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Nonequilibrium lattice models in which particles are produced autocatalytically, and annihilated
spontaneously, are studied via simulations, series expansions, and mean-field theory. There is a con-
tinuous transition to an absorbing state as the creation rate is reduced below a critical value. The
results demonstrate universality of critical behavior under variations in reaction scheme. Models
with binary and triplet annihilation processes are also considered. In the latter case, competition
between diffusion and annihilation yields a surprising new phase at low creation rates. For
sufficiently rapid diffusion there is a nonabsorbing steady state for any nonzero creation reate.

I. INTRODUCTION

Consider a many-particle system in a macroscopically
steady nonequilibrium state. As certain “control parame-
ters” (e.g., the values of the imposed temperature or den-
sity gradients, chemical feed rates, etc.) are varied, such a
system may exhibit a nonequilibrium phase transition
(NEPT). In analogy with equilibrium thermodynamics, a
NEPT denotes a singular dependence of steady-state
properties upon the control parameters, marking a transi-
tion between distinct regimes of operation. NEPT’s are
often associated with the appearance of new levels of or-
ganization (e.g., rolls at the onset of convection or oscilla-
tions and waves in chemical reactions) and so are current-
ly of great interest in physics and biology."”?> Continuous
NEPT’s or nonequilibrium critical points NECP’s) exhib-
it many features associated with equilibrium critical phe-
nomena: long-range correlations, a well-defined order pa-
rameter, and singularities characterized by critical ex-
ponents. NECP’s are of interest in condensed-matter
physics, since they form a new and largely unexplored
domain for critical phenomena. A number of models are
presently being studied in efforts to understand specific
NECP’s. Examples are surface-reaction models>* which
describe the poisoning of a catalyst and the driven lattice
gas pertinent to ionic conductors.’

The present work is motivated by the question of
universality in NECP’s. While the factors influencing
nonequilibrium critical behavior are in general not well
understood, this issue has been examined recently for a
class of stochastic models in which particles are created
autocatalytically and spontaneously disappear. The criti-
cal point in such models marks a transition to an adsorb-
ing state, devoid of particles. A simple example is
Schlogl’s “first model”® which describes an autocatalytic
system in which particles (X) participate in the reactions
X—0, X—2X, and 2X—X at specified rates. For
sufficiently large creation rates, it is possible to maintain
an active steady state (i.e., with a nonzero population of
particles); as the creation rate 7 is decreased there is a
continuous transition to the absorbing state, with the or-
der parameter (the particle density p), decaying asymp-
totically as p < (n—mn,)P.

In Schlogl’s original formulation—a mean-field theory
(MFT) without spatial dependence—the exponent 3 is 1
for all dimensions d. When the model is given spatial
structure, either on a lattice or in continuous space (with
reactions proceeding locally) the critical exponents as-
sume non-mean-field values, which depend on d. Early
investigations, pioneered by Grassberger and de la Torre’
and Janssen® were spurred by a correspondence between
the chemical kinetic model and Reggeon field theory
(RFT).° It transpired that the critical behavior of
Schlogl-RFT-type models (in d spatial dimensions) is the
same as for directed percolation'® (in d+1 dimensions,
with the oriented dimension corresponding to time in the
Schlogl-RFT models). This type of critical behavior
(which will be called RFT in the following) is by now
rather well understood: The upper critical dimension is
d.=4, and critical exponents have been estimated to
good precision. In particular, for d=1 the order-
parameter critical exponent is $=0.277+0.001.>!!

Early studies’ revealed a degree of robustness for RFT
critical behavior, showing that critical exponents are not
altered by variations in the relative probabilities of single-
and double-particle production, on a lattice where sites
may be at most doubly occupied. Schlogl’s second model®
(i.e., the reactions 2X =3X, X=0, at given rates) was ex-
pected (on the basis of simple mean-field theory) to exhib-
it a discontinuous transition over a range of parameter
values. Simulations'? instead revealed a RFT critical
point, leading Grassberger to conjecture that all single-
component models with a unique absorbing state belong
to the RFT universality class. This assertion is supported
by field-theoretic arguments®!>!3 which predict that a
continuous transition to an absorbing state will be of the
RFT type, unless the (renormalized) rate for the reaction
2X —X (i.e., the most relevant term in the dynamics) is
zero. RFT, therefore, appears to be analogous to the Is-
ing model ¢* field theory in equilibrium as the generic
critical behavior associated with a scalar order parame-
ter.

Of course, the field-theoretic prediction of universality
ought to be tested for specific models: One would like to
verify the robustness of RFT critical behavior for a wider
range of kinetic rules than has been explored until now.
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One would also like to know the minimal modifications
required to produce non-RFT behavior. The results to be
presented in this paper support the universality of RFT
in a wide range of models. On the other hand, simula-
tions of a model with diffusion and cluster annihilation
reveal a new and surprising phase diagram. In the fol-
lowing section, I present simulation- and series-analysis
results for several nondiffusive models, typified by the
contact process. Diffusive models are considered in Sec.
II1, which is followed by a summary in Sec. I'V.

II. THE CONTACT PROCESS AND RELATED MODELS

The systems considered in this work are stochastic lat-
tice models or interaction particle systems'* characterized
by a set of occupation variables o, (i €Z4, 0;=0, 1 for
site i vacant or occupied, respectively). The models
evolve via creation and annihilation of particles, subject
to local, irreversible Markovian rules which admit a sin-
gle absorbing state (an empty lattice). Perhaps the sim-
plest such model is the contact process15 (CP), which was
introduced as a model for an epidemic, and may be re-
garded as a realization of Schlogl’s first model on a lat-
tice. In the CP each particle generates new particles at
rate 7. They appear randomly at any of the vacant
nearest neighbors of the parent particle, so that the
creation rate at a vacant site is nm1/2d, where n is the
number of occupied nearest neighbors. Particles disap-
pear at unit rate, independent of the states of other sites.
The CP has an active steady state for each d =1, for
n>n.(d)."*!® Numerical work (simulations and series
analysis) indicates that the transition is continuous. The
series expansions”!! (in one dimension) yield 7, =3.299
and 3==0.277, the latter reflecting RFT critical behavior.

I have studied several variants of the contact process.
The A model, introduced'® as a simplified model for
poisoning of a catalytic surface,’ differs from the CP sole-
ly in that the creation rate at site I is 1, provided at least
one neighbor of i is occupied. A second variation, called
N3, has a creation rate of 7 (n/4) for sites with two (one)
occupied neighbors. These models may be considered in
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a unified fashion if we introduce a parameter §, so that
the creation rate at a (vacant) site with two (one) occu-
pied neighbors is 7 ({n). Then the A4, CP, and N3 mod-
els correspond to =1, 1, and %, respectively. A mean-
field treatment at the pair level (following the approach
employed in Ref. 4) yields a steady-state density
p<(n—n,) for n>n.=¢"Y, ie., there is a continuous
transition to the absorbing state for all {>0, and
Bmrer=1. While mean-field theories may provide a quali-
tatively correct phase diagram,*!” they are clearly inade-
quate for a detailed description of critical behavior, and
more quantitative methods must be sought. Series expan-
sions for the steady-state occupation fraction in the one-
dimensional CP, A4, and N3 models have recently been
derived via time-independent perturbation theory.!!:!®
These rather long series [to 16th order in v=1/(1+7)]
yield S values which clearly place the models in the RFT
universality class (see Table I). It seems very reasonable
to expect the same critical behavior for all § in the inter-
val [1,1]. Given the mean-field result noted above, one
might conjecture that there is a RFT-type transition for
all£>0.

An important feature of some catalytic surface reac-
tions® is pairwise adsorption, and so the relevance of such
a kinetic rule to critical behavior is of particular interest.
Since the order parameter for the surface reaction model
is the vacancy density, pairwise adsorption corresponds
to pairwise destruction of particles in a model like the CP.
The binary annihilation or A2 model features pairwise
annihilation (at unit rate) of particles occupying neigh-
boring sites and creation as the CP. The presently avail-
able (eight term) series for the binary annihilation model
is too short to permit a reliable estimation of 8.!! We,
therefore, turn to Monte Carlo simulations.

Simulations of the 42 and N3 models in one dimension
have been used to estimate the steady-state occupation
fraction p, following a procedure similar to that em-
ployed for the A4 model.!® A step in the simulation algo-
rithm consists of (1) choosing the process [creation with
probability 7/(1+m), annihilation with probability
1/(1+7)]; (2) choosing a site i at random; (3) performing

TABLE I. Summary of reaction rules and critical parameters for the models considered in this work.
Occupied and vacant sites are denoted by solid and open circles, respectively. Creation rates are for the
central site of the triplet. The annihilation process is shown in parentheses.

Creation rate

" Model [ _Je¥e) ( JoI J Annihilation R B
CP 1/2 7 1 (@—0) 3.299%° 0.277(1)>®
A 7 1 1 (@—0) 1.742° 0.277(1)°
N3 n/4 1(0—0) 6.169° 0.278(1)®
A2 (same as CP) 1 (@®—00) 5.370(1) 0.27(2)
D3 CP rates with %(ﬂQ—»ooo)

(1—D)y
1+7
D=0.0: 6.72(1) 0.28(2)
D=0.1: 4.728(7) 0.30(2)
D=0.5: 0.718(1) 0.28(2)

*Reference 9.
"Reference 10.
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FIG. 1. Scaling plot for the steady-state density p vs reduced
creation rate 7=(n—mn.)/n.. The lines are least-squares fits
and are labeled to indicate the model and the slope; D3 model
plots are identified by D values. For D=0.5, only the last six
data points have been fit.

the process at site i, if it is permitted by the kinetic rules.
Periodic lattices of 10000 and 20000 sites were em-
ployed, with run times of up to 10° trials per site, close to
the critical point. The results for g are plotted versus the
scaled creation rate 7=(n—n.)/n. in Fig. 1. A least-
squares analysis yields S=0.2710.02 for the 42 model in
one dimension, consistent with RFT behavior. The ki-
netic rules, series expansion, and simulation results for
the CP, A, N3, and A2 models are summarized in Table
I. There is strong evidence for universality of critical be-
havior among these models. Together with earlier
findings”!? these results indicate that the critical behav-
ior is unaffected by a wide range of modifications of the
kinetic rules.

III. COMPETING DIFFUSION AND ANNIHILATION

Given the results described in the previous section, it
seems reasonable to expect RFT critical behavior in a
wide variety of systems having both a scalar order param-
eter and a continuous transition to an absorbing state. It
will be noted that the models considered above have no
explicit diffusion process. However, field-theoretic analy-
ses®!® and simulations”!? of diffusive Schldgl models also
yield RFT behavior. There is no reason to expect that in-
corporation of diffusion would alter the critical exponents
of the models studied in Sec. II. In fact, it is readily seen
that a coarse-grained description of the nondiffusive lat-
tice models will include a diffusive term, i.e., < Vzp.
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Even without coarse graining, an effective hopping pro-
cess is present in the CP and its variants, e.g., through
the sequence: @0 - @@®— O® (@ and O denoting occu-
pied and vacant sites, respectively). Thus the models are
inherently diffusive, even if the bare hopping rate is zero.

Instead of devising further complications of the kinetic
rules, it seems more profitable to consider a new aspect of
reaction-diffusion models: competition between diffusion
and multiparticle annihilation. Such competition is real-
ized in the triplet annihilation or D3 model, which in-
cludes the processes of diffusion, autocatalytic creation,
and cluster annihilation. A fraction D of the attempted
moves is nearest-neighbor hopping, in which a site i is
chosen at random and o; and o;,, are interchanged.
Creation proceeds as in the CP [at rate (1—D)n/(1+7)
rather than 7], and there is mutual annihilation in clus-
ters of three at rate (1—D)/(1+n). Three consecutive
sites must be occupied for annihilation to occur; they are
vacated simultaneously. Evidently, diffusion inhibits an-
nihilation by dispersing clusters.

Simulations of the D3 model (in one dimension) were
used to determine the steady-state occupation fraction,
following the procedure outlined above. Lattices of
10000 and 20000 sites were again employed. Simula-
tions at D =0 reveal a continuous transition at 7, =6.72,
with $=0.28 (see Fig. 1). As D is increased from zero,
the critical point shifts to smaller values of 7, as expect-
ed, since diffusion tends to suppress annihilation and
enhance creation by breaking up clusters. The occupa-
tion fraction p(7) is shown for several values of D in Fig.
2. Remarkably, above a critical diffusion rate, D * =0.58,
1. is zero, so that an active steady state is possible for any
creation rate. For D <D*, an active steady state is possi-
ble for n>7,, and again for n<7n_; for n_<n<n,
only p=0 is possible. The critical line consists of two
branches, 7, and 7_, which meet at (y*,D*), as shown
in Fig. 3. Such a reentrant phase diagram has not been
found previously in reaction-diffusion systems.

It should be emphasized that the small —%, D <D*
phase is not merely an artifact of slow relaxation. States
in this regime have been maintained for runs of 10° trials
per site (i.e., 10—20 apparent relaxation times) and exhib-
it reproducible properties which vary smoothly with 7
and D. It appears likely that the critical line 7_ extends
all the way to D =0; for n=0.0001, D, =0.08, and an ac-
tive steady state is presumably viable at even smaller D
values for smaller creation rates. Typical configurations
observed in the neighborhood of 7, are quite different
from those for =0. In the former case, particles are
strongly clustered in dense colonies, separated by ex-
panses of empty sites; in the latter case, particles are
more uniformly distributed, and colonies are sparse. The
contrast illustrates alternative survival strategies for par-
ticles which catalyze their own destruction. When
m>m,, creation simply outpaces annihilation; for
mn <m_, the particles evade destruction by dispersing soon
after they appear. The latter strategy is viable so long as
diffusion is fast, relative to creation. Viewed in the con-
text of population dynamics, the approach to n_ is para-
doxical: The ‘“‘species” can maintain a larger steady-state
population (and reduce the likelihood of extinction) by
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restraining its reproduction rate.

The critical lines in the 7-D plane are ., n_, and
7n=0. Simulation results for the large-n phase yield 3
values of about 0.28 (see Fig. 1), indicating that 1, is a
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FIG. 2. Steady-state density p vs 7 in the triplet annihilation
(D3) model for several values of the diffusion rate D. (b) Detail
of the small-n regime. The inset illustrates scaling of the densi-
ty as 7—0; the slope of the straight line is —;- Points for
D=0.75 and 0.6 are shifted upward by 1 and 2 units, respective-

ly, for clarity.
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line of RFT-type critical points. For D=0.5 there is evi-
dence of crossover from a higher apparent f3, toward the
RFT value, as the transition is approached. As 7—0 one
observes the scaling behavior p«n'!/?, consistent with
mean-field theory (see below), as shown in the inset of
Fig. 2(b). Finally, the critical behavior for n—n_ is as
yet unclear. The presently available data (limited to
D=0.55), indicate that the transition is continuous, and
yield f=0.5£0.2. Thus the =0 critical line is of a
mean-field character, while 1_ appears to have nontrivial
exponents, which may not be of the RFT class. More de-
tailed studies of critical behavior are in progress.

The phase behavior of the D3 model is outside the usu-
al field-theoretic RG description of nonequilibrium criti-
cal behavior, in which the diffusion rate merely sets the
scale for the temperaturelike variable.!>!> A qualitative-
ly correct phase diagram is, however, predicted by MFT
at the pair level.*!7 The equations for the site and
nearest-neighbor pair occupation fractions (p and z, re-
spectively) are

201 =
p:,—i(p_z)~_3w_) (1)
and
Z.___ﬁ(p—z)(l—z)__2(1—7'7')22(p+z)
l—p p2
= 2
2D(p—z)(p°—z) ’ 2)
p(1—p)

where a factor (1—D) has been absorbed into a rescaled
time variable, 7=%/(1+7),and D=D /(1—D). The ac-
tive steady-state solution is

7(2—x)+6D 3

P Hx—1)+6xD

1
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FIG. 3. Phase diagram for the triplet annihilation (D3) mod-
el. Points mark limiting parameter values (from simulations)
below which there is no active steady state; the broken lines
serve to guide the eye. The solid line is the phase boundary as
predicted by pair MFT.
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and Zz=p/), where
x=+1+V1+(12/9)] .

(This solution is locally stable.) The density scales as
p<n'/? for n—0 and vanishes linearly as 7 approaches
the critical values

1, =3[1—6D+(1—12D —44D ?)'?]1/10 @)

[the rhs of Eq. (3) is negative when n_<n<%,). For
D >D*=0.06272, the active steady state persists for all
7. In the limit D — 1, the steady-state solution takes the
simple form p=yx!; this is in rather good agreement
with the simulation, for 7 <0.05 [see Fig. 2(b)]. As might
be expected, MFT fails quantitatively (poor prediction for
the critical line, incorrect 3) away from n=0.

The agreement between MFT and simulation as p—0
reflects suppression of correlations as the diffusion rate
becomes large relative to other reaction rates. Indeed,
for an Ising model with competing dynamics (spin flips at
finite temperature, spin exchange or diffusion at infinite
temperature) the validity of the (mean-field-like)
reaction-diffusion description has been established
rigorously, in the limit of an infinite diffusion rate.!® As
in the D3 model, the phase diagram of the Ising model
with competing dynamics exhibits a dramatic change at a
finite diffusion rate; in this case; the ferromagnetic transi-
tion (in zero field) becomes first order above a critical
value of D.!""1°

It is natural to ask if the three-particle annihilation
rule is essential for the behavior observed in the triplet
annihilation model, or whether simpler systems (e.g.,
diffusive versions of the CP or the binary annihilation 42
model) could exhibit a similar phase diagram. One
should not expect the phase diagram of the contact pro-
cess to change qualitatively under diffusion, since annihi-
lation is not cooperative in this model. This conclusion is
supported by pair MFT, which predicts (for a one-
dimensional CP with hopping constituting a fraction D of
all moves) that 7, decreases smoothly from 2 to 1 as D in-
creases from O to 1. The diffusive 42 model presents a
more delicate question, since diffusion (in one and two di-
mensions) is effective in creating as well as destroying
pairs. Pair MFT predicts 1,=2(1—3D)/(1+3D) for
D <4, and ,=0 for D > 1, for this model in one dimen-
sion. Thus the critical line may terminate (at n=0) for
sufficiently rapid diffusion, but we should not expect a
distinct low-7 phase.

Finally, it is of interest to examine the effect of
diffusion on Schlogl’s second model. A simple one-
dimensional lattice version of the model (the S2 model)
consists of the processes (1) nearest-neighbor hopping at
rate D; (2) spontaneous (single-particle) annihilation at
rate (1—D)/(1+7); and (3) creation by a pair of particles
at neighboring sites, at rate (1—D)n/(1+7), of a new
particle, which appears at either of the sites adjacent to
the pair (if this site is vacant). The essential difference be-
tween this model and the ones studied thus far is that fwo
adjacent particles are required to produce a third. So in
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this case diffusion competes with creation rather than an-
nihilation. In the simplest (site) mean-field approxima-
tion, the steady-state density jumps from zero for n <4 to
(1+V'1—4/%)/2 for n>4. However, mean-field theory
at the pair level predicts (for D =0) a continuous transi-
tion at n,=4. The key point is that in this approxima-
tion, as —17,., the pair fraction Z <5, not 5 * as assumed
in the site approximation. (Recall that simulations'? of
Schlogl’s second model also reveal a continuous transi-
tion). Now for sufficiently rapid diffusion we expect
zZXp 2. i.e., diffusion can induce a discontinuous transi-
tion, as in the Ising model with competing dynamics.
Such in fact is the prediction of pair mean-field theory:
The transition becomes discontinuous when D >0.198.
A test of this prediction via simulations of the S2 model
is planned for the near future.

IV. SUMMARY

The series expansion and simulation results reported
above indicate a high degree of universality in nonequili-
brium critical behavior. The scope of the present work is
limited in several respects: All of the models are one-
dimensional, and the conclusions are based on results for
the static order-parameter exponent 3. More definitive
conclusions on universality will require studies of higher-
dimensional models, and other aspects of both static and
time-dependent critical behavior. Nevertheless, the re-
sults of the present work and of earlier studies”®!%13 ar-
gue strongly in support of Grassberger’s conjecture that
RFT is generic for single-component systems with a
unique absorbing state.

In this work, the effects of competition between
diffusion and multiparticle annihilation are explored for
the first time, revealing a new kind of nonequilibrium
phase diagram. For a sufficiently large diffusion rate
(D >D*) an active steady state is viable at any creation
rate. A further surprise is the appearance, for
0<D <D*, of a distinct active steady state at very low
creation rates. This phase is bounded (at n=0) by a
mean-field critical line, and by a critical line (7 _) whose
nature has yet to be determined. The phase diagrams of
several other diffusive models are also discussed, in the
context of mean-field theory. In particular, it is argued
that for sufficiently high diffusion rates the transition in
Schlogl’s second model becomes discontinous. The effect
of rapid - diffusion on nonequilibrium phase behavior
promises to be an exciting area of future investigation.
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