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A soluble, but nontrivial, model of a dilute Ising ferromagnet is studied, with infinite-range in-

teractions but finite average connectivity c. The density of (Yang-Lee) zeros of the partition func-

tion in the complex z =exp( —2H) plane (where H is the external magnetic field in units of the tem-

perature) is calculated explicitly in the high-temperature phase for large but finite c and small ~H~.

The density of zeros on the unit circle H =i 0 has the form p(0)-expI —[cf(K)/~0~ ]1n(1/~0~ )] for
~0~~0. The function f (K) (K =J/T) vanishes at the critical coupling Kc(c). Heuristic arguments
are given for the form of p(L9) expected for systems with short-range interactions.

I. INTRODUCTION

In 1969 GriKths' showed that the free energy of a di-
lute Ising ferromagnet is nonanalytic as a function of the
external magnetic field for all temperatures below the
critical temperature (called TG hereafter) of the corre-
sponding nondilute (or pure) system. The signature of
the nonanalyticity which GriKths explored was the dis-
tribution of the zeros of the partition function Z (the
Yang-Lee zeros) in the complex magnetic field plane. In
practice, it is convenient to use the variable
z =exp( —2H) (with the usual I/T factor absorbed into
H) since Lee and Yang showed, in their famous theorem,
that the zeros of Z lie on the unit circle 0 =iO in the
complex z plane. The Griffiths singularities are associat-
ed with the appearance of Yang-Lee (YL) zeros arbitrari-
ly close to the point z = I (i.e. , H =0) below TG, implying
a zero radius of convergence for expansions of thermo-
dynamic functions in powers of H.

For the pure Ising ferromagnet, the temperature at
which the distribution of YL zeros pinches the real axis is
just the critical temperature, i.e., the temperature Tc at
which long-range order sets in. For T & T& the density
of zeros at z =1 is proportional to the spontaneous mag-
netization. For the dilute Ising model, by contrast, there
are zeros arbitrarily close to the real axis for all T & TG,

'

but the density at z =1 strictly vanishes for T ) Tc, the
critical temperature of the dilute system. This difference
between pure and dilute system is illustrated schematical-
ly in Fig. 1.

In this paper, we are interested in the temperature re-
gime Tz & T & TG, which has elsewhere been termed the
GrifBths phase. There has been much recent interest in
the dynamics of this phase, in which relaxation is slower
than exponential due to clustering effects. ' Here only
equilibrium thermodynamic properties are considered.
We introduce a soluble model with infinite-range interac-
tions but finite average connectivity, i.e., the ferromag-
netic analog of the Viana-Bray model of dilute spin
glasses. This model has the advantage of exact solubility
(in the sense that it may be reduced to a self-consistent
single-site problem) combined with the physically desir-

able feature of finite connectivity. It turns out, in fact,
that the model is closely related to a randomly diluted
Bethe lattice. It avoids, however, the (notorious)
difhculties of the latter model which are associated with
the fact that, for a finite lattice, a nonzero fraction of the
sites are at the surface.

The model is described in detail in Sec. EI, while the
general connection between the density of YL zeros and
the thermodynamic functions is brieAy reviewed in Sec.
III. Explicit results for the density of YL zeros near the
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FIG. 1. Density (schematic) of Yang-Lee zeros in the com-

plex z =exp( —2H) plane, with H =i 0 for (a) pure and (b) dilute
Ising ferromagnets. For T ) Tc {pure) or T ) TG (dilute), there
are no zeros below the Yang-Lee edge i9, . Since p{—8)=p(8),
only positive 0 is shown.
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real z axis are derived in Secs. IV and V, in the limit that
the average site coordination number c is large. For c
strictly infinite (Sec. IV) one recovers mean-field theory,
which does not contain GrifBths singularities. The large
(but finite) c behavior, discussed in Sec. V, contains the
leading nontrivial correction to mean-field theory. The
result has the form p(8)-expI —[cf(K)/~8[]ln(1/[8[)],
for ~8~ ~0. Note that this is nonperturbative in 1/c: it is
associated in the present model with the existence of rare,
highly coordinated sites. The amplitude f (K) in the ex-
ponent vanishes, as expected, at the onset of ferromagnet-
ic long-range order: for T (Tc(c) there is nonvanishing
density of YL zeros at H =0, proportional to the spon-
taneous magnetization.

The results are discussed and summarized in Sec. VI.
In particular, heuristic arguments for models with short-
range interactions yield a slightly different form for p(8)
in which the logarithmic factor in the exponent is absent.

FIG. 2. Phase diagram for the model considered in this pa-
per, showing ferromagnetic (E) and CJriffiths (6) phases. The
phase boundary is given by 1=c tanh(J/eT). The Griffiths
phase 6 extends to infinite temperature.

II. THE MODEL

The model is described by the Ising Hamiltonian for
spins S;=+1 (i =1, . . . , N)

H= —g J;SS —h+S;,
(, L,J)

where the sum is over all distinct pairs of sites. The
bonds J 1(=JJ; ) are independent random variables with
distribution

P(J; )=(c/N)5(J; —J/c)+(1 c/N)5(J; —) .
The 1/c scaling of the nonzero bonds ensures a sensible
large-c limit.

The geometrical properties of the network generated
by (2) have been discussed in detail by Bray and Rodg-
ers. For c (1, the system breaks up into disconnected
finite clusters, which have a branched (or treelike) struc-
ture. For c ) 1 an infinite cluster appears, in addition to
finite clusters, i.e., c =1 is the percolation threshold of
the model. The cluster size distribution for the finite
clusters can be calculated for general c, but we will not
require it here.

The analysis of the Ising model defined by (1) and (2) is
straightforward, and follows a well-trodden path. ' The
disorder-averaged free energy may be calculated using
the replica method, via

—[F],„/T= [lnZ],„=lim ( [Z"],„—1)In,
n~0

where [.. . ],„

indicates an average with respect to the
distribution (2). The sites may then be decoupled by in-
troducing auxiliary variables q, q &, q &~. . . , conjugate
to g; S;,g, S, SP,g; S; SEES/. . . , respectively, where
a,P, y. . . are replica indices running from 1 to n. These
auxiliary variables are the order parameters of the theory.

In the high-temperature phase, all order parameters
vanish for external field h =0. The phase boundary for

the onset of ferromagnetic order is given by the equation

1 =c tanh(K/c),

where K =J/T. For c & 1, the system is below the per-
colation threshold, and there is no long-range order at
any nonzero temperature. For c »1, tanh(K/c) can be
replaced by its argument, and the mean-Geld result T, =J
is recovered. The phase diagram is shown in Fig. 2.
Note that, in the present model, the GrifFiths phase ex-
tends to infinite temperature, since the corresponding
pure system, in which all bonds are nonzero, has a criti-
cal temperature which diverges in the thermodynamic
limit (the exchange interaction would need to be scaled
by 1/N to leave the critical temperature of the pure sys-
tem finite).

Since the Hamiltonian is ferromagnetic, and we consid-
er only the high-temperature phase (with hAO), we can
certainly assume that the order parameters are replica
symmetric, i.e., q =q&, q &=q2. . . , independent of the
replica indices. The order parameters then have the fol-
lowing physical significance:

(4)

where (. . . ) indicates a canonical average for given dis-
order. In particular, q] =m, the average magnetization
per site.

The order parameters Iq„Iobey an infinite set of cou-
pled equations. Considerable progress, however, can be
made by introducing an order function P(x), defined
as the probability distribution of the variable x
=tanh '((S; ) ). According to (4), the moments of P(x)
are the order parameters:

q„=J dx P(x)(tanhx)" . (&)

It can be readily shown that P(x) satisfies the nonlinear
integral equation

T

P(x)=e ' I™
(dy/2m)exp iy(x H)+c I— dz P(z—)expIiy tanh '[tanh(K/c)tanhz]J
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where H =Ii/T and K =J/T. Equation (6) is a straight-
forward generalization to HWO of the result derived in
Ref. 7. While this equation is difFicult to solve for general
c, significant progress is possible for c )&1. This limit is
explored in detail in sec. IV. First, however, it is neces-
sary to discuss the relationship between the density of YL
zeros and the thermodynamic functions. This is the sub-
ject of the following section.

III. DENSITY OF YANG-LEE ZEROS

In this section we review briefly the argument relating
the density of YL zeros of the partition function to the
real part of the magnetization in the presence of an imag-
inary magnetic field. The first step is to note that the par-
tition function Z(K, H) can be written as a sum of terms
with fixed magnetization M =g;, S;,

N

Z(K, H) = g exp(MH)Tri s ~) exp g J,. S,.S /T
M= —N (ij )

N

exp(MH)a~(K)

N=a ~(K)exp(NH) + [z —z; (K)],
where z =exp( —2H). Note that the sums on M in the
above are over the values M = —N, —(N —2), . . . , (N—2),N. Thus the free energy f and magnetization m per
site are give, respectively, by

f—/T= (1/N)lnZ
N

=(1/N)lna z+H+(1/N) g ln(z —z;),

m =(8/BH)( f /T—) =(1/N) g (z;+z)/(z, —z) . (7)

So far z [=exp( —2H)] is a general complex number.
According to the Yang-Lee theorem, however, the zeros
z; of Z all lie on the unit circle, corresponding to a pure
imaginary magnetic field. Therefore we write H =iO+e,
where 0 is real and e is a real infinitesimal whose role will
become clear below. Similarly, we put z; =exp( 2i P—; )
with P, real. Then —m. /2 (P;,8(m. /2. Replacing
(I/N)g+ i. . . in (7) by I &2dgp(P) . . gives

m = i f— dip(P)cot(8 P i—e) .——~/2

Thus

Rem =m sgn(e)p(8),

i.e., the density of YL zeros on the unit circle is simply
related to the real part of the magnetization induced by
an imaginary magnetic field. The infinitesimal real part
of the field determines the sign of Rem. From Fig. 1 we
note that, for the pure system above Tz, Rem vanishes
for small 0. In the GriKths phase of the dilute system,
however, Rem is nonzero for any 8%0. In the ferromag-
netic phase, p(0) is nonzero and equal to ir ' times the
spontaneous magnetization.

IV. THE LARGE-c LIMIT

Returning to Eq. (6), we expand the integrand in powers of 1/c as follows:

P(x) =e ' f (dy /2ir)exp iy (x —H)+c f dz—P(z)[1+(iyK/c)tanhz+O(l/c )]

= f (dy/2m )exp[ iy (x —H —Km)+O—(1/c)]

=5(x H Km)+O—(1/c) . —

In the above we used

m = f dz P(z)tanhz,

m2
——tan(8+Km2)sech (Km i )/D (m „m2),

D( m„mz)=1 +t ahn(Km, )tan (8+Km&) .

(12)

(13)

which follows from (4) and (5). Thus m obeys the equa-
tion

m = tanh(H +Km ) +0 ( 1/c) . (10)

For c = ~, therefore, the model is equivalent to the
infinite-range Kac model [for which the Hamiltonian is
H= —(J/N)g(; ~S;S ], and conventional mean-field re-
sults are recovered. The density of YL zeros for c = ~ is
easily derived from (10). Setting H =i 8 andI =m1+im2, and equating real and imaginary parts,
yields

m, =tanh(Km, )sec (8+Km2)/D (m„mz),

8, =tan 'I [(1 K)/K]'~ I
—[K(1——K)]'~ (14)

For 1 —K ((1, one obtains 8, =—,'(1 —K) ~2. For K —+0,
8, ~m /2. Equations (11)—(13) can be solved numerically
for general K ( 1 to obtain m i(8), and hence p(8) via Eq.
(8). The form of the solution is shown schematically in
Fig. 3. Near the edges, p(8) vanishes with a square-root

For K (1 (i.e., T )Tc =J), and 8 small, Eqs. (11)—(13)
only allow m, =0. Linearizing (11) in m, and setting
m i

=0 in (12) and (13) gives the critical values (Yang-Lee
edges) 8=+8, for the appearance of solutions with
nonzero m 1 ..



GRIFFITHS SINGULARITIES IN RANDOM MAGNETS: 6983

e(e) where m 0 satisfies the mean-field equation (10), i.e.,
mo=tanh(H+Kmo). Expanding the exponential of the
exponential as a sum of exponentials,

exp[c exp(iyKmo/c)]= g (c"/r!)[exp(iryKmo/c)],
r=0

and integrating term by term yields

FICx. 3. Density (schematic) of Yang-Lee zeros in the
z =exp( —2H) plane, with H =i0, for the soluble model con-
sidered i'n this paper. Only positive 0 is shown. The continuous
curve indicates the mean-field (c = ~ ) result, obtained from
Eqs. (11)—(13), with 0, the mean-field Yang-Lee edge. The
dashed curve shows the contribution (18) (magnified for clarity)
from rare, highly coordinated sites.

singularity, p(8)= A (K)(l8l —8, )'~ .
We conclude that at the level of mean-field theory (i.e.,

for c = oo) there are no Gri%ths singularities. It is easy
to show that order by order in 1/c this result is qualita-
tively unchanged: There remains a well-defined Yang-Lee
edge and a vanishing density of YL zeros for small l8l.
For example, to order 1/c one obtains for

l 8l —8, small

p(8) = A (K)(18l —8, )'"+c 'B(K)(l8l —8, )

=A(18I 8, +2c B/A—) ~',

i.e., the naive divergence of the order 1/c term at the un-
perturbed edge can be absorbed by a shift in the position
of the edge. While this reduces perturbatively the size of
the gap in p(8), order by order in perturbation theory a
gap remains.

These results are reminiscent of those obtained for the
eigenvalue density for the exchange matrix, i.e., the ma-
trix whose elements are J; . For c =~, the Wigner
semicircular distribution is obtained, with sharp band
edges. Order by order in 1/c, the band edges remain
sharp, i.e., there is no evidence for Lifshitz tails in the
distribution. The latter are associated with nonperturba-
tive (in 1/c) contributions, associated with rare, highly
coordinated sites. In Sec. V we show that similar non-
perturbative terms are responsible for the Griffiths singu-
larities (which are the analogs for the magnetic problem
of the Lifshitz tails of the eigenvalue problem) and that
these fill in the gap in p(8), as indicated by the dashed
curve sketched in Fig. 3.

P(x)=e ' g (c"/r!)5(x H —rKm—o/c) .
r=0

Finally the magnetization m is given by

m =I dx P(x)tanhx

=e ' g (c"/r!)tanh(H+rKmo/c) .
r=0

(15)

This result has a simple physical interpretation. The
probability for a given site to be connected to precisely r
other sites is

p„= 'C„(c/N)"( 1 —c /N)

—+e 'c "/r!

for X~~, i.e., the coordination number of a randomly
chosen site has a Poisson distribution with mean c. Equa-
tion (15) can now be recognized as

m = g p„tanhH„,
r=0

where Hr =H + rKm o /c is the local field at an r-
coordinated site, and mo, satisfying (10), is the magneti-
zation of each of the neighboring spins.

For c ))1, the sum in (15) is naively dominated by
values of r close to c, where p„has a sharp maximum (of
width &c). Replacing r by c inside the tanh function,
and using g„p„=1, one recovers (10). This would be the
desired result for real H. We have seen, however, that for
imaginary field H=i8, (10) gives Rem =0 for l8l (8,.
In this regime the dominant contribution to Rem is ob-
tained from rare, highly coordinated sites with r ))c. To
see this, we note that for H =i0, with 0 small, the argu-
ment of the tanh function is predominantly imaginary,
the imaginary part being 0+ rKm o2/c, where m o2 is
given by Eqs. (11)—(13) for m2. Since r ))c will dom-
inate the sum for Rem, the explicit 0 dependence can be
dropped —an implicit dependence remains though the 0
dependence of mo2 ~ The real part of the argument of
tanh in (15) is infinitesimal for 8—+0. In this limit, there-
fore, we can write

V. THE NONPERTURBATIVE TERM

We return to the fundamental equation (6). For large c
we can replace P(z) on the right-hand side by its c = a&

form (9) to obtain

P(x) =e ' J (dy/2')exp[ iy (x H)— —

+c exp(iyKm0/c )],

H +rXmo/c —+irKmoz/c +e=ircz+e,
where a=Kmo2/c and e is infinitesimal. Substituting
into (15) gives

Rem =Ree ' g (c"/r!)tanh(ira+e)
r=0
c" 1+cot (ra)=e ' —,e

o r! e +cot (ra)
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In the limit e—+0, the e-dependent terms yield a series of
Dirac 5 functions at the zeros of cot(ra). Hence, taking
e )0 without loss of generality,

Rem =me ' g (c'Ir!)g 5[ra —(2s —l)m. /2] .
r=0 s=1

(16)

Making an integral representation for each 6 function
and evaluating the sum over r gives

Rem =me ' g I (dy/2n ) g (c"/r!)expiy [ra (s ——
—,')m]

s=i r=l
QO

=ere ' g I (dy/2m)exp[ in—(s —
—,')y+c exp(iay)] .

QO

The change of variable y =z/a = (c/Kmoz )z yields

Rem =(c/2Kmoz)e ' g J dz exp[cg, (z)],
QO

g, (z)= (ir—/Kmoz )(s —
—,
' )iz +exp(iz) . (18)

For large c, the integral over z can be evaluated by the method of steepest descents. The function g, (z) has a saddle
point z, = i in[—m(s —

—,
' )/Kmoz], obtained from (Bg, IBz), , =0. Deforming the integration contour to pass over the

S

saddle point and integrating away from the saddle point along the line of steepest descent using

(8 g, /Bz ), , = —[m.(s —
—,')/Kmoz],

yields

Rem =(c/2Kmoz)' e ' g (s —
—,') ' expI —c [a(s —

—,
' )IKmoz]ln[~(s —

—,')/Kmoze]I .
s=1

For large c, s =1 is the dominant term in the sum. For
8~0, linearizing (10) in m and H gives moz-—8/(1 —K).
Finally, Eq. (8) gives

p(8)=m '(c [1—K]/K8)' 'exp —c[1+(&/8)»(b/e8)],
(19)

b =m(1 K)/2K, — (20)

for 8~0+. [For 8~0—,8 should be replaced by ~8~ in
(19).] Now we can justify the claim that sites with r )&c
give the dominant contribution to Rem for 0~0. The 6
function in (16) with s = 1 picks out
r =m/2a=(n. /2Kmoz)c ))c for moz —+0 (i.e., 8—+0).

Before concluding this section, we should mention a
technical point which was glossed over in the derivation
of (19). The observant reader will have noticed that, due
to the periodicity of exp(iz), the function g, (z) has addi-
tional saddle points at z =z, +2nm, where n is any in-
teger. If the contributions from all the saddle points are
included, one obtains precisely zero, unless (2s —1)m/Za
is an integer for some s, when the result is infinite. Nev-
ertheless, (19) is still correct when suitably interpreted.
The reason for these apparently bizarre results follows
directly from (16). Unless (2s —1)m/2a is an integer, the
5 function vanishes for all r; if it is an integer, the 5 func-
tion gives infinity for one r. This simply reAects the fact
that the YL zeros occur at a discrete set of points. In or-
der to define a physically sensible density of zeros, a
coarse graining of the density is required. Alternatively,
the 6 functions may be "smeared out" by, for example,

keeping e nonzero in the equation above (16). Then the
contributions from the saddle points with nXO are ex-
ponentially suppressed for c large and e fixed. Taking the
limit e~O after the limit c —+ oo, one recovers (19).

Equation (19) represents our final result. It gives the
leading large-c behavior for the density of YL zeros as
8—+0. The dependence on 0 reveals the expected essen-
tial singularity at 8=0. The temperature dependence of
the result is also interesting. The amplitude b in the ex-
ponential vanishes at EC =1, signaling the onset of mag-
netic long-range order at that temperature. By contrast,
b diverges for K ~0 (i.e., T~ Do ). This is consistent with
the expectation that Griffiths singularities disappear for
T—+ TO, and the identification TG = ~ for the present
model.

VI. DISCUSSION AND SUMMARY

An exact and explicit result [Eq. (19)] has been ob-
tained for the density of Yang-Lee zeros, in the model
defined by (2), for small imaginary inagnetic field H =i 8
and large mean coordination number c. The 0 depen-
dence has the form of an essential singularity at 0=0, as
expected. ' The amplitude of the essential singularity
vanishes at the onset of magnetic long-range order and
diverges at the upper-temperature limit of the Griffiths
phase, in this case T=oo. These features are char-
acteristic of the expected behavior of p(8) for
dilute Ising models with short-range interactions. The de-
tailed form of the essential singularity, p(8)
-exp I [cf(K)I

~

8!]In(1/( 8~ ) I, is—, however, slightly
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different from what we expect for short-range (SR) in-
teractions. Specifically, in the SR case we expect (see
below)

p(0)-exp[ —3 ( T)/l0l ] i (21)

The same manipulations which lead from (15) to (19) now
yield, for H =iO,

Rem -exp( —ma/2~0~ ), (22)

with no logarithmic correction, where 3 ( Tc ) =0 and
A (TG)= oo.

The difference between (19) and (21) reflects the
different type of statistical fIuctuations responsible for
Griffiths singularities: For the infinite-range interactions
of the present model, we have seen that rare, highly coor-
dinated sites give the dominant contribution to p(0) for
small ~0~; for SR interactions, large regions characteristic
of the ordered phase at the given temperature will in gen-
eral dominate. '

The form (21) can be derived explicitly in one part of
the phase diagram, namely at very low temperatures
below the percolation threshold, where the system con-
sists of isolated finite clusters. For infinitesimal T, each
cluster has significant statistical weight only for the two
states in which all spins in the cluster are aligned parallel,
or all are aligned antiparallel, to the external field (as-
sumed weak). Then a cluster of r spins has mean magne-
tization per spin m„=tanh(rH). But the probability that
a randomly chosen site belongs to a cluster of r spins is,
for large r, p„-exp( ar), u—p to an algebraic (in r) prefac-
tor, where a vanishes at the percolation threshold. "
Thus the mean magnetization per site is

I =gp„m„-+exp(—ar)tanh(rH) .

ed cluster, the extensivity of p(0) suggests that the posi-
tion of the zero will be only weakly perturbed by the cou-
pling to the rest of the system. Now the probability per
site to belong to a compact cluster of size L is of order
exp( cL —), where c depends on the site/bond occupa-
tion probability p. Hence the large compact clusters
yield a contribution to p(0)' of the form (21), with
2 (T)-c/m. In particular, 3 is predicted to diverge as
(TG —T) ~ for T~TG, where P is the critical exponent
of the pure system. Contributions from zeros other than
the closest are exponentially suppressed for 0~0, just as
the contributions to (16) from s ) 1 are suppressed.

The above argument yields, in fact, a lower bound for
p(0), since only a subset of possible contributions is in-
cluded, namely those due to regions of pure system. A
refinement of the argument, including more contribu-
tions, can be given following Bray. The idea is to include
regions characterized by a local site/bood concentration
p' )p, such that the regions are within the ordered phase
of the bulk at the given temperature, i.e., T & Tc(p').
The closest zero for such a region is then 0-1/m (p')L
[where m (p') is the magnetization per site in the bulk for
concentration p ], while the probability weight for such a
region is of order exp[ f (p')L ], w—here f (p') is given
by Eq. (2) of Bray. In particular, f (p') vanishes qua-
dratically for p'~p: f (p')-(p' —p) . For fixed p', Eq.
(21) is recovered with 3 -f(p')/m(p'). The optimal
choice ofp' is that which minimizes A.

This approach is particularly fruitful for p close to
pc(T), the boundary between Griffiths and ferromagnetic
phases. Then we anticipate that the optimal p' will also

be close to p, ( T), Using m (p') —[p' —pc(T)] ", where f3„
is the critical exponent of the dilute system, yields

A -min, (p' —p) /[p' —pc(T)] "

up to an algebraic (in
~ 0~) prefactor.

It is interesting that (22) also holds for the present
model below the percolation threshold (i.e., for c & 1) at
infinitesimal temperature. This is because the cluster size
distribution has precisely the form assumed above, with
a =c —1 —inc. This also agrees with the result obtained
by Harris for the diluted Bethe lattice, to which the
present model is equivalent for c ( 1.

A heuristic argument that the form (21) holds generally
for short-range interactions can be constructed following
the approach used by Bray in a related context. In its
simplest form, the argument assumes that the dominant
contribution to p(0) for small 0 comes from large com-
pact regions of fully occupied sites or bonds (for site or
bond dilution, respectively). Since, for Tc & T & TG, p(0)
is nonzero for the pure system, and proportional to the
spontaneous magnetization per site m, a fully occupied
compact region of linear dimension L will contribute a
closest (to the real axis) YL zero at 0-1/mL" (for spatial
dimension d). Even if the compact region is not an isolat-

Thus 3 vanishes as T~ Tc, consistent with a nonvanish-
ing p(0) for T & Tc.

In conclusion, exact results for p(0) obtained previous-
ly have been limited to infinitesimal temperature below
the percolation threshold. The result (19) is, as far as we
are aware, the first exact result for p(0) above the per-
colation threshold for any model, and holds for general
temperatures in the Griffiths phase. While heuristic ar-
guments suggest that the detailed form of the essential
singularity in p(0) may differ from (19) in short-range
models [probably by the absence of the logarithm, as in
(21)], the qualitative features, in particular the tempera-
ture dependence, are correctly captured by (19).
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