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We investigate the classical statistical mechanics of a dilute gas of double-sine-Gordon (DSG)
kinks. A novel feature of our analysis is that it includes the thermodynamical effects of the non-
linear anharmonic internal motion of the DSG kink. We compute the quantitative difference in the
free energy caused by the nonlinear motion of the dynamical variable R, associated with the kink's
internal motion, and compare our results with those obtained in the harmonic approximation. We
show that the nonlinearity in R causes the free energy to be well behaved even when the equilibrium
separation of the subkinks of a DSG kink is large. We provide an exact analytical determination of
the phase shift of the phonons in the presence of a DSG kink.

I. INTRODUCTION

In the last decade there has been a remarkable surge of
interest in quasi-one-dimensional condensed-matter sys-
tems bearing soliton excitations. ' Many investigations
addressed the problem of evaluating the contribution of
solitonic excitations to the partition function (and related
thermodynamic quantities) for systems which are approx-
imated by continuum fields. In their pioneering work
Krumhansl and SchrieFer (KS) investigated the classical
statistical tnechanics of a one-dimensional P chain.
Their suggestion, based on intuitive arguments and
confirmed to a good approximation with the transfer-
integral method, was that the solitons of this theory
form elementary excitations which contribute to the free
energy as if they were molecules of an ideal gas. This is
in addition to the usual phonon contribution.

Subsequently the concepts and methods of KS were ex-
tended and improved upon by many authors. It was
found that in all models solitons and phonons shared free
energy and internal energy. It was shown that the
phase-space sharing among linear (phonons) and non-
linear (kinks) objects was due to phase-shift interactions
between kinks and phonons, at least when the density of
kinks is low. This discovery put the ideal-gas phenome-
nology on a more solid basis and led to a more accurate
analysis of the classical partition function for many
soliton-bearing systems. ' These ideas were further ex-
tended to consistently include the effects of breathers in
the ideal-gas phenomenology.

Among the soliton-bearing models used to describe
nonlinear phenomena in real quasi-one-dimensional sys-
tems, one of the most frequently occurring is the double-
sine-Gordon (DSG) system. It is a Hamiltonian field
theory described by

H= dx — +— + V
2 Bt 2 Bx lo

'~'= 1+41+4' 1+cos+ —il(cosP —1)
2

(1.2)

As g is varied over the range —~ & g & ~, this poten-
tial exhibits a variety of topologies described in detail in
Ref. 8. Here we only recall that for g & —,', the potential
admits two different types of kinks, ' while for q) —,

'

there is only one kink —a composite-kink structure. ' '"
For aiba

~
—,
' the potential is structurally similar to the

pure sine-Gordon (SG) potential.
The physical realization of the DSG theory for some

condensed-matter systems prompted earlier investiga-
tions ' of the thermodynarnical properties of this model
within the conventional scheme of the ideal-gas phenom-
enology. In fact, for g &0, the DSG theory provided an
ideal laboratory to investigate the thermodynamics of a
one-dimensional polykink system. For g) 0, the contri-
bution to the classical partition function of the internal
degree of freedom ' '" of the composite DSG kink was
explicitly evaluated; in these computations it was as-
sumed that the composite DSG kink behaved as a mole-
cule with a harmonic-oscillator-like internal degree of
freedom.

In this paper we revisit the problem of constructing the
classical partition function of the DSG model for
il—= (sh R/4))0. In this range of il, the DSG model
arises in the study of antiferromagnetic Heisenberg
chains, both with Ising-like anisotropies' or Dzyal-
oshinski-Moriya antisymmetric interactions, ' as well as
in the study of (CH3)4 MnC13 (called TMMC in the litera-
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:-=Z0 exp(2e~"Z, ), (1.3)

where Z0 is the partition function of the phonons in the
vacuum sector, p is the chemical potential, P—:(I/kT),
and Z, =(Z, /Z0); Zi is the partition function in the
single-soliton sector. Thus, from (1.3), only Z, needs to
be computed. This' we shall do in the following, where
the approximation invoked in our computations shall be
explicitly stated.

Our analysis does not include the contribution of
breathers. Inclusion of this effect is particularly difficult
in the DSG theory since the analytical solution for these
excitations is not yet available. Evidence for their ex-
istence has appeared, however, in the analysis of the
kink-antikink scattering performed in Ref. 8. The paper
is divided as follows. In Sec. II we recall the Hamiltonian
theory of the DSG kink. The computation of Z, is done
in Sec. III. In Sec. IV we compute the free energy of the
dilute gas of DSG kinks. Section V is dedicated to the
comparison of our result with the harmonic approxima-

ture). ' Recently, it has been argued' that, in systems of
weakly coupled magnetic sine-Gordon chains modeled by
an effective one-dimensional DSG theory, there is a phase
transition driven by a pairing of kinks below some critical
temperature T, . This fact, as well as the potential appli-
cations of the DSG theory in the rapidly growing area of
commensurate-incommensurate phase transitions, ' and
misfit surface structures [as has been demonstrated re-
cently for the reconstructed Au(111) surface' ] motivates
a study of the thermodynamical properties of this model
which includes the effects of the nonlinear anharmonic
internal motion of the DSG composite kink. As we shall
see, those effects modify sensibly the free energy.

Our approach uses the path-integral formalism of Ref.
19, suitably generalized to include the effect of the con-
straints appearing in the canonical treatment of the DSG
composite kink. A key ingredient of our investigation is
provided by the Hamiltonian analysis of Refs. 11(a) and
11(b), where we introduced, in addition to the transla-
tional coordinate X a new coordinate R and its canonical-
ly conjugate momentum to describe the internal motion
of the DSG kink. There we showed how to account for
the dynamical effects of nonlinear oscillations of the
internal motion of the kink. Although these oscillations
have to be sufficiently large in order to produce observ-
able effects, their energy is still much less than the kink's
creation energy thus the effect is consistently contained in
the dilute DSG gas approximation. Furthermore, our ex-
plicit solution of the small-oscillation equation about
the DSG kink allows us to compute exactly the phase
shifts of the soliton-phonon interaction; this leads to the
exact density of continuum states in the soliton sector.

Our goal in the following is to evaluate the grand-
canonical partition function =, including the contribu-
tions from the nonlinear motion of the internal variable
R. Neglecting soliton-antisoliton interactions (dilute-gas
approximation), simplifies this task considerably. In fact,
in this case = is simply written as

tion. Computational details are presented in the appen-
dices.

II. HAMILTONIAN FORMALISM

We define the classical field P as

p =o (x X(t)—,R (t) )+X(x X(t—), t ),
where

(2.1a)

o(x,X,R)=crsG (x —X)+%2'
0

2m—o %— (x —X)SG

In (2.1b)

+ f gi, (x —X,R')dR' . (2.1b)

o sG[x] =4 tan ' expx (2.2a)

and fb is the bound-state eigenfunction of the linear-
ized equation about the DSG static link.

Equation (2.1b) expresses the interesting fact that the
DSG kink is a superposition of two sine-Gordon solitons.
The last term in (2.1b) is introduced in order to have

=fb(x —X,R)
Bo'

(2.2b)

f dx gi, (x —X,R)X(x X, t)=O, —

f dx g (x —X,R)ll(x X,t)=0, —

where the range of integration is —~~~. Here,

(2.3b)

for all values of A even with X=O. The requirement
(2.2b) implies that when R is a function of t the DSG
kink wobbles with a frequency related to the eigenfre-
quency of itib. The nonlinear equation of motion for R
has been derived in Ref. 11(b) within the framework of a
constrained Hamiltonian formalism in which X, R, y and
their conjugate momenta P, Pz, and II are treated as
canonical variables. Also, in Ref. 11(b) we derive the
equations of motion for the case where X(x, t) depends on
x and for the case where X(x —X(t), t) depends on
x X(t) T—he sec.ond case is preferable in the present
problem because X(t) becomes a cyclic variable. Also in
Ref. 11(b) we obtain the equations of motion for R (t}
with the ansatz Eq. (2.1b). The fact that the exact bound
state gb appears in the ansatz has the important conse-
quence in the present paper since gb is orthogonal to the
phonon modes the constraints Eq. (2.3b) mean simply
that X(x X(t), t } and II(x— X(t), t } c—ontain only DSG
phonon modes.

Since the number of canonical variables in the single-
soliton sector is increased by four the following four con-
straints need to be satisfied:

fdx (x —X,R}X(x X,t)=0, —Bo

(2.3a)

f dx (x —X,R)II(x X, t) =0, —
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r

BO 277
2 sech A+ (x —X) +2 sech A — (x —X)

2m' 2%
BX lo t, lo

+ f (x —X,R')dR' .
R drab

BX
(2.3c)

The function (Bo /BX)(x —X,A) is the Goldstone mode of the equations of the linearized phonons about the static
DSG kink, while pb is the shape mode. The dimensionless Hamiltonian for the DSG single-kink sector is

H= M P + f dx IIX' +M P 2M— P + fdxlIX' P, +,' f II'dx+ ,' f-dx[X'(x)+o'(x)]'RR X

8~ -2 1 2 0+7
lo

(cosh%) f dx —sinh A[cos(cr+X) —1]— 1+cos
4 2

(2.4)

The last integral in Eq. (2.4) is the DSG potential. Here
P~ and PR are the momenta conjugate to X and R and
the prime denotes difFerentiation with respect to x. 2) is
defined as

where the tilde on fb indicates normalization to one and

f (R)—:2 sech R+ (x —X)
2m

lo

where

XXMRR MXR
2 (2.5a) 2m—2 sech R — (x —X)

lo

M~~ =M~
l&@blx&l'+

MR
(2.5b)

MRR =MR 1—
R X

(2.5c)

M, —= —&1(;iX& 2— (2.5d)

Mx—= &o io &, MR = i&yb[f(R) &I' (2.6)

» Eq. (2 5) &fig &=ff(x)g(x)dx, and gbR indicates
differentiation with respect to R. Mz and MR are de6ned
as

The superscript prime indicates derivative with respect to
x. The potential in (2.4) depends on two-dimensionless
parameters lo and A. The parameter lo/2 is roughly the
size of a subkink of the DSG kink and the parameter 2R
is the equilibrium distance between the two subkinks of
the DSG kink. A large value of l0 corresponds to the sit-
uation in which the elastic energy represented by
(BPIBx ) is larger than the underlying periodic potential
energy. In Eq. (2.5) the kink solution o depends on the
dynamic variable R which varies between 0 and &x&.

In the following, we evaluate the DSG free energy
within the harmonic approximation for the phonon field
y, by retaining only the quadratic terms in y in a series
expansion of the Hamiltonian (2.4) around the kink solu-
tion ~. We obtain

H= MRR PX+ f dx IIX' +MXXP„2MXR PX+ —f dx IIX' PR +u~(R)+ V, + V~,

where

(2.7a)

1 Bou~(R)—:f dx
2&

lo
tanh2% (

cosset

—1 ) —4( coshR ) 1+cos——2 0
2

(2.7b)

V&
—= f dx ~ o'X'+ 2'

0

=—fdxS~(x)X(x),

Vz ——f dx 1,2 y 2m

0

tanh A sino —2(cosh %) sin

—tanh A coso + (cosh% ) cos—0
2

(2.7c)

(2.7d)

L

The term u~(R ) is the potential for the collective coordinate R in the absence of phonons, i.e., X=0.
For %0) 1.5 [i e., in the range of % where gb =f(R ) ] both u~ (R ) and S(x) are easily evaluated analytically with the

result that

2~u&(R)~8
l0

tanh A + 1 cothR
tanh R sinh2R cosh Q

tanh % cothR
2sinh R

(2.8)
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and

t22'S (x)= —4

2'
coshR sinh x

0

2 2m
cosh R+ sinh x

lo

(sech %—sech R)

2m+coshR sinh x
0

cosh R —sinh ---x2 ~ 2 2K

l0

2 2m
cosh R+ sinh x

l0

(tanh R —tanh A) (2.9)

The rest energy of the DSG kink is then identified with

U~(% )=16 1+2' 2A

0 sinh2
(2.10)

In the following section we explicitly evaluate the single-kink partition function by integrating e ~ over the allowed
phase space within the harmonic approximation for the phonon field y. The free energy is then obtained in Sec. IV.

III. EVALUATION OF Z

In this section we shall evaluate Z&, the canonical partition function in the single-soliton sector. For our constrained
Hamiltonian system Z& is given by

Z, = f dR dpi' dXdpxdX(x) dII(x) 5 f dy X(y) 5 f dy II(y) 5 fdye), X(y) 5 f dy&bII(y) e ~ . (3.1)

As required by the canonical formalism, the functional integration (3.1) has to include the constraints to obtain the
proper restrictions on the available phase space. In (3.1) the R integration has to be performed last since the other in-
tegrations lead to results depending on R. Since 2) depends on X it is necessary to perform the X integration next to
last.

In the following we shall compute Z) within the harmonic approximation for the phonon field X in Eq. (2.7a). Note
that, even if we retain the y dependence only to second order in y, the internal degrees of freedom represented by R can
have very large anharmonic oscillations. This has been demonstrated in Ref. 21.

We perform the integrations over the canonical variables X, Px, Pz, and X. The integral over X gives L (the size of
the system). The integrations over Px and Pz give (2n lp)2)'/ (R,X) where 2) is the mass tensor. Being interested in
condensed-rnatter physics applications, we treated the c.m. variable nonrelativistically:

5f dR dZdll =d)' (RZ)5
( Z) 5

( rl) 5 &d, (Z& 5 &(&, I(l&

Xe ~ ' 'e—(s[(( (R)+ v + v ] —(p/2) JB2dx

In Appendix A we perform the II integration. The result [see Eq. (AS)] is

Z„= fdl15 ( II) 5(&d (II))e
k=2

Upon substituting (3.3) in (3.2) we obtain

Z, 5 r) f dR&d)'n) fdZ5 ( Z) 5(&d~(Z))e
k=2

(3.2)

(3.3)

(3.4)

with

&
d()l/2

&

fn'"(X)5(&(a~/Bx)~X&)5(&g ~X&)e
' 'dX

f 5(& (Bo /&)X)~X&)5(& gb~X& )e ' ' dX
(3.5)
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The integration over the phonon variables gives [see Eq.
(A12)]

In {3.12) Zo is the partition function of the phonons in
the absence of the kink and

—p@~(~) " 2m. 1=e
2~I

(3.6)
co —k + 2'

k
Ip

2

kL +6(k ) =2n m, . (3.11a)

In (3.6) h~{R)=——gz 2(sisi, /coi, ) is the kink self-

energy arising from the Vi term in Eq. (3.4). Finally Z&
is written as while

Z, =Z „,„,„L e rI(%y), (3.7)
2

Qq=k +, kL =2n~ .2'
Ip

(3.11b)

where y =E» /k T—and E» =—U~ (% ),

I(% )=I &2)'~ (R))e e dR

(3.8)
and

phonon

2
2~

(3.9)

In Eq. (3.7) Z~b, „,„ is the partition function of the pho-
nons in the presence of a DSG kink. Following Rajara-
man, we write

In (3.10) the prime on the product over k means to omit
the discrete states k =0 and k =1. The co & are the pho-
non frequencies in the absence of the DSG kink. The
phonon density of states is defined as dn (k)/dk. From
Eq. (3.11a) we get

dn (k) L 1 db(k) k
1 dA(k)

dk 2m 2~ dk 2' dk

(3.12a)

Zphonon
Zphonon Zp

~p
k= —oo

Zp

2'
pco g

27K b p(k) =p(k) —po(k) = 1 dA(k)
28

(3.12b)

~~I—=Zo exp g" ln —ln
2m 2m

(3.10)

From (3.11b) the density of states for the phonons in the
absence of a kink is po(k)=(L/2m). Taking the limit
L —+~ leads to

Zphonon Zp exp . — dk ln k +1 db, (k) 2 2n.

dk lp

(2+ 1/2)

Z —e(x) P
pe

277

exp[6, (0+ )m. 'ln(f3/2m )]

(3.13)

The integrand in the exponent in Eq. (3.13) is indepen-
dent of temperature and depends only on the parameters
A and (2m/Io). The exact evaluation of b (k) and 8(% ) is
given in Appendix C.

We conclude this section by showing that 6'& is indeed
the self-energy of the fluctuating source. For this pur-
pose we observe that

O'9'
+XQ=(1 P» —P~ )1, — (3.15)

where P» and Pz are the projection operators for the
constraints;" their role is to project out the discrete
modes ~0) =~(BO./BX)) and ~1) = ~/„) leaving only the
phonon modes. Thus the time-dependent Green's func-
tion is

SI*Sa—C~(R)= g @~)=y ~k), , &k~
1=2

(3.16)

= y &S~k)~„-'&k~S)

= fS(x)9[x,x']S(x)dx dx', (3.14)

and reduces to the static Green's function when co=0.
One can interpret Eq. (3.14) as the negative of the self-
energy of the source distribution S(X) in the field

/St„(x) = J 9[x,x']S(x')dx'

where 0 is the static Green's function of the linearized
DSG Schrodinger equation for y and is defined by"

at point x produced by the source S(x). The positive
sign in the exponential of Eq. (All) then represents the
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fact that the sum over k is the negative of the self-energy.
We can make the connection with the self-energy prob-

lem more explicit by evaluating 9[x,x'] for the static
Klein-Gordon equation (i.e., we neglect the fact that the
kink is present). We obtain

Here F is the free energy of the phonon gas in the ab-
sence of the kink.

It is convenient to retain the chemical potential p in
the free energy; this allows, for example, the determina-
tion of the average kink number &N &. )M is identically
zero if there is no external constraint on the kink num-
ber. Using the definition &N & in terms of the grand-
canonical free energy we obtain

I= JS(x)e ' S(x')dx dx' .

In three dimensions the static Green's function is

(3.17) =&N&=2Z, , (4.4)

(4~Ix —x'I ') exp[ —(2m/l, )1x —x'1],
i.e., the Yukawa potential; in this context, —C&(A) is re-
ferred to as an "energy renormalization" or sometimes as
a "mass renormalization. " Here we shall refer to it as the
"kink self-energy" because this term arises from the Auc-
tuations of the internal variable R not the center-of-mass
variable X.

IV. FREE ENERGY OF THE DILUTE GAS
OF DSG KINKS

Corrie et al. showed how to go from phonon single-
kink partition function, Z&, to the grand-canonical parti-
tion function = for any dilute-gas kink system. The par-
tition function for N, kinks and %2 antikinks is

N&«)x) ' (Z)z)
X)! N2!

(Z)) ' (Z)) '
(4.1)

PpN ) I PpÃ& 1
Z' Z'

=Z0 exp(2e ~"Z)), (4.2)

where the factor 2 in Eq. (4.2) represents the fact that the
kink and antikink have the same chemical potential and
the same partition function. The free energy F is

F = kT ln= =F kT2—e ~"Z, —
3/2

=F kTL, 2e~" ~ —e +'+'e r'+'I(y, &) .2'
(4.3)

where Z, =Z, /ZD.
In (4.1) the partition function for the single antikink,

Z)x, is equal to the single-kink partition function
Z)x =Z). The factorials N, ! and N~! are required be-
cause the kinks and antikinks satisfy Boltzmann statis-
tics.

In the following we assume the chemical potential of
the kinks and antikinks to be the same. This assumption
is not always allowed. For example, it is not valid when
there is an external bias such as a mismatch between the
period of the periodic potential and the period of the har-
monic potential of the lattice. The grand-canonical parti-
tion function is then given by

where )u, =O in Eq. (4.4).
Recalling that the free energy F is given by

F =F0 kT&
—N &, when )M =0, we obtain the following ex-

pression for the free-energy density f
3/2

f0 kT 2e
—B(%)e—r(%) ) Z(y + )2' (4.5)

Equation (4.5) has to be compared with the conventional
harmonic approximation. This we shall do in the next
section.

V. INTERNAL-MODE CONTRIBUTION
TO THE FREE ENERGY

In this section we determine the contribution of the
collective variable R to the DSG kink free energy by
evaluating the magnitude of I(y,&) in Eq. (3.8). We
shall compare the free energy for the general case in
which R undergoes nonlinear motion with the result of
the harmonic-oscillator approximation where we replace
the nonlinear potential u&(R) —v&(%) with a potential
quadratic in (R —A ). Further, we show that as %~~,
the free energy reaches a constant value independent of

For this purpose, using the harmonic approximation,
valid when the potential for the R variable is quadratic,
we show that the integral l(y, %) becomes

I=(2aM'/p)'i co0 '(W) . (5.1)

Equation (5.1) is exactly the same result we would have
obtained if we had not introduced R as a collective vari-
able. [In other words, if at the beginning we had treated
only X and Pz as collective variables so that y included
the internal oscillation fb(x) as well as the phonons we
would have obtained exactly the harmonic-oscillator re-
sult Eq. (5.1).]

In order to obtain (5.1), we expand the exponential in
Eq. (3.8) for I (y,% ) to second order in p:—R —R

vg, (R ) —u~ (A ) = —,'M~ (% )boa(% )p (5.2)

where we have neglected the contribution of 6&(R )

which we have calculated to be less than one percent of
the right-hand side of Eq. (5.2). In the harmonic-
oscillator limit Mx and Mz are to be evaluated at R =%,
consequently as shown in Appendix 8

&2)' '&=[M (%)M (Jv)]' '.
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Thus,

I(y, X ) =[M (R )M„(A )] '/2

CO
CQ

X J" dpe
—(1/2PM~(% )coo(R)p

dp
' 1/2

(5.3)

Next we show that the values of p =R —A which con-
tribute to the DSG kink free energy are suSciently large
that the collective variable R must be treated as a non-
linear oscillator. The values of p which contribute are
those for which —,'M~~~ -kT. Dividing this equation

by Mx leads to
I

P..O 3.0
I I

4.0 5.0
I

6.0 7.0

coop =
—,'g(A)p =1 R 2 2 i 2

X X K

For R ) 1.25, g(.R ) [see Ref. 11(a)] is

(5.4) FIG. 1. A plot of the ratio (f fo}~p/—(f fp) as a function
of A for y=10 (dotted line), y=7 (dot-dashed line), and y=5
(solid line).

sinh(2% )

sinh(2% )+2%
(3—A cothR)

sinh A

+ % tanhR —1

cosll A

2R cothR
cosh2% sinh A

(5.5)

Notice that the quantity (kT/Ex ) is the small parameter
which justifies the dilute DSCz kink approximation.
Thus, for a typical value of kT/E~ =

—,
' and width % -3

one finds that p 2. Thus, the variations in R lie in a
range where the harmonic approximation is not valid.

We determine the contribution of the nonlinearity of
the R variable to the free energy by evaluating Eq. (5.1)
numerically and comparing the outcome of the numerical
integration with the result of the harmonic-oscillator
(HO) approximation. For this purpose we compute the
ratio

pared with the bare nonlinear oscillation of the collective
variable R in the potential u~(R). For the important
range of values of A around 3 the contribution of the col-
lective variable R to the DSG kink free energy is two to
three times larger than that given by the harmonic-
oscillator approximation. The cause of the % depen-
dence of the free-energy ratio (f —

f o)Ho/(f f0) is that—
even though the curvature of the harmonic-oscillator po-
tential and the full nonlinear potential [neglecting the less
than one percent contribution from 6&(R)] are the same,
namely Mz (% )roc(% ) the potential u~ (R ) depends explic-
itly" on %. For % ) 5 we see that the harmonic-
oscillator free energy becomes increasingly larger than
the correct nonlinear free energy. The reason for this is
that the harmonic-oscillator free energy is proportional
to [coo(A)] ' and coo(A) goes to zero for large % as
e . However, the nonlinear oscillator's e6'ective fre-
quency is strongly amplitude dependent and it is much

(f fo)Ho &+ &Ho

' 1/2
2~MX

coo '(R)[I(y,%)] ' . (5.6)

Equation (5.6) is valid for all A. The region where
%) 1.25 is the region where the nonlinear variation in R
is most important. In this region we produced in the pre-
vious sections analytic expressions for M&(R), Mz(R),
u~(R), coo(A), and S~(x,R). Consequently, we are able
to perform the integration in Eq. (5.6) numerically for
R )2 using our analytic expressions for the functions ap-
pearing in I(y,%). We present the results in Fig. 1. The
large deviations of the ratio (f fo)Ho/(f fc) f—rom-
one indicates that the dominant contribution to the col-
lective variable R to the DSG kink free energy comes
from the nonlinear motion of R. For the entire range of
u~ we find that C&(R) is less than one percent of urt(R)
so that the kink self-energy contribution is small corn-

O
II

2.0 4.0
I

6.0
I

8.0 10.0

FIG. 2. The function e yI(y, A) vs A for y =7.
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smaller than F00(A) for large %. In fact, as we see from
Fig. 2, the free energy as A~ oo approaches a limit in-
dependent of %. The reason why the free energy be-
comes independent of % at large A is that v~ (R ),
Mii(%), and Mx(JP) are well behaved and become in-
dependent of R as %~ oo. The resultant R integrand is
then well behaved for all R and approaches exp( —2R) as
R —+~.

The results of this section demonstrate the need for in-
cluding the nonlinear motion of the collective variable R
in the equilibrium statistical mechanics of DSG systems.
EfFects coming from the nonlinear motion of the R vari-
able are expected to be relevant in the analysis of magnet-
ic systems modeled by the DSG theory. '

VI. CONCLUSIONS

In this paper we analyzed the equilibrium statistical
mechanics of a dilute gas of DSG kinks including the
effects of the internal nonlinear oscillatory degree of free-
dom characteristic of this system. Our approach used the
path-integral method developed in Ref. 19.

Using the results of Refs. 11 and 20 we derived the free
energy as a function T and A. In fact, our solution of the
linearized Schrodinger equation for the DSG system en-
abled us to evaluate the phase shift A(k) of the phonon
modes in the presence of the DSG kink. This provided
us with the density of states in the one soliton sector.
Our expression for h(k) is compatible with Levinson's
theorem, for all finite values of %. Furthermore, our
Hamiltonian treatment" of the wobbling motion of the
DSG kink allowed us to include the anharmonic effects in
the motion of the associated dynamical variable R (t)
These nonlinear effects are manifest in the term I(y,&)
defined in the text.

%'e have compared the free energy obtained by consid-
ering the full anharmonic motion of the R variable with
that corresponding to the harmonic approximation in R.
The results of this comparison are plotted in Fig. 1 and
discussed in Sec. V.

In Ref. 21, we showed that when the equations of
motion for R (t) in the potential v&(R) were solved for
R (t) and the results substituted into a(x X(t),R (t))—
we obtained very good agreement with molecular dynam-
ics simulations both for the frequencies (within 1% or
2%) and for the shape mode of the DSG kink. The
agreement with simulations continued to be good even
when the nonlinearity was sufficiently large that the fre-
quency of oscillation depended appreciably on ampli-
tudes. The agreement was remarkable in that we had set
y=0, i.e., neglected the phonons which was consistent
with the simulations where the radiation of phonons was
very small in many parameter ranges. The reason that
there is weak radiation of phonons even for appreciable
nonlinear oscillations of R is that the frequency of the R
motion is below the frequency of the phonon modes
which start at co = (2~/l0 ), e.g. , at A =2 we have
co0=0.36(2~/10). Consequently, the third harmonic of
the motion of R (t) is the first harmonic to radiate. As A
increases even higher harmonics are required in order
that phonons are radiated. On the other hand, as R de-

creases, the second harmonic radiates and the condition
that we retain only quadratic terms in y puts limits on
the degree of nonlinearity in R motion which is con-
sistent with our initial assumptions. In summary, for
larger % we have large nonlinear motion of R with X very
small. The nonlinearity consists of two types of contribu-
tions: nonradiative and radiative. By nonradiative we
mean the motion is nonlinear but the higher harmonics
which are resonant with phonons, mco0) (2m ll0), are so
weak that radiation is very small. Thus, the effect of the
nonlinear phonons is the dressing of the kink. On the
other hand, as the nonlinearity increases the higher har-
monics will become large enough to radiate and phonons
will be radiated. The approximations in this paper are
valid when the radiated phonons can be treated as quad-
ratic in g. In equilibrium statistical thermodynamics we
do not directly see the dynamical phonon absorption and
emission processes. The only indirect measure of these
processes is in the quantity l(y, R) appearing in the DSG
kink free energy.

We neglected the interaction between kinks. In order
to include their effect, one should compute the scatter-
ing cross section for the collision of two kinks. The pres-
ence of resonances, as well as the possibility of radiation
of phonons, makes this computation particularly interest-
ing in this model. Moreover, once the interaction be-
tween kinks is included in the partition function, one
should be able to analyze in greater detail the phase tran-
sitions induced' by pairing the kinks in realistic
condensed-matter systems modeled by an effective one-
dimensional DSG theory.

Finally, an analysis similar to the one- carried out in
this paper for the DSG theory is possible also for the P
model, when the contribution of wobblers to the partition
function is taken into account. The existence of wobbling
kinks for the P theory has been proved in Ref. 24.
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APPENDIX A: THE II AND y INTEGRATIONS

We first show that the integration over II(x) in Eq.
(3.2) yields (3.3). In Ref. 20 we solved the eigenvalue
problem for the linearized phonons in the presence of a
DSG static kink. The equation has the Schrodinger form

(Al)

with

BX
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where

OCT Dsa.

dX
sech R + (x —X)2m

Io

+sech R + (x —X)2'
lo

In Eq. (A2) po and p, are real while pk for k&0 are com-
plex. The double prime on the summation denotes the
omission of the two discrete states io) and i 1 ). Since
II(x) is real one has p k =pk. The two II constraints are
thus

5 f dy II(y) =5(&IIio&)=5 pa+ g "Ckpk

being the discrete modes and the eigenstates i k ) for
k= —oo, . . . , —2, 2, . . . oo. The functions (xi/ )
=gb(x) and (x ik ) =gk(x) are given in Ref. 20 and in
Appendix C. The set ik) is a complete orthonormal set
of functions which we shall use as a basis (k basis) for
expanding i II ) so that

llI&=p, lo&+p, l»+ g "pklk& .
k= —oo

5 f dy P 11(y) =5((IIil))=5(p, ) .

(A3a)

(A3b)

where C„ is defined below. The integral of II (x) is then

f Il'(x)dx=&lllll&=p, '+p', + y-pkpk . (A4)

Substituting Eqs. (A3a), (A3b), and (A4) in Eq. (Al) yields

Z = f dPodP& g 21PkdP 5kPo+2 g (CkPk+CkPk) 5(P&) exP Po+P +2 P [(Pk) (Pk)'1
k=2 k=2 k=2

=[I+ ]
k=2

(A5)

where
2.=-x ~c, . i =x (a ",'l

and where

z, = Js ( gl &((g, lx&)e ' 'dx~~~.

(A7)

When we expand lX) and iS) in terms of the eigenfunc-
tion of the operator X we obtain

8= f gb(x —X,R')—d CTDs~

dR' (x —X,R') dR' .
lx&=q, lo&+q, ll&+ y "q„ik&,

k= —oo

is)=s, io)+s, il&+ y "s„ik),

(ASa)

(ASb)
The quantity u is independent of temperature and ap-
proaches zero for % greater than one. For example, for
% ~ 1.5, a (0.01. Consequently, for convenience we will
neglect a in Eq. (A5) in the present paper. In Eq. (A5) we
expressed the complex pk in terms of its real and imagi-
nary parts pk and pk. Consequently, in the pk, pk repre-
sentation k goes over only positive values. This implies
that there is a factor of (2m/p)'~ (2~/p)'~ for each k.
When V& is absent in the Hamiltonian Eq. (2.8) the in-
tegration over g leads to the phonon potential-energy
contribution

qp+2 Ckqk +CkqkBX k=2

5((ply, &) =5(q, )

while V& and V2 are given by

(A9)

where qo, q„SO, and S, are real. Since lX) and iS) are
real we have q k=qk and S k=Sk. In the k basis the 5
functions in Eq. (A7) are

2
COk

(A6)
v, =&xls&=q, s, +2 y(q„s„+«s„

k=2

I;=-,' &xl&lx &

(A 108)

We now show that the eft'ect of V, —which is linear in

y—causes each phonon oscillator to oscillate about a
center displaced from the origin.

The integral over X in Eq. (3.4) is Thus,

=-,'~4/+ & ~'[(qk)'+(qk)'1 .
k=2

(A lob)
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exp ——a] q
P 2

Sk+ qk+
~k

l S] ~ SkSk
exp[ —P(V, + V2)]= exp P — + g

k=2
2

oo

Xe p
—p g~k qk+ 2k=2 COk

Si+
CO)

2

(A 1 1)

S" S'
qk+ + qk+

COk Q)k

Upon substituting Eqs. (A9) and (Al 1) in Eq. (A7) we obtain

Sk Sk
Zx= exp P g 2 g J2dqkdqk exp Pcok-

k=2 ~k k=2

= exp[ —P@~(R)] g
k=Z

which is Eq. (3.6) of the text.

(A12)

APPENDIX B

The purpose of this appendix is to show that &2)' & is approximately equal to (MxMz )' . We shall evaluate 2)
within the harmonic approximation in y used in this paper. From Eq. (2.6) we obtain

I & @,'Ix & I'
2)=Mx(1 b) M~—(l —c) +l&gbly&l (1 b) +(1——c) —(2 —b c) +—

1 I & @b lx & I'
=Mx(1 b)'M„(1——c) —2l & f'I, ly & l' (1 —b)(1 —c)——

X R (B1)

where

and

&y,,.lx&

MR

Averaging the term l & f'I, lg & l over y leads to

& I & @' lx & I'& =2k&& @'
I
~I@' & .

Consequently since (kT/Mx) is our small parameter we
can neglect the l&g'big&l in Eq. (Bl). When we take the
square root of Eq. (Bl) and average over y we obtain

APPENDIX C: PHASE SHIFT
AND LEVINSQN'S THEOREM

In this appendix, we evaluate h(k) and e(A). Our
computation relies heavily on the results of Ref. 20.
There, we noticed that the Schrodinger equation describ-
ing the linearized dynamics of the phonons in the pres-
ence of a single DSG kink is the supersymmetric partner
of a modified Poschl-Teller (PT) equation and were able
to provide the complete set of eigenfunctions. Here, we
use supersymmetry to evaluate the phase shift of the
linearized phonons.

We shall use g(x) to denote the phonons modes in the
presence of the DSCx kink and we will use q&(x) to denote
the eigenfunctions of the Poschl-Teller Hamiltonian. Su-
persymmetry gives

&&'"&=(M M )'"&(1—b)(1 —)&

=(MxM„)' &1 b —c & . —
g(x):Dy(x) = —+ W(x) p(x),d

dx
(B2)

where

(Cla)

Note that the &bc & term is proportional to (kT/Mx).
The terms & b & and & c & are nonzero because

&@„leis&
and c

R

due to the V& term. However, they are independent of
temperature and make only a negligible contribution to
the R dependence of &2)'

Neglecting &b & and &c & one can replace &2)'~ & by
[Mx(R)M+(R)]'~ . However, the R dependence of

& makes a contribution to the R integration.

W(x) =tanh +% +tanh2&X 2&X

lo lo

2&X—tanh
Io

(Clb)

tp(x)= Ayk(x)+bye(x) . (C2)

The spectrum of the linearized phonon modes of the
PT Hamiltonian is then given by a bound state, and a
continuum starting at co =(2m/lo) with eigenfunctions
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Equation (C2) is a linear combination of even and odd
standing wave functions, which diagonalize simultane-
ously the eigenfunctions of the Hamiltonian and the pari-
ty operator. The unnormalized eigenfunctions are

yz=cosh'(ax)zE, [a,b, ,'; ——sinh (ax)]

ik
CX

3, =arg
s ik
2 20!

exp( —k in2/a)

1 —s ik
2 2'

(C10b)

cosh[(2a —1)ax]
cosh' '(ax )

(C3a) and

sinh[(2a —1)ax]
(2a —1)cosh' '(ax )

(C3b)

yi, =cosh'(ax ) sinh(ax )~F, [a + ,', b +——,'; —,'; —sinh (ax ) ] ho= arg

exp( ik 1n—2/a)

S 1+ Ek ~ )+ S+ lk
2 20! 2 2'

(C10c)

In Eqs. (C3)

1 ika= —s+—
2 cx

In (C10) b, , (b,o) is the phase shift of the even (odd) stand-
ing wave functions of the Poschl-Teller Hamiltonian.

We shall now evaluate hpT(k, %). Use of (C10b) and
(C10c) and of

l . kb= —s —s—
2 A'

(C4b) I (z)I (1—z) = 7T

sln&z

where k = co (2'/1o ) —and

a= tanh %
2m. z sinh2%

slllh2 2
' 1/2

1 Stanh Ws=

(C58)

(C5b)

leads to

L (k,& )+g,(k,& ) =2 arg

exp( i k log,—02/a )
ik

I —+ 1 —+—+-s ik s 1 ik
20.'2 2 2n

rkz(x)= ' (C6)

Similarly, the scattering eigenfunctions of the linear pho-
nons in the presence of the DSG kink are given by

Vfe introduce the scattering solutions of the Poschl-Teller
Hamiltonian as s 1 ik—arg sinm —+—+

2 2 2(x

s ik—arg sin+ —+—
2 2A

(Cl 1)

( ikx+is+R —ikx+is)

T ikx+i5'(x)= ' (C7)

R 1 —ik e'
Rpr 1+ik (C8)

which, in turn, leads to

where 6 —=5(k, A ) is an overall constant phase.
Supersymmetry relates (C6) and (C7). For x —+ ~ we

have

Finally, use of the product formula

r

n —]./ I z+ —=(27r)'" " n" ' "'I"(nz)
n

APT(k, A )= —2arg

ikI
0.'

and a reshaping of the last two terms in the right-hand
side of Eq. (Cl 1) gives

A=hpr+6 —2arctank . (C9) iks+
CX

In (C9) 6 and b, pT are the phase shifts of the two super-
symmetric partner Hamiltonians. From Ref. 20 one gets k+arctan cotms tanh~ ———. (C12)

cx 2
b, pT(k, % ) = — b,,(k, % )+ho(k, % )+—

2

with

(C10a)

Equation (C12) is consistent with Levinson's theorem
for any finite A. Equations (C9) and (C12) imply
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b, (k,A) =2irsgnk —2arctank

k+arctan cotms tanhm-
a

ik
cz

the Jost function vanishes at k =0.
Finally, we evaluate

e(%):— f dk ln k +
2m. —~ dk lo

Integration by parts leads to

' 2 1/2

(C15)

2ar g
ik
cz

2
(C13)

2

b, (0~ ) = (2+ —,
' )ir (C14)

In (C13) the global overall phase 5(k,%) has been put
equal to 2irsgnk to give 6(ac,J7)=0 for any finite %.
Again, Levinson's theorem in satisfied. In fact,

so that only the odd terms of (C9) contribute to (C16).
Use of the residue theorem gives then

' 2&e(A ) =2n. arctanh
lo

for any A.
Equation (C14) states that the spectrum of the linear-

ized phonons in the presence of a static DSG kink admits
two bound states. This is consistent with results of previ-
ous analysis. ' ' The factor —,

' in (C14) arises because

2m—
—,
' arctanh cot( m.s )tan

o,"lo

(C17)
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