structure factor were obtained both for
N =75 (100 runs) and N =100 (55 runs) systems. Com-
parison of these results show that finite-size effects begin
in the 75 X75 system at ~-350, which is why later times
are not shown in Fig. 4. It will be seen later that the
domain size at ~=350 is l (~)-(0.2) X 75. In our prelimi-
nary runs at smaller sizes, results for both block-
correlation f'unctions and two point-correlation functions
have consistently given evidence of a threshold for finite-
size effects at l(~)-0.2N. This is also the case for other
models. For %=100, this limit is reached at ~-500.
Thus we are confident that results such as those in Figs. 3
and 4 are free from finite-size problems.

We now begin the analysis of our data by presenting
the real-space current-current correlation function and
its Fourier transform which are shown in Figs. 5 and 6

7
FIG. 4. Block correlation function results for selected block

sizes are plotted vs time. Results are plotted for size N=75
averaged over 100 runs. Results were obtained for all M in the
range 25 ~M ~42, but the values shown are from, top to bot-
tom, M =27, 30, 33, 36, 39, and 42.

averaged over 55 runs (N =100) for several times. It is
evident from the plots that the current equilibrates much
faster than the domains order. The form of the equili-
brated currents is approximately uncorrelated as expect-
ed from the equipartition theorem. Thus in Fig. 5 the
real-space correlation function C„(r,r) is very nearly a
Kronecker 5, the strength of which is close to the equilib-
rium value C„„(r=O, r)=e but with a small width of
r =—2. The current correlations cannot quite reach equi-
librium due to the conservation of total momentum
which constrains C;;(k=O, r) to its initial value, equal to
0.01 with our initial conditions; however, for larger k
they very quickly reach a time-independent value as close
to equilibrium as this constraint allows. This is also
shown in k space in Fig. 6. We see that for a wide range
of k values, C(k, ~) is very close to being a constant in k
and ~ for all times, ~~ 10. There is however a slight de-
crease in C,, (k, r) with increasing k. This near agreement
with the expected form of the current correlations
in equilibrium may be somewhat surprising since
throughout this calculation the structure factor is far
from equilibrium. The currents reAect the temperature of
the heat bath represented by the noise correlation
strength.

We proceed now to the characterization of domain
growth, which must be studied in terms of the density
correlations. We have used two measures of the domain
size l(r). One measure is ro(r), the first zero of C(r, q.).
The other will be defined below in terms of the block
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correlations. It has been observed both experimentally
and numerically for a variety of systems and models that,
at sufficiently long times, the distribution functions which
measure the domain growth exhibit scaling behavior. In
that case it does not matter which measure of domain
size is taken. In this work we will show that our two
measures coincide even at relatively early times.

For the first measure we investigate the block correla-
tion functions RM(r). To extract a characteristic length
from these functions, we use the fact that in the scaling
regime we must have

L(r)R (r)=gM
—:g(y), (4.8)

L (r)R~(r) = L (r)
M

(4.9)

In Fig. 7 we have plotted the quantity RM (r)M versus
M at several times. We find that the quantity plotted is,

where the length L (r) is a measure of domain size. The
scaling function for systems with conserved order param-

27 — 3eter can be shown to be of the form g (y) =y for sma
y. We therefore have

3

within statistical error, independent of M. The Auctua-
tions are consistent with the statistical uncertainty of our
results. According to (4.8) and (4.9) this means that we
have found scaling behavior for R~(r) and that g (y) =y
in the time range plotted. Note that the behavior of g (y)
is different from that of Ref. 7, where a y correction was
evident. This particular scaling behavior implies that we
can define a characteristic length from the block correla-
tion functions as

L ( r) = (R M (r)M )M, (4.10)

where ( )~ indicates in this equation an average over re-
sults at each block size. This length will be compared
with ro as a further verification of scaling behavior.

In Fig. 8 we compgre our two measures of domain size.
Both L (r) and ro(r) are plotted versus time; all data were
obtained from the same 100 runs on an %=75 lattice.
For times r & 370, not only do the two measures of l (r)
exhibit the same time dependence, but also they numeri-
cally coincide. No adjusting scale factor has been used.
That two disparate measures of domain size should be re-
lated by a constant of proportionality is a test of scaling.
The fact that the constant of proportionality is unity is a
happenstance that we have yet to explain. We have
chosen to show in this figure the finite-size effects which
occur at this value of X for times ~) 370. In this range,
the plots for ro and L begin to diverge from each other.
Here the characteristic size of the domains is approxi-
mately 15 or larger. This equals or exceeds 20% of the
system size and, therefore, finite-size effects are
significantly influencing our results in different ways
causing these two measures to deviate from each other.

In the scaling regime, C(r, r) should be characterized
by a scaling function f (x),
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FIG. 7. Quantity R~ (r)M plotted as a function of M for
times ~=20 to 330. The time interval is 5~=10 up to ~=170
and 6~=20 thereafter, from bottom to top. In this range this
quantity is, within statistical uncertainty, independent of M.
The system size and number of runs are as in Fig. 4.

FIG. 8. A comparison as a function of time of the two
lengths I"o{~) (circles) and I (~) (squares) which we take as mea-
sures of the domain size l(~). The results plotted are averages
over the same 100 run for an X =75 system. The two lengths
are not only proportional to each other, but also identical up to
the onset of finite-size e6'ects (see text) at ~= 370.
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C(r, r)=f(r/ro(r))=f(x) . (4.1 1) 0.8

Thus in this regime C(vlro(r), r) should be a function
only of the quantity x =rlro(r) except at very small r,
where scaling never holds. To check this hypothesis, we
have plotted in Fig. 9, C(x, r) versus x for several times
using our results for 55 runs at the largest sizes (N = 100)
and the longest times (up to rM =470) that we have stud-
ied. We find that scaling for C(x, r) is obeyed for times
greater than ~=200.

In Fig. 10 we have made a comparison of the scaled
correlation function f (x) with the scaling function ob-
tained for model B in Ref. 10. One can clearly see that
the two scaling functions are different. However, we
have plotted also in this figure some of our data at earlier
times, before scaling is reached. This data turns out to
correspond reasonably well to the scaling function from
model B for larger r. The second zeros for both our early
time data and model B are the same and the first
minimum and second maximum are in fair agreement
both in location and in magnitude. At small r, our early-
time data fall short of the r =0 peak, which is an indica-
tion that the local value of the order parameter has not
yet reached its equilibrium value. For model B at early
times, there is a similar tendency for the peak at r =0 to
be lower than the peak is in the scaling regime.

We can also analyze the behavior of the domain size as
a function of time. It is obviously important to do that at
the longest time ranges reached. Expecting power-law
growth, we have plotted in Fig. 11 the size ro(r) versus
time on a log-log scale. For times up to 370, we have
plotted the properly weighted averages of our X =75 and

N =100 results, and for later times, only the 1V =100 re-
sults. We performed a least-squares fit to a power-law
form, l(r)= Ar", for late-time data 150 &r ~470. We
obtained a growth exponent n =0.69+0.02. This fit is
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FIG. 10. A comparison between the scaling function for
model B and the scaled correlation function C(r, ~) obtained for
the model studied here. The dashed line represents the late-
time scaling function for model B from Ref. 10. The symbols
are data from our calculations for times 80~~~470. The
earliest-time data pictured, ~=80 (squares) and ~= 100 (circles),
are in fairly good agreement with the scaling function for model
B, while the later-time results, which represent the scaling func-
tion shown in Fig. 9, are different (see text).

represented by a dashed line in Fig. 11. At much earlier
times, there seems to be a regime with exponent n =0.3,
consistent with model-B values. The influence of
currents is responsible for a crossover to a substantially
faster growth process. The existence of two regimes is in
good agreement with what is experimentally found for
real Auids, as explained in Sec. I.

It should be emphasized that this measured growth ex-
ponent cannot be conclusively taken to be the confirmed
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FICx. 9. Scaling function f(x) for C(r, r) obtained from the
same runs as in Fig. 3 as a function of x =r/ro(~). The times
plotted are 230~~~470 for intervals of 6~=40. For these
times, the curves are within statistical error the same: the scal-
ing function for the Auid model studied here.

FIG. 11. Plot of the domain size as measured by ro(~). The
squares are data obtained by taking the weighted average of 55
runs at N=100 and 100 runs at N =75. The circles are data
only from the N=100 system. The best power-law fit to the
data for ~ ~ 150 is also shown as the solid line. It corresponds to
an exponent of n =0.69+0.02. At earlier times, a regime with
an effective exponent n =0.3 (dashed line) is noted.
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asymptotic value since one might question whether we
have run our calculation long enough to confirm a
power-law behavior. It has been argued in Ref. 10 that
times at least of order —1000 (in our units) are required
in certain cases to attain the asymptotic region for model
B. We have not run our calculations to these time scales
but we have reached larger domain sizes than those in
Ref. 10. The fact that the exponent we find is larger
makes the present model much more difFicult to study,
since increased system sizes are needed. However, a cal-
culation of an effective n (r) exponent does not show any
clear tendency to increase with time at later times. An
increase of n to the value n = 1 found for three-
dimensional Auids seems to be unlikely from an analysis
of our data. The asymptotic value of n could be dimen-
sionally dependent. We belive that our results are
strong, although not conclusive evidence for an asymp-
totic value of n =0.7 for this model. In any event, our
data leave no doubt that the late-time exponent for this
model is not only considerably larger than that observed
for model B, but also larger than the value n =

—,
' reported

in Ref. 7 for a different fIuid model, thus showing that
heat transport is quite relevant in spinodal decomposi-
tion.

Thus we have shown in this calculation that the form
of the coupling of the order parameter to the current

makes a significant difference in the growth of domains in
SD. Diffusive dynamics promotes faster domain growth
than do oscillatory pressure fluctuations in the later
stages of growth.

The question of universality classes for quid systems
has been challenged here. Our results imply that not all
two-dimensional Auid models are in the same universality
class. Also, there is the possibility that continuous ad-
justments of the coupling parameter may lead to a con-
tinuous change in the growth behavior. We have only
checked one point in parameter space. Since g is clearly
relevant, other parameters might also be. Between g =0
and g = 1 there is a transition between the slower dynam
ics of model B and the faster dynamics measured here.
The exact nature of that transition will determine wheth-
er universality classes can be assigned to fIuid systems.
Very likely, at any finite g there is a crossover to a faster
value of n. The time of this crossover will clearly depend
on g, but we cannot tell whether the asymptotic value
also depends on g. Investigating these questions must be
left to future research.
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