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Propagator for the wetting transition in 1+1 dimensions
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The partition function or propagator Z (y2, y &,'x2 —x &) of a solid-on-solid interface with fixed end-
points (y„x, ), (y2, x2), Auctuating in the half-plane y & 0 with an attractive contact force at y =0, is
evaluated in terms of elementary functions. Finite-size-scaling properties are discussed. Expressed
in terms of rescaled position variables g~ 'y,

g~~
'x, the propagator appears to be a universal quantity.

The scaling function for energy-energy correlations obtained by Ko and Abraham for the wetting
transition in the two-dimensional Ising model is derived from the propagator. An analogous scaling
function for spin-spin correlations is given. The shape of a droplet adjacent to the wall is studied as
the temperature is lowered through the wetting temperature.

I. INTRODUCTION fixed endpoints (y„x, ), (yz, x2) by the path integral

The wetting transition in the two-dimensional Ising
model with a short-range interface-pinning force at the
boundary was first studied in detail by Abraham. ' He
and many other authors have pointed out that solid-
on-solid (SOS) models exhibit depinning transitions with
the same general characteristics as the wetting transition
in the Ising model. The characteristic lengths gt, g~~

of in-
terface fiuctuations diverge as (T~ T) ', (—T~ —T)
respectively, as the wetting temperature T~ is ap-
proached from below, and the second temperature
derivative of the interface free energy is discontinuous at
T~. Vallade and Lajzerowicz and Abraham and Huse'
have found that exact results for the magnetization of the
semi-infinite Ising model with various boundary condi-
tions are also reproduced by SOS interface or droplet
models.

In Sec. II of this paper a closed expression is given for
the partition function or propagator Z(y2, yt, xz —x, ) of
a continuum SOS interface with fixed end points (y „x,),
(y2, x2), fiuctuating in the half-plane y )0 and subject to
a contact pinning force at y =0. Recently Privman and
Svrakic" discussed the finite-size scaling properties of a
lattice SOS model of wetting with displacement variables
restricted to integer values y; =1,2, . . . , 1V in the limit of
a large transverse dimension 1V. Information on finite-
size behavior in the complementary limit of a large longi-
tudinal distance x2 —x& follows from the explicit expres-
sion for the propagator given below.

Expressed in terms of scaled position variables
y /gt x /g~~ the propagator no longer depends explicitly
on microscopic quantities and is presumably universal. It
is shown in Sec. III that the SOS propagator implies the
same scaling function for energy-energy correlations as
obtained by Ko and Abraham' for the two-dimensional
Ising model of wetting. An analogous scaling function
for spin-spin correlations is derived. Finally in Sec. IV
the shape of a droplet adjacent to the wall is determined
as a function of temperature from the SOS propagator.

II. THE SOS PROPAGATOR

Following Vallade and Lajzerowicz, we define the par-
tition function or propagator of an SOS interface with

Z(y2&yl&x2 xl )

= f hy exp . —f '
dx —,'K

2

+ V(y)

Here E is a stifFness parameter, and V(y) is the potential
energy associated with the pinning potential and the hard
wall.

As in the path-integral formulation of quantum
mechanics, ' Eq. (l) implies the Schrodinger equation

a 1 8+ V(yz) — Z(yz, y„'x)=0 . (2)
Bx 2K ()y22

The solution to Eq. (2) can be expressed as

Z (y2, y „'x)=g P (y2)g'(y, )e (3)

in terms of a complete orthonormal set of solutions g (y)
to the time-independent Schrodinger equation

(4)

Here the initial condition

XZ(yi~yolxt xo) .

With the square-well hard-wall potential

oo, y (0
V(y)= —Uo/kT, 0&y &a

0, y)a,
Eq. (4) has both bound and scattering solutions2 9 at

has been imposed. Equation (3) implies the useful rela-
tion

Z(y2 yo'x2 xo)= f dy& Z(yz yt'x2 xi)
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suSciently low temperatures. On increasing T the last
bound state vanishes into the continuum at the wetting
temperature T~. As noted by de Gennes' in the context
of polymer adsorption, an important quantity for T near
T~ is the logarithmic derivative of the ground-state wave
function

8 1 Z (y2, y, ;x)=0,
()x 2K Qy2

8 lnZ (O,y „x) = —2. ,
By 2

(9)

8 info(a) —:—r= —c ( T)4 &),— (8)
1 a'

E — —,g (y)=0,
Qy

(10)which changes sign at Tz. Near the wetting transition
the ground-state wave function extends much further
from the wall than the distance a. Since we are interested
in large-distance behavior, we take the limit a —+0 corre-
sponding to a contact potential and replace Eqs. (2) and
(4) by

in) (0)= —r .
By

The set of equations (9) is well known in surface
magnetism' ' and in polymer adsorption. ' ' The solu-
tion to Eqs. (5) and (9) has the expansion

—&y, +y, )+~x/2K ~ dp p'x/2K iy'y2 y) — 'p+r (p'yz+y) '+ e e + e
2'7T EP

E
2x

in terms of bound and scattering solutions to Eq. (10). Performing the p integration' gives
1/2 1/2—K(y& —y) ) /2x —K(y&+y) ) /2x Hx/2K —r(y&+y()Z y2, y, ;x = y2+yi

27T'x 2E

' 1/2

Here

erfc(z) = —f e ' dt
~Fr

(13)

is the complementary error function. '

Two special cases are of interest. In the limits ~~ —~
and r—+0, corresponding to T ))T)4, (pure hard-wall po-
tential) and T = T)4, respectively, Eq. (12) becomes

j. /2

Z(y2, y„x)= 2 I
—K(y —y ) /2x

—K(y&+y) ) /2x+e (14)

respectively. These superpositions of object and image
solutions to the diffusion equation satisfy Dirichlet and
Neumann boundary conditions at y2=0, respectively.
The two expressions (14) were obtained as fixed points of
an exact renormalization group by Huse.

(15)

(12)
I

for ~) 0 and ~ & 0, respectively. By taking the limit a ~0
of a contact potential, we have eliminated a microscopic
length and obtained exact scaling for all ~,x,y„y2. For
pinning potentials with a nonzero range a, Eq. (17) is also
expected to hold in the scaling limit T~T~ and

y, x —+ oo with y/gi, x/g(( fixed. Expressed in terms of the
rescaled position variables, the propagator of Eq. (17) ap-
pears to be a universal quantity. Some indirect evidence
for the universality is given in Secs. III and IV, where ex-
act results for the Ising model of wetting are derived
from the SOS propagator.

The finite-size-scaling properties" ' of an interface
with length x follow directly from Eq. (12). For finite x
the partition function is an analytic function of the tem-
perature ~, i.e., an interface of finite length does not have
a sharp wetting transition. The nonanalyticity at &=0
arises in the limit x —+ ~ since the argument of the error
function in Eq. (12) tends to + co for x&0 and —oo for
~)0. Utilizing asymptotic properties of the error func-
tion, one obtains

appear. From the initial condition (5) it follows that
Z(y2, yi, x) has the dimensions of an inverse length. The
dimensionless quantity giZ(y2, y„x) only depends on the
scaling variables

Y=(y2 —y, )/gi, Y=(y2+y, )/gi, X =x/g(( (16)

and is given by

f (r)= lim x 'lnZ(y2, y„x)

0, 7(0
2

2Z

(18)

(y y x ) (
—Y /4X+ —Y /4X)1

2&~X

+e erfc —+&X
2V'X (17)

for the interface free energy. Equation (18) implies the
well-known discontinuity of r) f /dT at the wetting tran-
sition.

The probability P(y)dy that an infinitely long SOS in-
terface crosses the line x =const with y coordinate be-
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tween y and y +dy is determined by

Z(y„y;x, —x)Z(y, y0;x —x0)
P (y) = lim

Z(y1,y0,'x1 x0)
Q) —woo

(19)

The normalization f 0" P(y)dy =1 is implied by Eq. (6).
Substituting from Eq. (12), one finds that P(y)=2'
for ~) 0 or T & T~. Thus, as pointed out in Refs. 1 —9,
the average y coordinate of the interface (y ) =

—,
'

g1
=(2&) ' diverges as (T14, T) ' —as the wetting tempera-
ture is approached from below.

III. CORRELATION FUNCTIONS

One may compute correlation functions for the Ising
model in the SOS approximation by assigning values
+m * to spins located above and below the SOS interface,
respectively. The product of a pair of neighboring spins
has the constant value m* unless the SOS interface
passes between the two spins. The interfacial contribu-
tion (e(yz, xz)e(y1, x1)), to the energy-energy correla-
tion function of the Ising model of wetting, considered by
Ko and Abraham, ' corresponds, apart from a propor-
tionality constant, to the probability

P(yz, y, ;xz —x, )= lim
x ~ oo0
x3 —+ oo

(y3 yz x3 xz)Z(yz yl x2 x1 ) (y1 y0 x1 x0)
Z(y3 y0'x3 x0)

(20)

+2e erfc ——3/X
23/X

(21)

for ~)0. This is the same as the result of Ko and Abra-
ham' for the Ising model of wetting in the scaling re-
gime below the wetting temperature. The quantity
P(yz, y1, xz —x1) vanishes for r(0, as expected for an
unbound interface.

That the SOS scaling function in Eq. (21) coincides
with the exact Ising result is consistent with the conjec-
tured universality of the SOS propagator (17). Analogous
scaling functions that correspond to the spin-spin correla-
tion function and magnetization profile of the Ising mod-
el of wetting will now be derived.

Since spins above and below the SOS contour are as-
signed the values +m *, the interfacial contribution to the
spin-spin correlation function of the Ising model corre-
sponds, apart from a proportionality constant, to the
quantity

Q (yz, y, ;xz —x, )

= f dyz f dy1 sgn(yz yz)

X sgn(y1 —y1 )P (y z,y1, xz —x1 )

(22)
in the SOS model. An explicit expression for
Q(yz, y1,xz —x, ) in the scaling regime may be obtained
by substitution of Eq. (21) into Eq. (22).

that an infinitely long SOS interface passes through the
points (y „x,) and (yz, xz ). From Eq. (6) one sees that

dyz f dy1P(yz y1'xz x1)=1 .
0 0

Substituting Eq. (17) into Eq. (20) yields

$1P(yz, y„xz —x, ) =(1rX)

X —
Y(

—Y /4X+e —Y /4X)

space y )0 with fixed boundary spins on the line y =0
directed down in the interval ~x~ (L/2 and directed up
for ~x~ )L/2. These boundary conditions produce a
droplet of negative spins adjacent to the wall with a fixed
base length L.

In the SOS approximation the probability PI (y, x)dy
that the edge of the droplet passes between the points
(y, x) and (y +dy, x) is determined by the quantity

Z (O,y; L /2 x)Z (y, 0;L /—2+x )

Z(0, 0;L) (23)

The magnetization at point (y, x) is proportional to the
quantity

ML(y, x)= f dy'sgn(y —y')PL(y, x) .
0

(24)

PL(y, x) = —X3/zyze

Ml (y, x)=1— =A, ' ye 3' —2erfc(A. '/y),4 i/2
'1r

KL
2(L /4 —x )

(26)

Abraham' has calculated ML (y, 0) for the Ising model in
the absence of a pinning potential and with y large in
comparison with the lattice constant. Equation (26)
reproduces his exact result when the stiA'ness parameter
K is chosen according to

From Eq. (6) one sees that f 0" dy Pl (y, x)=1 and that
M2 (y, x)~+1 in the limits y ~ oo and y ~0. In the lim-
iting cases ~~ —(x), 0, + ~, which we now consider, the
droplet shape can be derived analytically.

The predictions of the SOS model in the limit w~ —I)
(T))T1Y), corresponding to a pure hard-wall potential,
have been discussed by Vallade and Lajzerowicz and by
Fisher. In this limit Eqs. (12) or (14), (23), and (24)
reduce to

IV. DROPLET SHAPES
Ka =cosh2IC2 —cosh2IC1, exp(2E 1* ) =cothK1 . (28)

%'e now consider the local magnetization of the two-
dimensional Ising model of wetting defined on the half-

Here K, and E2 denote Ising coupling constants perpen-
dicular and parallel to the x axis, and a is the lattice con-
stant.
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In the special case r=0 or T = T~, Eqs. (12) or (14),
(23), and (24) yield 1.0—

(a)

P (y x) — gl/2 —i.y
77

ML (y, x) = 1 —2 erfc(A, '~
y ),

(29)

(30) 0.5

l. 5

0.5
where A, is again given by Eq. (27). In the limit r~ ~ or
T « T~, corresponding to a contact potential with
infinite strength, Pr (y, x) is 'infinite at y =0 and vanishes
fory )0.

One may characterize the typical droplet shape in
several ways. The most-probable shape y „(x) follows
from the relation dPL(y „,x)ldy=0, and the average
shape y,„(x) from the definition y,„=f ~" dy yPL(y, x).
The half-value shape y, &z(x) is defined by

&iyz
Mi (y»z, x) =0 or —,

' = dy PL (y, x) .
0

—1.0

1.0

0.5

—0.5

f &

0
2x/L

0.5

(b)

1.0

In the special cases ~~ —~ and &=0 considered in Eqs.
(25)—(30), these three definitions of the typical shape yield
ellipses of the form A.

'
y =c or

KL p Lx+ y=
2c' 4

(31)

For ~= —~

1, most-probable

2
c = —= 1.128, average

~Fr
1.088, half-value

and for ~=0

0, most-probable

1
c = - —=0.5642, average

v'ir

0.4769, half-value .

(33)

V. DISCUSSION OF THE RESULTS

The SOS propagator and each of the quantities we
have calculated from it can be expressed in a form that

The value c =0 corresponds to y =0.
For general r the quantities y z(x), y,„(x),and y&&z(x)

can be calculated numerically from Eqs. (12), (23), and
(24). Typical results are shown in Fig. 1. As the temper-
ature is lowered, i.e., as ~ increases, the droplets flatten
against the boundary. For r~O, y ~(x)=0. The quanti-
ties y„(x) andy, &z(x) vanish in the limit r~ ~. Only in
the special cases ~= —oo and ~=0 are the curves ellipses.

Monte Carlo results of Selke for droplet shapes in the
two-dimensional Ising model in the absence of a pinning
potential are in good agreement with the SOS results (28),
(31), and (32) for r~ —~, which, as noted above, repro-
duce Abraham's exact result for MI (y, O). It would be
nice to have Monte Carlo results for the Ising model of
wetting for comparison with the droplet shapes derived
from the SOS propagator for general ~.

.0

!
t

-1.0 -0.5 0 0.5 1.0
2x /L

FIG. 1. Droplet shapes for representative values of
t =~&L/2K ~ T~ —T. The most probable shape y „ is shown
(a). The solid and dashed lines (b) indicate the average and
half-value shapes, y,„and y & ~~, respectively.

looks universal by expressing the microscopic parameters
K and r in terms of the correlation lengths g and g of
Eq. (15), as in Eq. (17). The agreement of the quantities
P(y„y, ;x, —x, ) and Ml (y, O) give»n Eqs. (21) and (26)
with exact results for the Ising model of wetting is con-
sistent with universality. As a further check it would be
useful to have exact results in the scaling regime for the
spin-spin correlation function and droplet shapes in the
Ising model of wetting for comparison with Eqs. (22) and
(24). The logarithm of the propagator (17) is the free en-
ergy or tension of the SOS interface. It would also be in-
structive to compare this quantity with the interface free
energy of the Ising model of wetting defined on the half-
strip y )0, x

&
& x & xz with boundary conditions that fix

the endpoints of the interface at (y, ,x, ) and (yi, xi).
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