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First-order phase transition in the fcc Heisenberg antiferromagnet
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The nature of the phase transition of the nearest-neighbor Heisenberg antiferromagnet on a fcc
lattice is studied by means of Monte Carlo simulations. Using a finite-size scaling, the transition is
shown to be unambiguously of first order. Evidence for a first-order transition in the corresponding
XYmodel is also presented.

Phase transitions of various antiferromagnets on a
face-centered cubic (fcc) lattice have attracted both ex-
perimental and theoretical interest. Examples are type I
antiferromagnet UOz (Ref. 1) and type II antiferromag-
nets MnO (Ref. 2), CeSe, and CeTe (Ref. 3): the type I
ordering is specified by the three [1,0,0] wave vectors,
while the type II ordering is characterized by the four
[—,', —,', —,'] wave vectors. Experimentally, UO2 and MnO
are known to undergo a first-order transition (Refs. 1 and
2, respectively). The first-order nature of the transition in
these materials was explained by Bak, Krinsky, and Mu-
kamel and by Brazovskii, Dzyaloshinskii, and Ku-
kharenko as a Auctuation-induced first-order transition
within the framework of the Ginzburg-Landau-Wilson
Hamiltonian combined with the e-expansion analysis.
On the other hand, Ott, Kjems, and Hulliger found by
neutron scattering that the transition of CeSe and CeTe is
continuous, in apparent contradiction with the @-

expansion prediction.
Extensive theoretical studies have also been made for

localized spin models on a fcc lattice. In particular, the
fcc antiferromagnetic Ising model with nearest-neighbor
(NN) interaction was studied in detail by several au-
thors. There appears a consensus among the authors
that the transition in the Ising case is of first order, the
associated spin ordering being type I. In the case of clas-
sical Heisenberg spins on a fcc lattice, it has been shown
that the ground-state degeneracy is infinite due to the
frustration just as in the case of the fully frustrated sim-
ple cubic lattice. ' However, the nature of the transition
in the fcc Heisenberg antiferromagnet remains less clear.
Fernandez et al. " performed Monte Carlo (MC) simula-
tions for the NN classical Heisenberg fcc antiferromagnet
and concluded that the transition is continuous, in con-
trast with the Ising case. On the other hand, Henley'
applied a spin-wave analysis to the same system and
found that the ordered-state spin configuration at finite
temperature is collinear with four-sublattice periodicity
(ordering of type I). This collinear configuration is select-
ed out of the ground-state infinite degeneracy by thermal
Auctuations, a mechanism which was called ordering by
disorder. ' Henley' then suggested that the associated

phase transition is of first order since the ordered state
has a threefold degeneracy (Z3) reminiscent of the three-
state Potts model.

In this paper, we study by systematic MC simulations
the NN classical Heisenberg fcc antiferromagnet with the
aim of determining the order of the phase transition in an
unambiguous manner. For this purpose, we consider a
three-component (n =3) classical Heisenberg model with
the Hamiltonian

H= —JgS; S. ,
E,J

where S; is a three-component spin of unit length, J is
negative, and the sum runs over all NN pairs. In the fol-
lowing, physical quantities are expressed in units of

~
J .

Extensive MC simulations have been carried out for
the lattice sizes N=4L with L=6, 8, 10, 12, and 16.
Periodic boundary conditions have been used. The MC
procedure is the multiAipping method proposed by
Creutz' in which several Aipping trials are attempted at
each spin under the same local field before moving to
another spin. The convergence to equilibrium is faster
than the standard single-spin Aipping for a given CPU
time. In each run, X, MC fiipping trial steps (MCS's) per
spin were discarded to equilibrium the system before
averaging physical quantities over Nz MCS/spin. In
some cases, we used X& =10 and 1V2=75X10, and in
general N& =N2 =25 X 10 were employed. The initial
spin configuration used in each run is the collinear or-
dered state of type I. We have also used the random ini-
tial states for comparison. We will return to this point
later. Various physical quantities have been calculated,
but the main results shown in the following are the inter-
nal energy per spin U and the specific heat per spin C cal-
culated from thermal fluctuations of U. In order to pin-
point the transition temperature T„a very small interval
of successive temperatures AT =0.0001 was used.

It has been suggested' ' that in a first-order transi-
tion, the maximum of the specific heat, C „,is propor-
tional to the system volume, i.e., L . However, to our
knowledge, except for the works by Challa et al. ' and
Binder and Landau, "there has not been another numeri-
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FIG. 1. Internal energy per spin U (open circles, left-hand side) and specific heat per spin C (solid circles, right-hand side) vs tem-
perature T near the transition point, in units of ~J~ = l and k~ (Boltzmann constant)= l, for various lattice sizes L: (a) L=6, (b)
L =8, (c) L =10, (d) L =12, and (e) L =16. Raw data obtained from several independent runs are shown together in each figure.
Note the difference in the scales in each figure.
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cal scaling study for a first-order transition. Indeed,
time-consuming calculations are required (long runs and
very small b, T) if one wishes to get an accurate finte-size
scaling. This work thus provides another example of
finite-size scaling for a first-order transition.

Figure 1 shows C and U as a function of temperature T
for various L. For some sizes, up to 64 temperatures near
T, have been studied. We have made several indepen-
dent runs with different sequences of random numbers to
check the stability of the results. No appreciable hys-
teresis has been observed through heating and cool-
ing procedures (for cooling, random initial spin
configurations were used). For larger sizes, C is impres-
sively 5-function-like and U is almost discontinuous.

The temperature T, corresponding to the maximum of
C is rather insensitive to the lattice size, as expected in
first-order transitions. One has T, =0.443+0.002
(L =6), 0.444+0.0020 (L =8), 0.446+0.001 (L =10),
0.047+0.001 (L =12), and 0.4470+0.0005 (L =16),
where the errors have been estimated from the dispersion
of T, obtained by independent runs.

In order to make a finite-size scaling analysis, we plot
ln(C, „) versus ln(L) in Fig. 2. The slope of the straight
line drawn by least-squares fit for L ~ 8 is 2.84, which is
not far from 3. Therefore, within statistical errors, our
results indicate that the transition is of first order.

We have estimated the latent heat per spin AU by plot-
ting the jumps of U at the transition as a function of L for
L = 10, 12, 16, and 20 (the last size has been used for this
purpose): they are 0.055, 0.06, 0.071, and 0.074 for these
sizes, respectively. A straightforward extrapolation to
L = ~ yields AU=0. 08. Note that when we fitted our
data with Eq. (23) of Ref. 15, where L" is replaced by
4L, the resulting hU is about 0.042, which is smaller
than the extrapolated value. The discrepancy between
the two methods in estimating 6 U may be due to two fac-
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FIG. 3. Sublattice magnetization m, vs T for L =10, 12, and
16 (filled circles, open circles, and crosses, respectively). m, was
averaged over the four sublattices as m, =[+;& ~m;~ ) ]/4,
where m; is the sublattice magnetization per spin for the sublat-
tice i (i =1—4) and ( ) denotes a thermal average.

tors: the uncertainty in reading the jumps of U which,
strictly speaking, are continuous, and the approximation
used to derive Eq. (23) of Ref. 15.

Another interesting question is the nature of the order-
ing below T, . Is it the. collinear type I as predicted by
Henley?' To answer this question, we have examined
the associated sublattice magnetizations, and the results
for L = 10, 12, and 16 are displayed in Fig. 3. Indeed, the
spin ordering realized below T, is found to be that of col-
linear type I. We note that if a random initial spin
configuration is used, the same type I ordering is ob-
served just below T„but the stacking faults set in at
lower temperatures (T &0.4), at least with our present
simulation time, causing smaller sublattice magnetiza-
tions as compared to the case of ordered initial condition.
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FIG. 2. Log-log plot of specific heat maximum C „vs L.
The slope of the solid straight line, obtained from a least-
squares fit for L )8, is 2.84.

FIG. 4. XY case: internal energy per spin U (open circles,
left-hand side) and sublattice magnetization m, (solid circles,
right-hand side) vs temperature T for L = 12.
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On the other hand, the use of random initial spin
configurations does not change the behavior of sublattice
magnetizations near the transition point (T &0.40). The
stacking faults are probably caused by the infinite
ground-state degeneracy resulting from the frustration, as
discussed earlier.

The first-order character of the transition found in this
work, while in agreement with theoretical predic-
tions, ' ' is in contradiction with early MC results by
Fernandez et al. " Their conclusion of a continuous
transition may be due to rather small lattice sizes (up to
I.=8), large AT, and rather short runs, which altogether
prevented a detailed data analysis.

In the experimental connection, the collinear spin
configuration of type I observed in our simulations sug-
gests that the NN Heisenberg model may be appropriate
for UO2 among several materials mentioned above.
Thus, experimental observation' of a first-order transition
in UO2 is consistent with our result.

As a concluding remark, let us touch upon the corre-
sponding XY (plane rotator) model. We have also made a
Monte Carlo simulation for the nearest-neighbor XYanti-
ferromagnet on a fcc lattice. The collinear type I order-
ing is observed at low temperatures, accompanied with
an "almost discontinuous" gap in the internal energy as
in the case of Heisenberg model (see Fig. 4). Although
we did not attempt a systematic finite-size scaling for the
XY case, it appears to be clear that the transition is of
first order due to the strong similarities between the
Heisenberg and XY cases found in the Monte Carlo data
as well as the ordered-state degeneracy discussed above.
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