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A high-temperature phase diagram and various correlation functions have been calculated for the
partially occupied oxygen sublattice in the CuO basal plane of YBa2Cu307 z (0 ~ 5 ~ 1). This struc-
ture is modeled as a two-dimensional Ising system with repulsive first-neighbor and anisotropic,
competing second-neighbor interactions. These interactions are selected to guarantee the stability
(at zero temperature) of the two experimentally observed orthorhombic phases: a single-cell struc-
ture (with Cu-0 chains parallel to the b axis) at 6=0 and a double-cell structure (with regularly
spaced missing chains) at 6=0.5. The calculations are performed in the four- and five-point ap-
proximation of the cluster-variation method. The results are in good agreement with available ex-
perimental information.

I. INTRODUCTION

Although more than two years have elapsed since the
initial discovery that triggered a worldwide Aurry of ac-
tivity, the mechanism for superconductivity and the
essential ingredients in the so-called high-T, materials
remain somewhat of a mystery. The 1-2-3 compound
YBazCu307 s (T, =90 K) (Refs. 2 and 3) and those relat-
ed to it by various Y and Cu substitutions contain both
Cu02 planes (actually, dimpled sheets) and planes with
parallel CuO chains. At first it was believed that both
features were essential for high-temperature supercon-
ductivity, but the subsequent discovery of the Tl-Ca-Ba-
Cu-0 (T, =125 K) (Ref. 4) and Bi-Ca-Sr-Cu-0 systems
( T, = 115 K) (Ref. 5) disproved this assumption, since
neither of these systems contains chain layers. It is now
generally accepted that in all of these materials the Cu02
planes are the crucial ones as far as the high supercon-
ducting transition temperature and current-carrying
capacity are concerned, but that these two quantities are
extremely sensitive to the remainder of the structure, in
particular to the amount of ordering in the chain layers
in the 1-2-3 structure. Moreover, to illustrate the com-
plexities that still remain, it is also believed that the pres-
ence of Cu is not a prerequisite for high-T, superconduc-
tivity, following the discovery of the superconducting
perovskite Bao 6KO 4Bi03 ( T, =30 K).

The present paper is concerned with the order-disorder
transformation in the CuO basal plane of YBa2Cu307
As just mentioned, it is not this plane that is responsible
for superconductivity, but it has now been amply
shown ' that the state of order in the basal plane has a
dramatic effect on the superconducting properties. Only
50% of the oxygen sites in the plane are occupied when
5=0 and, depending on the thermal treatment of the ma-
terial, these oxygen sites can be occupied at random or in
an ordered fashion. In the completely disordered state
the compound has overall tetragonal symmetry and is not
superconducting, while in the fully ordered state (for
5=0) infinite Cu-0 chains parallel to the b axis develop

[see Fig. 1(a)] and the resulting orthorhombic material is
a 90 K superconductor. Moreover, as 5 is increased, T,
at first remains constant, then abruptly drops to 60 K
when 5=0.3, exhibits a second plateau and vanishes
quickly for 5~0.7. ' '" The second plateau coincides
with a dip in the room-temperature resistivity of the ma-
terial, which is indicative of a short-range-ordering mech-
anism in that concentration range. These findings clearly
show the important, indirect role that the chain
layer plays for the superconducting properties of
YBa2Cu307 &. Knowledge of the phase diagram for the
CuO basal plane and ensuing thermodynamic properties
may help to test various proposed theories of high-T, su-
perconductivity and will of course also be of great help in
sample preparation and improvement.

The thermodynamics of oxygen ordering and the re-
sulting chain formation in YBa2Cu307 & have been the
subject of several recent theoretical studies. '

. In all of
this work it is assumed that, as far as the ordering behav-
ior is concerned, the problem can be reduced to a purely
two-dimensional one. One is thus led to an Ising type of
problem involving occupied and vacant oxygen sites and
the various treatments differ mainly in the choice of the
interaction parameters and the statistical mechanical ap-
proach used. The possible choices and details of the
present procedure (based on the cluster variation
method) will be outlined in Secs. II and III, respective-
ly. The resulting phase diagram and oxygen correlation
functions are presented in Sec. IV. Finally, the paper
closes with a discussion and summary (Sec. V). Some of
the results presented here have already been brieAy de-
scribed in a previous Letter. ' Attention is also drawn to
a recent paper in which some other choices of parame-
ters are investigated.

II. MODEL

In order to obtain a tractable model to describe oxygen
ordering in YBa2Cu3O7 & a number of simplifying as-
sumptions need to be made such that they capture the

40 6931 1989 The American Physical Society



6932 L. T. MILLE

0 0 0

I

Vzi

=-0

0
I

uzi
I
I

I
l
l
I

FIG. 1. Two-dimensional model of the YBa2Cu307 z basal plane underlying the present work. Black dots denote Cu ions; open
circles: oxygens; and open squares: vacancies (unoccupied oxygen sites). (a) Ordered structure at 6=0 contains Cu-0 chains parallel
to the b axis and consists of two oxygen sublattices a and P. (b) Double-cell phase at 5=0.5 is obtained from that at 5=0 by remov-
ing alternating chains, and gives rise to three oxygen sublattices a&, a2, and P. Effective pair interactions V&, V2, and V3 coupling the
oxygen sites are indicated. The small orthorhombic distortion (a&b ) is neglected in the calculations.

essential physics of the problem. In previous work' it
has been shown that many of the experimental observa-
tions can be reproduced by using a purely two-
dimensional Ising model for a single CuO basal plane, as-
suming that the parallel planes perpendicular to the c-
axis are uncoupled. The latter is most certainly not true,
for if it were, the basal planes would be equally probable
to form chains parallel to the a and b axis and the result-
ing macroscopic structure would be tetragonal. Howev-
er, the coupling of the basal planes is expected to be elas-
tic in origin and elastic interactions have been neglected
in the various statistical treatments. Likewise, the small
rectangular distortion upon going from a tetragonal
(a =b) to an orthorhombic (aXb) unit cell is ignored
and consequently twin boundaries will not be described
well in the present model. The main effect of elasticity on
the phase diagram would be to renormalize transition
temperatures and hence one may reasonably expect to ob-
tain the correct topology when elastic interactions are ig-
nored.

The model chosen in this and previous work is
represented in Fig. 1(a). Shown is the completely ordered
structure for 5=0, consisting of three sublattices: a Cu
sublattice (black dots, assumed to be rigid), a fully occu-
pied oxygen sublattice (a, with open circles representing
oxygens), and an empty sublattice (P, containing vacan-
cies denoted by open squares). The oxygen concentration
of the basal plane will be denoted by c& and is equal to
—,
'

( 1 —5 ), provided that oxygens are only removed from
the basal plane, which is strictly speaking only true for
su%ciently small 6. Next it is necessary to define order-
ing interactions that couple the oxygen sites. In the

present and previous' ' work nearest- ( V, ) and next-
nearest- ( Vz, V&) neighbor interactions were considered.
The only role of the Cu ions is to difFerentiate between V2
and V3, and the Cu sublattice henceforth disappears from
the formalism. A number of other authors' ' ' have
assumed that only V& is important, neglecting V2 and V3
altogether, while others ' did consider second-neighbor
coupling, but with V2= V3. As can be seen, both ap-
proaches ignore the role of the Cu atoms on the 0 bond-
ing and it has been found' that these models are not able
to reproduce all the experimentally observed structures.
Indeed, various groups using a diversity of experimental
techniques have observed a cell-doubled phase near
5=0.5, the basal plane of which (for co =0.25) is shown
in Fig. 1(b). It is to be noted that the resulting structure
still contains Cu-0 chains parallel to the b axis and is ob-
tained from that at 5=0 by eliminating every other Cu-0
chain. Thus the a sublattice is now split up further in
two sublattices: a&, completely occupied, and az, which
has all its oxygens removed. Both structures have or-
thogonal p2mm symmetry and will be denoted by OrthoI
(at 5=0) and Ortholl (at 5=0.5) in the remainder of this
paper.

The interaction parameters V„(r=1,2, 3) are cus-
tomarily called effective pair interactions (EPI's) in
theories of alloy phase formation and stability and can
be given an operational definition as follows:

V„=-,'[8'„(o—o )+ W„(Cl —Cl) —28;(o —Cl)], (1)

where the 8'„denote total energies of a system contain-
ing the speci6ed pair in the respective positions, with all
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other oxygen sites randomly occupied by oxygens and va-
cancies, at fixed overall oxygen concentration c. It is
straightforward to define, in a similar fashion, more gen-
eral effective cluster interactions (ECI's) involving more
than two sites, but this has not been proven necessary for
the system under study. Note that all of these interac-
tions are strictly speaking concentration depen-
dent '—a complication that has been ignored in all
studies of the present problem to data. It is known that
for metallic alloys the EPI's form a rapidly convergent
series as a function of atomic separation, in spite of the
fact that the cohesive energy of a transition metal cannot
be expressed in terms of pair potentials. Upon taking
the difFerence of the cohesive energies W„(quantities of
the order 10 Ry), a large cancellation occurs and one is
left with short-ranged EPI's (of the order mRy). Howev-
er, it is not clear that the same will still be true in a
strongly ionic system, such as YBa&Cu307 &. Again, the
restriction of the Vs to just three values can be justified a
posteriori by the good experimental agreement. On the
other hand, one consequence of the ionic nature of the
system is that methods which were successfully used
to calculate EPI's for transition metal alloys fail in the
present case because of the difficulty to model charge
transfer.

It can be easily seen from the definition (1) that a posi-
tive (negative} EPI gives rise to a repulsive (attractive) in-
teraction. Thus, from the observed ground-state in Fig.
1(a) one can conclude that V& must be positive in order to
produce 0-Cl nearest-neighbor pairs. From Fig. 1(b) it
can be seen that one must have an attractive interaction
along the Cu-0 chains ( V2 (0) and a repulsive interac-
tion between fully occupied chains ( V3 )0). Moreover, it
is plausible to take both V2 and. V3 less than V, in magni-
tude, since otherwise the restriction of the interactions to
nearest and next-nearest neighbors only is not warranted.
These conclusions have been put on a more rigorous foot-
ing by performing a full ground-state analysis, ' using V&

as a sealing parameter. If other ground states are found
to exist it will be necessary to extend the interaction pa-
rameter set. In particular, structures have been observed
at finite temperature containing more complicated chain
arrangements, ' as well as a 2&2X2&2 cell at '

5=0.125. If these are indeed stable configurations, a
modified set of EPI's including further neighbor coupling
and/or cluster interactions may be necessary. However,
in view of the extremely slow kinetics at low tempera-
tures, the present author prefers the explanation that
those structures correspond to frozen-in metastable
configurations. (Note that Khachaturyan et al. ar-
gue that the double-cell phase which is here taken to be a
stable ground-state, is in reality metastable and that
therefore it is not necessary to consider different V2 and
V3 Such questions are very difficult, if not impossible, to
settle experimentally. To the author it appears that the
observed domains are sufficiently large, so that it is likely
that they correspond to true equilibrium. )

Ultimately, the effective pair interactions are electronic
in origin and can, in principle, be determined from elec-
tronic structure calculations. ' Such calculations
would be able to settle the question whether V3 is nega-

tive (double-cell phase metastable} or positive (double-cell
phase true ground-state) and, if sufficient accuracy can be
accomplished, could determine the magnitude of the
further-neighbor and/or cluster interactions. No calcu-
lated values are available as yet, but some arguments can
be given to justify the choice V, &0, Vz &0, 0& V3 ( V].
The Cu atoms in the chain layer have oxygen atoms
above and below them along the c axis. (These oxygens
are fairly inert for small 5, but are progressively removed
as 5 increases —a problem that will be addressed below. }
Bonded to two oxygens in the chains, the Cu + ions thus
have perfect square coordination in the OrthoI phase and
this is energetically the most stable configuration. (This
also explains why substitution of Cu + by a trivalent ion
such as Fe + will lead to breakup of the chains and the
measured detrimental efFect of even relatively small Fe
concentrations on T, .) Removing or adding an oxygen
atom to this arrangement, or distorting the square will be
costly in energy. Hence, based on the coordination
chemistry alone, one expects a positive V, and a negative
Vz, with V3 undetermined but presumably small. How-
ever, the previous reasoning ignores the Coulomb repul-
sion between oxygen atoms. If this were taken into ac-
count separately, it would lead to a positive V, and V3,
with Vz undetermined, but small. The combined efFect of
these interactions will thus lead to a large positive V„
and smaller V2 &0 and V3 &0, precisely as the ground-
state analysis' predicted on the basis of stable OrthoI
and OrthoII phases. Since no calculated values for the
EPI's are known, the "canonical" choice V2= —

—,
'

V&,

V3 2 V] has been made in the remainder of this paper.
One can reasonably expect that this will at least give the
correct topology of the phase diagram, and, in fact, the
good fit to various experimentally observed quantities
seems to indicate that these values are fairly accurate.

III. STATISTICAL METHOD

Except in very special instances the two-dimensional
Ising model with second-neighbor interactions present
cannot be solved exactly, and hence approximate
methods have to be used. In the present and previ-
ous' ' work the cluster variation method (CVM) (Ref.
26) has been employed to this end. The CVM is essential-
ly a mean-field theory in which the local order in a small
cluster is treated exactly, but larger clusters are treated in
the superposition approximation. By taking larger and
larger clusters one generates a hierarchy of approxima-
tions, which in the infinite cluster limit would give exact
results. In practice, for computational reasons, one has
to truncate the free energy expansion at a fairly small
cluster size. Various levels of the CVM has been em-
ployed by previous authors to the present oxygen-
vacancy ordering problem: the Bragg-Williams approxi-
mation (CVM-point approximation), the quasichem-
ical approach' ' (CVM-pair approximation) and the
square approximation. ' With both V2 and V3 present
and opposite in sign it turns out to be essential to include
both square and centered square clusters in the formal-
ism: this is the four- and five-point approximation that
has been used in our earlier papers. ' ' All inequivalent
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positions of these basic clusters within the given structure
have to be determined, as well as all subclusters. These
are shown in Fig. 2, with the four-point clusters in
dashed lines and the five-point clusters in solid lines.
Both types can occur in two inequivalent positions: the
first ones either centered on a Cu atom or not, the second
ones associated with the cL or 13 sublattice. Various oxy-
gen sites have been labeled in accordance with the CVM
framework, to be explained below.

After its introduction by Kikuchi the CVM formal-
ism was considerably simplified by Barker and by Hij-
mans and de Boer. The present work closely follows
the latter two references, but uses the correlation func-
tion expansion of Sanchez and co-workers. ' (For a
tutorial discussion of the CVM as applied to the present
problem, see Ref. 52.) Quite generally, the equilibrium
configuration of a condensed system (at fixed concentra-
tion) can be obtained by minimizing the free-energy func-
tional

I' = (E ) —kTlnQ, (2)

where 0 is the number of possible configurations with the
same internal energy (E). The different levels in the
CVM hierarchy, correspond to including larger and
larger clusters in an approximate expression for Q.
Hence, in this approach the free energy per atom can be
written as

n„V„P kTQ y g—x, (J)lnx (J) . (3)
I' = 1,2, 3 i

Here P are the pair-correlation functions for nearest ($2)
and next-nearest (g3) neighbors, corresponding to the
chosen EPI V„and n, is the number of such pairs per
site. The sum over j in the second term runs over all sub-
clusters of the basic ones. The xj (J), with J running over
all possible occupancies of cluster j, are cluster concen-
trations, which can be expressed in terms of cluster corre-
lation functions g, the latter being the independent vari-
ables of the problem (see below). The y are the
Kikuchi-Barker coeIcients, which can easily be calculat-
ed recursively, as follows:

PlL (4a)

since some of the combinatorial factors split up when
Cu's are introduced; in particular one now has to distin-
guish between clusters 5 and 5' (in the numerator) and 8
and 8' (second and third term in the denominator). In
the OrthoI ordered phase one has to distinguish between
the a and P sublattice and 25 different cluster types are
obtained. It is easy to show that the relevant statistical
weight formula now is

&Ol «~' [4] ~4] ~H] ~H]

Thus the CVM free energy contains 25 (independent)
correlations functions. Since the minimization is done at
fixed concentration

co =
—,'(P+gi ), (8a)

where each of the brackets tj I stands for a product of
factorials of the form iij [Nxj. (J)]l, N being the total
number of lattice points considered. Substitution of this
expression in (2), and application of Stirling's formula
yields Eq. (3). The cluster probabilities are not all in-
dependent, which would lead to a rather awkward con-
strained minimization problem. However, it is fairly
straightforward to express them in terms of a set of in-
dependent cluster correlation functions. The transfor-
mation between the two representations [for the clusters
occurring in (5)] is given in Table II. The arguments i,j,
k, . . . E I

—1, + 1I label sites according to Fig. 2 and run
over all possible configurations (+1 refers to an oxygen
atom, —1 to a vacancy).

In the tetragonal (disordered) structure the entropy
weight-factor becomes

L

yi = —mI —g m,'y, , (4b)
i =i+1

where rnI is the number of clusters of type l per lattice
site, ml' is the number of subclusters of type i contained in
that of type I and L labels the basic cluster. These
coeScients are purely geometric quantities: they can be
calculated once and for all for the disordered state (in the
present case one can even ignore the Cu atoms). In the
ordered states (OrthoI and OrthoII, in the present case)
the cluster types are further subdivided, but the y's
remain unchanged (if care is taken to normalize with
respect to the same unit cell). For the case in which the
Cu atoms are ignored, the Kikuchi-Barker coeScients are
given in Table I and the appropriate weight factor for use
in the entropy formula is (now normalized per unit cell)

OI

0
V

r

n ~

p

m

V2

OJ

(5)

FIG. 2. Basal-plane model with sites labelled according to
CVM formalism. The basic four-point (dashed line} and Ave-

point (solid line) clusters are indicated in the two possible ine-

quivalent positions.
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TABLE I. Kikuchi-Barker coeficients y; for two-dimensional square Ising problems in the four-
point and five-point approximation of the CVM (see text and Ref. 52).

Cluster m; j: 1 2 3 4 5 6 7 8 9 10 11

0 1 2 2 2 3 3 3 4 4 4 5 0

1 0 0 2 2 0 4 3 0 4

C 0 1 0 1 0 2 2 2 4 4 0

1 0 1 1 0 1 2 2 0

1 0 0 4 2 0 4

1 0 0 1 0 2 0

1 0 1 4 4 0

1 0 0 0

1 0 4 0

10

C',

0
PJ

TABLE II. Transformation formulas between cluster probabilities x (J) and correlation functions g,
for those terms. that occur in the CVM entropy expression for the square Ising model (see text).

(ix, m)= 4[1+(i+m)g, (i+)gm]2
x, (i j,m)= —,[1+(i+j+m)g, +(im+mj)g, +(ij)g, +(ij )g, m]

xs(i j,m, n) =
—, [1+(i +j +m +n)g, +(im+mj +j n +ni)(2+(ij+mn )g3

+ (ij m +ij n + mni + mn j)g, + (ijmn)g, ]
x„(ij,k, l, m)= —'[1+(i +j +0+i +m)g, +(im+jm +km +1m)gz

+ ( ij +jk + k 1 + li )$3+ ( ik +jI )'f4+ (ijm +jkm +k!m + li m )(5
+ (i mk +jm1)$6+ (ij 1 +ijk+ kij +kli)g7

+(ijlm +ijkm+kljm+klim)$9+(ijkl)g, o+(ijklm)g, , ]
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which goes to zero in the disordered state. Finally, in the
OrthoII phase the a sublattice is divided further in u&

and az, some of the relevant clusters in (7) factorize and
the entropy expression (normalized for the double unit
cell, i.e., four atoms per unit cell), becomes5

The corresponding free energy now contains 41 correla-
tion functions. Again it is convenient to eliminate the
point correlation functions to obtain the (fixed) concen-
tration:

co= —'(P'+P +2/, ), (10a)

and two long-range order parameters, for example,

(10b)

(10c)

one is left with a 24-dimensional unconstrained optimiza-
tion problem. It is also convenient to define a long-range
order parameter as

(Sb)

agreement with more accurate calculations, the main
discrepancy being that the second-order transition line is
much steeper in the exact calculations, leading to a tri-
critical point at oxygen concentration co=0.30, while
the CVM calculations put it at co=0. 19. It was also
found that the miscibility gap for this two-dimensional
system is much fIatter in the exact calculations. These
features are not unexpected for a mean-field theory such
as the CVM, which will tend to smoothen out phase
boundaries. The topology of the phase diagram is also
very similar to that obtained by Khachaturyan et al.
by means of the Bragg-Williams method.

The high-temperature part of the CVM phase diagram
for the case V2= —

—,
' VI, V3 2 V] is shown in Fig. 3.

Again, one finds a second-order transition line between
the disordered (tetragonal) phase and OrthoI. The
double-cell phase (stable at co=0.25, at zero tempera-
ture) gives rise to a phase equilibrium region that peaks
near co =0.25 and which joins onto the second order line
at a bicritical point. The long dashed line is an ordering
spinodal: the metastable continuation of the second-
order transition line into the OrthoII region. The spino-
dal gives the limits of stabihty of an (00) ordering wave
operating on the a and P sublattices. ' lt is a typical
mean-field feature, due to a loss of the convexity property
of the free-energy functional by making a cluster approxi-
mation. However, such instability lines are often used to
interpret the kinetics of decomposition. The double-cell
region is found to be bounded by a first-order transition

The first one is equal to zero in the OrthoI phase, and
both tend to zero in the disordered state.

In the canonical ensemble, the CVM free energy (3) has
to be minimized at fixed concentration co in each of the
phases considered. Phase boundaries are located by
determining intersections of the minimum free energy
(with common normalization) for the various phases.
Since it is formulated in terms of correlation functions,
the CVM readily gives information about these quantities
in the relevant regions. Finally, the chemical potential
can also be calculated directly by taking the (analytic)
derivative of the free energy (3) with respect to concen-
tration. Note that it would have been equally convenient
to formulate the problem in the grand canonical ensem-
ble and minimize tQe grand potential at fixed chemical
potential.

IV. RESULTS

2.4

2.0

) 1.6

1.2

The formalism described in the previous section has
been used to calculate phase diagrams for
V2= V3= —

—,
' V, (Refs. 15 and 16) and for V2= —

—,
' Vi,

V3 2 V& ~
' The former case was studied as a test on the

accuracy of the chosen CVM approximation for this type
of problems, because "exact" results (obtained from re-
normalization group and Monte Carlo calculations) were
available for comparison. The resulting phase diagram
(without double-cell phase) consisted of a high-
temperature second-order transition line between the or-
thorhombic (single-cell) and tetragonal phase, ending in a
tricritical point below which phase separation occurs. ' '
It was found that the overall topology was in precise

0.8

0.2 0.3
co

t

0.4 0.5

FIG. 3. CVM phase diagram for V2= 2V2 V3=2vl
Phase boundaries between the tetragonal (disordered), OrthoI
(single-cell) and OrthoII (double-cell) phases are indicated.
Dashed lines designate different values of p/kT and corre-
sponds approximately to lines of constant oxygen partial pres-
sure. The fine dashed line is an ordering spinodal: a metastable
extension of the second-order transition line into the double-cell
region.
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line between the OrthoII and the tetragonal phase, while
the transition between OrthoI and OrthoII is calculated
to be second order (as allowed by the Landau rules). No
CVM data for temperatures below about kT/V, =0.8

could be calculated, because the algorithm becomes nu-
merically unstable when too many correlation functions
are close to the boundaries of the configurational simplex.
However, in our previous Letter' conjectured extensions
all the way to zero temperature were drawn. At these
temperatures the kinetic of oxygen uptake and diffusion
are so slow that the equilibrium state is probably not ac-
cessible. The second-order transition line joins smoothly
onto the OrthoII phase boundaries. It is possible that a
more accurate (i.e., non-mean-field) treatment will give a
steeper line (by analogy to the case V2 —= V3 —

2 VI).
This would be in agreement with the observation of Jor-
gensen et al. that the OrthoI-tetragonal transition
occurs at constant cQ =0.30, independent of oxygen par-
tial pressure. On the other hand, Specht et al. mea-
sured transition temperatures and concentrations for
pQ = 5 X 10 to 1 atm. and found a noticeable increase

in cQ at the transition with increasing pQ . In fact, when
2

one of the data points of Specht et al. is used to fix the
temperature scale, it is found that the resulting points fall
very closely to the CVM curve. ' However, since V2 and

V~ were arbitrarily chosen (within the stability domain)
such a good fit must be considered rather fortuitous. It is
also to be kept in mind that the CVM will overestimate
transition temperatures (since only fiuctuations within
the largest basic cluster are included): by approximately
5' at cQ =0.50 and usually more off stoichiometry.

Also shown in Fig. 3 are lines along which p/kT is
constant, corresponding approximately to lines of con-
stant oxygen partial pressure. Since YBa2Cu&07 &

sam-
ples are often prepared by annealing under a constant ox-
ygen atmosphere, these lines would be followed if equilib-
rium could be maintained at all temperatures. The rela-
tion between chemical potential and oxygen partial pres-
sure (po ) is

p=p +—,'kT 1npQ

where p is the reference chemical potential (at po =1
atm. ). The quantity p in (11) is actually a chemical po-
tential difference, po —p~, and is precisely that calculat-
ed analytically in the CVM. Since p is not known (and is
in general temperature dependent), lines of p/kT= cotns

have been drawn in Fig. 3 to indicate approximate behav-
ior for pQ =const. The curves cross from the disordered

to the orthorhombic phase regions with a change in slope
and tend to cQ=0. 50 as T goes to zero. Very long an-
nealing times (or large oxygen partial pressures) would be
necessary, however, to reach this composition.

Correlation functions and cluster probabilities are ob-
tained automatically by the CVM and it is interesting to
investigate some of these variables. Point correlations,
related to fractional site occupancies, are a measure of
the long-range order in the system, while pair correlation
functions measure short-range order (either within a
given sublattice or between two sublattices). The frac-

1.0

0.8

0.6

04

0.2
0 p

0.0
l

1.2 1.3 1.4 1.5 1.6

kT/V

FIG. 4. Site occupancies for p!kT= —2 as a function of
temperature. In the disordered phase (above kT/V& = 1.43) the
oxygen sites are equivalent, while below that value an oxygen-
rich (a) and oxygen-deficient (b) sublattice can be distinguished.
The open circles are experimental data of Jorgensen et aI. ,

'
fitted to the calculated order-disorder temperature.

tional site occupancies on the a and P sublattices at fixed
p/kT= —2, are plotted as a function of temperature in
Fig. 4. At low temperatures, two sublattices can be dis-
tinguished, the occupancy of one (a) tending to 1, that of
the other (P) going to 0. As the temperature is increased
more and more disorder is evident (oxygens and vacan-
cies situated on the "wrong" sublattice). Above
kT/VI =1.43 the two sublattices are indistinguishable.
At the transition point cQ=0.34 and from there on the
oxygen concentration decreases monotonically with in-
creasing T. Also indicated in Fig. 4 are experimental
data of Jorgensen et al. , scaled to give the correct disor-
dering temperature. Again, the agreement is satisfactory,
in particular since the experimental data at low tempera-
ture suffer from slow oxygen kinetics, hence the Battening
out of the data for the oxygen-rich site at about 0.9.

Values of the oxygen-oxygen pair-probability function
along the Cu-0 chains at kT/V, =0.9 are shown in Fig.
5. This temperature was selected to be below the top of
the double-cell region in order to include the effects of
this phase on the short-range order. At this low tempera-
ture, ordering is almost complete at cQ =0.5, the correla-
tion function then decreases practica11y linearly with de-
creasing oxygen concentration. The second-order transi-
tion from OrthoI to OrthoII is encountered at cQ =0.31.
If the latter phase was not included in the calculations,
the dashed line would be followed. This (metastable)
curve is continuous until the spinodal is crossed, near
CQ 0.24, where the OrthoI sublattice "disorders, " sig-
naled by a change in slope in x

&
(O-0). If the double-cell

phase is included (as it must, to describe equilibrium be-
havior), two a sublattices must be distinguished. If the
average value —,

' (x ~
' +x ~ ) is plotted, one finds a change

in slope compared to x&, and a distinct shoulder is
present. The curve now proceeds continuously until the
OrthoII-tetragonal phase boundary is crossed (near
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FIG. 5. Second-neighbor oxygen-oxygen pair probability
along Cu-0 chains at kT/V& =0.9. Solid line: equilibrium
probabilities; dashed line: metastable extension of single-cell
phase.

co

FIG. 6. Second-neighbor oxygen-oxygen pair probability
along Cu-0 chains at k T / V l

= 1. 1 (no double-cell region
present).

co =0.21). There, it joins (discontinuously) the curve for
x 3 in the disordered state, also obtained in the absence of
OrthoII. The small discontinuity across the first-order
boundary, although evident in the numerical data, is too
minute to be visible in the plot. Both the stable and
metastable curve drop very quickly below co =0.26,
which corresponds to the maximum of the OrthoII re-
gion. If x 3' is plotted separately, rather than the average
over the two sublattices (a2 being depleted in oxygen) a
maximum is clearly visible in the same range. ' One is
led to conclude that the presence of the OrthoII phase
gives rise to an increase in the short-range order along
the Cu-0 chains. Clearly, if OrthoII were not stable no
such structure would be present. To illustrate this point
further, Fig. 6 shows the same pair correlation function
x3 (O-O), but now at a higher temperature kT/V, = 1.1,
for which OrthoII is unstable at all concentrations.
Sweeping down in concentration, the curve decreases
monotonically and disorders with a discontinuity in slope
near c~=0.30. The curve is in fact very similar to the
metastable extension at kT/V& =0.9 (dashed line in Fig.
5), except that the disordering now occurs at a higher
concentration, as it has to do at this higher temperature.
Finally, to prove that the Cu-O chain ordering is the
feature responsible for the short range ordering mecha-
nism, Fig. 7 shows a second-neighbor pair probability for
two oxygens on the a sublattice parallel to the a axis (no
intervening Cu-atom) at kT/V, =0.9. Again, a discon-
tinuity is encountered when the OrthoI-OrthoII transi-
tion is met. Now the metastable extension (OrthoI) lies
above the equilibrium curve, but both approach zero very
quickly. This is of course as it has to be since one of the
oxygen sites (that corresponding to a2) is being depleted
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FIG. 7. Second-neighbor oxygen-oxygen pair probability
parallel to a axis at kT/V& =0.9.

in the double-cell region. To sum up, because of the sta-
bility of OrthoII as an ordered ground state, one finds a
plateau in the short-range order (here measured by x3)
around co=0.30. This plateau is related to the Cu-0
chain formation parallel to the b axis.

It seems very likely that the plateau in T, near 60 K
and the corresponding minimum in room-temperature
resistivity, observed by Cava et al. ' " are related to the
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short-range ordering mechanism just outlined. Again, ki-
netic considerations may limit the size of the ordered
domains or even obliterate the effect altogether, depend-
ing on sample preparation. A purely electronic mecha-
nism for the 60-K plateau has been proposed by Zaanen
et al. based on (zero-temperature) tight-binding calcu-
lations for the double-cell phase, further strengthening
the evidence for a close connection between these two

phenomena.

V. CONCLUSIONS

It has been shown that a two-dimensional Ising model,
with stable single- and double-cell configurations, is able
to explain many experimental observations concerning
the high-temperature superconductor YBa2Cu 307
Good qualitative and semiquantitative agreement is ob-
tained for phase equilibrium lines and short- and long-
range order parameters. However, it must be borne in
mind that the model used is a very simple one, with only
nearest- and next-nearest-neighbor interactions present,
selected to guarantee the stability of the experimentally
observed phases. This approximation is not necessarily
based on the correct underlying Harniltonian; for exam-
ple, it may very well be that long-range interactions dom-
inate the phase diagram. Also, within the given
model, the parameters used here were chosen rather arbi-
trarily and are by no means expected to be optimal.

A number of difticulties hamper comparison with ex-
periment. It appears that many of the most interesting
ordering phenomena happen at temperatures where ki-
netics are rather slow, so that equilibrium is not reached
in the experiment, thus complicating the comparison
with theoretical results from equilibrium thermodynam-
ics. The sensitivity to sample preparation conditions also
explains the sometimes conAicting findings from different
groups. Moreover, there are problems relating the
overall oxygen content (5) to that in the basal plane (co).
First of all, extra oxygen will be present near the surface
of the samples and in grain boundaries. Moreover, it is
also known that upon heating oxygen will be removed
not only from the basal plane, but also from the sites just
above and below the Cu atoms in that plane. This will
not only affect the ordering process in that plane, but it
also means that co cannot directly be related to 5. The
relationship co =

—,'(1 —5) will be obeyed quite closely for
5 ~ 0.5, but for larger values the deviations may be quite
large.

Although the OrthoII phase has now been observed by
many techniques, controversy still exists as to whether it
is a true ground-state, or corresponds to a metastable
phase, due to incomplete phase separation. Again, slow
kinetics make it very difBcult to resolve this conAict.
Perhaps the strongest piece of evidence for the stability of
OrthoII is an indirect one: the observation of a plateau
in T, near 60 K (Refs. 10 and 11) almost exactly where

that phase is predicted to be stable. Both the models
with ( V3 )0) and without ( V3 (0) Ortholl stable predict
phase separation at low temperatures. For 5=1, the
present model predicts separation between OrthoI and
OrthoII, while the models with V3 ~ 0 predict
tetragonal-OrthoI separation. TEM experiments by
Chen et al. show domains of OrthoII within an OrthoI
matrix, but with very small domain size. Recently You
et QI. performed x-ray diffraction measurements of
YBa2Cu307 & single crystals and found evidence for
coexistence of phases with 5 =0 and 5 =0.3, in agreement
with the present model. If OrthoII is metastable, phase
separation should be between phases with 5=0 and 5= 1.
This is another indication for the stability of OrthoII at
zero temperature.

Other ordered domains have been observed, and for
those the same considerations apply. The model used
here, only has ordered ground states for 5=0, 0.50, and
1.0. If other phases are found to be stable (at zero tem-
perature), further neighbor and/or cluster interactions
will have to be included. In particular, it is possible that
a Coulomb- or screened-Coulomb repulsive interaction
between oxygens is necessary. Under appropriate condi-
tions such interactions may even give rise to a whole
range of devil' s-staircase phases. Further improvements,
but no new ground states, may also result if elasticity and
the full three-dimensional nature of the system is taken
into account.

The central remaining question is how the chain layers
inhuence the superconducting behavior located in the
plane-layers. The calculations of Zaanen et aI. and ex-
periments of Tokura et al. indicate the importance of
the hole count, although the issue is still by no means
completely resolved. The present work has not addressed
this problem at all, except by confirming the prediction of
Cava et al. ' '" for a correlation between short-range or-
der and a plateau in T, . As far as the oxygen ordering in
the plane is concerned, it appears that the major features
of this phenomenon are well described by the present
model.
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