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Spin-rotation-invariant slave-boson approach to the Hubbard model
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We present a slave-boson. representation for the Hubbard model, introducing Bose fields for the

empty, singly, and doubly occupied sites and show that the boson for the singly occupied site must

transform as a tensor of rank two under spin rotations. This generalizes the formulation of Kotliar

and Ruckenstein, which is not manifestly spin-rotation invariant. The paramagnetic saddle point of
the corresponding functional integral is identical to Gutzwiller's solution. As an illustration of the

method, we calculate the T lnT spin-Auctuation contribution to the specific heat and find it to be

fully consistent with Fermi-liquid theory. We discuss further applications of this approach.

The Hubbard model' has been a focal point in at-
tempts to understand the recently discovered high-T, su-

perconductors. '" It is known to embody many of the in-
gredients that appear to be essential for high-T, materi-
als: a metal-insulator transition, antiferromagnetic order,
and possibly superconductivity. However, in spite of
long and intense efforts to obtain solutions to this model
in the regime of interest, i.e., near half filling and in the
limit of strong on-site repulsion U, relatively few con-
trolled results are available. The strong correlations
present in the system in this regime appear to require
techniques which go beyond the conventional treatments
of many-body systems.

As far as the ground-state properties of the model are
concerned, a powerful and well-known technique is the
variational method. Indeed, one of the more promising
approximate solutions to the Hubbard model was given
early on by Gutzwiller. The so-called Gutzwiller solu-
tion is based on an ansatz for the many-body wave func-
tions consisting of a Slater determinant for free electrons
acted on by a projection operator, which reduces the
weight of configurations in position space containing
doubly occupied sites by an amount determined varia-
tionally. In order to calculate the expectation value of
the Hamiltonian with the projected state, Gutzwiller used
a quasiclassical approximation. As a result, he found an
instability at half filling at a finite value of U, which was
later interpreted by Brinkman and Rice and by
Vollhardt as a metal insulator, or localization transition.
It has been shown recently by Vollhardt and collabora-
tors that the Gutzwiller approximation (GA) used in
evaluating the Gutzwiller wave function (GW) becomes
exact in the limit of infinitie spatial dimensions d = ~.
In one dimension d = 1, however, the exact evaluation of
the GW leads to qualitative changes, the most important
one being the absence of an instability (or transition) at
finite U. There are reasons to suspect that there is no
transition at finite U for any finite dimension, in an exact
evaluation of the GW.

Even so, the Gutzwiller solution remains an attractive
starting point for a more systematic theory. It was in this
spirit that Kotliar and Ruckenstein (KR) (Ref. 10) de-

vised a functional integral method, which had the
Gutzwiller solution (GW and GA) as a saddle point. The
hope would then be that corrections to the saddle-point
solution should improve the GA as well as account for
new correlation effects not included in the GW.

However, the functional integral formulation of KR
suffers from a serious problem: It is not manifestly spin-
rotation invariant (SRI). This problem is generated by
embedding the physical Hilbert space of fermion states,
which possesses the full spin-rotation invariance, in a
much larger Hilbert space of auxiliary bosons, which
does not possess this symmetry. Any approximation to
the functional integral should therefore project onto the
SRI subspace, which is of course dificult to guarantee. It
is much simpler to symmetrize the boson Hilbert space
from the beginning. Any reasonable approximation will
then preserve the symmetry automatically. In the follow-
ing we present a generalization of KR's theory and give a
simple illustration of the importance of maintaining SRI.
We outline possible further applications of the theory.

Our starting point is the Hubbard model for interact-
ing electrons on a lattice

H = gt„f,'.f,.+ Ugf, '.f;.f .f; (1)

Here ft (f; ) creates (annihilates) an electron with spin
projection o ( =+1) in an atomic state at site i, t;~ ( = tj; ) is

the hopping matrix element and U is the interaction ma-
trix element for two electrons of opposite spin at the
same site.

There are four atomic states per site i,
~Oi ), ~

ti ), ~
$i),

~
1 li ), corresponding to the empty site,

the singly occupied site with electron spin polarization 1
or l, and the doubly occupied site. In the spirit of
Gutzwiller s solution KR introduced four auxiliary bose
fields to label these four states, e, , p, t, p;&, d; (here e; and

d; stand for empty and doubly occupied sites). The
squares of the classical values of these fields are supposed
to give the occupation probabilities of the four states.
Following KR we define an enlarged Hilbert space of fer-
mion and boson states. The physical states are obtained
by creating electrons and auxiliary bosons on the vacuum
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state ~vac)

~oi & =e,+ ~vac &,

oi) =ft p, ~vac),

l —
i ig if vac

(2a)

(2b)

(2c)

+= 1
p,~+ =, tr(r~, +) .v2 (8a)

whence

It is useful to represent p; ~ in terms of its projections
onto the Pauli matrices ~, , ~2, ~3 and the unit matrix ~z

Introduction of the Bose fields allows one to linearize the
interaction and to eliminate the fermion degrees of free-
dom. The resulting system of interacting bosons may
then be shown to have a mean-field solution identical to
Gutzwiller s solution. In addition, theories of this kind
are attractive because the slave bosons correspond in a
natural way to local charge and spin Auctuations present
in the strong-coupling limit.

However, introduction of the boson operators p&,p~
poses problems with regard to the spin-rotation symme-
try of the system. In KR's formulation the spin-rotation
invariance in boson space is broken by the assumption of
a spin quantization axis. This must be expected to lead to
qualitatively wrong results in any approximate treatment,
such as a gap in the excitation spectrum for spin waves in
the antiferromagnetic ground state. Also, the fluctuation
contributions from transverse spin fluctuations are found
to be missing in a recent calculation" of the free energy,
which yielded a T lnT finite-temperature correction term
to the specific heat. While the prefactor of the spin-
Auctuation-induced term agreed in its detailed depen-
dence on Fermi-liquid parameters with the exact result, '

it was found to be smaller by a factor of 3, the spin multi-
plicity factor for spin fluctuations.

In 'order to understand the source of the difhculty and
at the same time to develop a cure for it, we consider the
transformation properties of the states (2) under rotations
in spin space. We must require that the states ~0i) and

~

l' li ) transform as scalars, whereas the states ~0 i ) trans-
form as spinor states under spin rotation

(8b)

As might be expected, the boson fields p; form a spin
singlet p,-o and a spin triplet p;+=(p;+, ,p;z, p;3). The set
of triplet components p,

+ transforms a vector under spin
rotations, while p, o transforms as a scalar. This should
be interpreted as follows. The physical states according
to (2) are constructed as combined objects of bosons and
fermions. The singly occupied states specifically are
represented by two particles, a boson p and a spin- —,

' fer-
mion f, coupled to the total spin —,'. It follows that the
boson can either have spin S =0 (singlet component p, o)
or spin S =1 (triplet components p;). The spin-zero bo-
sons p;o then represent the charge degrees of freedom of
the spinor states (one unit of charge per site), whereas the
spin-one boson describes the spin degrees of freedom.
Note however, that these fields do not automatically
represent the electron charge and spin operators, because
the density operators involve the square of the matrix p.

As each of the Bose fields is introduced to represent
one particular atomic state, and since there is only one
state per site, the boson fields are locally constrained by
the following condition ("slave bosons"):

Q, =e,+e, +tr(p, +p, )+d,+d, =1,
or else

oi&~+U+ ~o. 'i&,

where

lU=exp —0 ~
2

(3)

(4)

Also, the number of electrons must match the number of
p bosons and d bosons, i.e.,

tr(r~, +p, )+25„od,+d, =g f, (r„) .f,
and ~ is the vector of Pauli matrices. Likewise, the
fermion-field operators f; transform as spinors

p=0, 1,2, 3 . (10)

fi a X+aa'fia'
a'

It follows that the boson-field operators p; transform as

p, ~Up; U+

and p; is necessarily a 2X2 spin matrix operator p;+ ~

rather than a two-component spinor operator. The two
operators p;&,p,-& introduced originally by KR are the ei-
genvalues of p; ., i.e., the only nonzero components in a
coordinate system where p,.

+
~ is diagonal. The SRI form

of (2b) is then given by

~vari

&
= gp, + .f t .

~
vac & . (7)

'There are thus two additional constraints involving the
transverse spin components compared to KR's formula-
tion. The particle-density and spin-density components
of (10) may be expressed in terms of the singlet and triplet
components ofp; as

L o=p op o+p p, +2d;+d; Xf f; =0

and

I-; —=p;o p;+p,'p;o+i(p, 'Xp;) —&f.r..f;.=o .
cr o.'

(12)

The boson operators e, , d;, p,.„(p=0, 1,2, 3) obey the usu-
al Bose commutation relations,
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+
[piy&ply ] JJ p&

[e, , e,+]=5;, ,

[d, d,+]=5;, ,

(13)

The operator (e;+p;+p;+d, .) in the center of the product
on the rhs of (15) describes the sum of the processes (sing-
ly occupied site) ~ (empty site) and (doubly occupied
site) ~ (singly occupied site with time-reversed spin).
The operator p,. is defined by

all other commutators being equal to zero.
Following KR, the Hubbard Hamiltonian may now be

written in terms of the original electron operators and the
slave-boson operators as

HsB= g t, (f,+z,+ )(z,f , )+ Ug. d, +d, . (14)

cro'a
I

In the interaction term the product of electron density
operators n, n; has been replaced by d;+d;, the occu-
pation number operator for doubly occupied sites. Fol-
lowing KR we introduce additional projection operators
z, in the hopping term, whose eigenvalues would be unity
if the constraints were satisfied exactly. The form of z; is
chosen such as to guarantee the correct weak-coupling
limit ( U~O) in mean-field theory. The projectors z,. de-
scribe the hopping process of slave bosons that must ac-
company any hopping process of electrons, i.e., if an elec-
tron hops from site i to j, the slave bosons must simul-
taneously change at j and i. Depending on whether site i
is singly or doubly occupied, the bosonic state of i must
change from p;+ to e;+, or from d;+ to p;+ . Thus there
are two transition channels, which add up, and the total
transition probability must be equal to one. It is there-
fore useful to introduce a normalization factor, which
guarantees the conservation of probability even in mean-
field theory. Thus, we are led to define the spin matrix
operator

z =[(1—d;+d;)~r —p, p, ] ' '(e,+p, +p;+d;)

p,
—= Tp1 '=

(p, ~z p( ~—r), (16)

where f'is the time-reversal operator. Even though the
eigenvalues of z; are 0 and 1 if the local constraints are
satisfied, and the eigenvalues of the square-root factors
are exactly unity in this case, in any approximate treat-
ment these gormalization factors will make a difference.

The constraints (9), (11), and (12) may be incorporated
by adding Lagrange multiplier terms to the Hamiltonian
(14)

—g&'"(Q —1)+g(A,"'L,0+1,'" L, ), (17)

X exp —f dry, gr)I3

0
(18)

where the Lagrange mutiplier fields A, ',
" and

p=0, 1,2, 3 may be chosen to be Bose fields. Note that
the charge operators Q, and L;„commute with Hzsuch.
that the A, fields are time independent.

The partition function of the model (17) may now be
calculated from a functional integral over coherent fer-
mion states f; (r) and boson states e;(r), d,.(r), p;„(r),

(&) (2)~i ~ ~ip~

X[(l—e;+e;)~r —p; P;] (15) where
I

X,gr) =g e,+(8,+XI")e,+ g p;+„(8,+XI"—AI")p;„—AI".[p;+ p;+p;+p; +~'(p+ X p)]

+d,+(a,+XI"—2XI,"+U)d +X yr)

The fermion part of the effective action is defined by

exp —f dr%, s(r) = f [Df]exp —f dry (r)
0 0

where

(20)

Integration over the fermion fields yields

L,gr)=trlnI5; [(8,—go+a(') ')1+(A, ' ' —h) r]+t; z,+z I, (21)

where the trace has. to be taken over position and spin variables. In (20) po is the chemical potential ahd h is an external
magnetic field.

The expressions (18), (19), and (21) for the partition function are manifestly spin-rotation invariant, and should form a
better starting point for the calculation of spin-dependent quantities than the original formulation of KR. The price
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one has to pay is the introduction of 4 additional Bose fields, increasing the total number of Bose fields from 7 to 11.
Let us now consider a simple mean-field solution, obtained as the saddle point of the functional integral under the as-

sumption of spatial homogeneity, i.e., for e; =e;+ =e; d; =d;+ =d; p;„=p;+„=p„,etc. The free energy per lattice site
then follows as

F =Ud kii—Tfdip(s)tr in[1+exp( 13E—)]+A,"' e +gp„+d 1 ——
Aa(

' 'gp +2d —2A, ' 'pp
p . P

(22)

where

E=z+zs+(AD' —p0)1+(A, ' ' —h) r

iO,.e;=x,e

i/id;=g, e (29)

and p(e) is the density of states of the tight-binding band
defined by t, .

The equilibrium values of the classical field amplitudes
e, d, p„, etc. are those for which the free energy is
minimum and consequently BF/Be=0, etc. In order to
find these values one performs a unitary transformation
which diagonalizes p, such that p„=(p0,0, 0,p3). Then,
the only remaining dependence on k„'', p=1,2, comes
from inside the logarithm, such that

ioIX
p, =q, e

the phase factors may be gauged away and absorbed into
the Fermi fields at the cost of adding time-dependent
gauge terms to the previously time-independent Lagrange
multiplier fields as

(30)

(24)

where f (E) is the Fermi function. The derivatives
BF/M, Pz' are zero for diagonal spin matrix E, i.e., for
A.I &~=0 and h=(0, 0, h). A possible solution is then given

by a diagonal matrix p with elements p &
and p &

in the
frame where the magnetic field is parallel to the z axis,
i.e.,

F =ud ks T jds p—(s)gin(1+exp PE ), —(25)

with

E =q s+k' '
p, +(A'' h—)cr, ,

—

p +d p +2e dp p

(1—d —p )(1—e —p )

and the constraints

(26)

(27)

e +p&+p&+d =1,
p&+p&+2d = dip c. E

(28a)

(28b)

py pg = dip E, cT E (28c)

This is the result obtained by KR for a spin-polarized
state with magnetization given by (28c), which agrees
with the results obtained from the Gutzwiller solution, if
e, p, and d are identified as the probabilities for a lat-
tice site to be empty, singly or doubly occupied, respec-
tively.

We now proceed to calculate the effect of Auctuations
about the mean-field solution for the half-filled band case
in the paramagnetic state p& =p ~. As a first step, follow-
ing Rasul and Li, " we separate out the phase Auctua-
tions. This is most easily done in the representation
where the matrix operator p, is diagonal. In a representa-
tion of the Bose fields by modulus and phase (radial
gauge),

+q [q(k) P( —k)] I (31)

where

S+ —S = —
—,
' U(1 —u)(2+u),

y (k)=QG(p+k)G(p),

Note that the integration over the fields P, is removed by
a gauge fixing term due to the local invariance with
respect to simultaneous gauge transformations of e, d,
and p . In (30) the spin-dependent fields P, again have
to be interpreted as the two eigenvalues of a 2 X 2 matrix
field generated by rotations in spin space, P; &
=(1/ 2)g„P;„(r ) ~. The effective action is then
given by (18)—(21), with (i) A,I", XI„~ replaced by a, (r) and

P,„(r), respectively, (ii) the time derivative terms involv-

ing e;, d, , p;„deleted, and (iii) real valued fields e, , d;, p,„.
We now expand the effective action thus defined in

lowest order in the fiuctuations about the (paramagnetic)
mean-field solution. At T=0 such an expansion can be
shown to converge' for an X-orbital generalization of
the Hubbard model in the limit X~~. On the other
hand, the contribution of the thermal Auctuations at low
temperatures T((TI; is given simply by the leading or-
der term since further terms are of higher order in T/TF.
Spin-rotation invariance requires that the Auctuations of
the spin-singlet type 5x,5y,5q0, 5a,5/30 and those of the
spin-triplet type 5q, 5P are decoupled (one can not form a
vector quantity in spin space out of the paramagnetic
mean-field solution). Spin fiuctuations as described by
the spin-triplet contributions are dominant at low energy
for strong repulsive interaction near half-filling. We
therefore concentrate on their contribution here. From
the corresponding part in the (Fourier-transformed)
effective action

S„g[(S+—S )[q(k) q( —k)]+g (k)[P(k) P( —k)]
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with G(p):—G(p, co)=(co E—) ', one finds a contribu-
tion to the free energy

F,f =kT+ln[q + (S+ —S )g (k)] (32)

In the long-wavelength approximation, evaluation of (32)
yields a specific-heat contribution at low temperatures

C, =5sFT In(T/To),

with

(33)

5sF=(9~ /40)(n/T ~)(A 0) [1—(~ /12)AO],

where 30 =Fol(I+Fo) and Fo = —au (2+u)/(1+u) .
Here Ao and I'"o are the spin-antisymmetric isotropic
components of the quasiparticle scattering amplitude and
the Fermi-liquid interaction, respectively, and the expres-
sion for Fo is the Gutzwiller result [u =U/U„where
U, is the critical value of U and a =p(0) Jds~E~p(E)=1].
The result (33) agrees with the one derived within Fermi-
liquid theory itself' and, in the weak-coupling limit, with
the result of paramagnon theory. ' We note that the
above calculation can be extended to include high
momentum processes (k =2kF) not accessible in Fermi-
liquid theory. In particular, we recover the spin multipli-
city factor of 3 missing in the work of Rasul and Li. "

In summary, we have discussed a slave-boson represen-
tation of the Hubbard model, which has a paramagnetic
saddle point identical with the Gutzwiller solution. In
contrast to an earlier formulation by Kotliar and Rucken-
stein' our theory is manifestly spin-rotation invariant.
We have calculated the contribution of thermal Auctua-
tions in the spin-type variables to the free energy in one-
loop order and found a T lnT term in the specific heat.
The prefactor of this term agrees with the result obtained
from a finite temperature extension of Fermi-liquid
theory in the sense that the phenomenlogical Landau pa-
rameters there are now expressed in terms of the micro-
scopic interaction parameter U. This implies that the

Fermi-liquid behavior at finite frequencies and wave
numbers for a strongly interacting system has been de-
rived here on a microscopic basis.

From the preceding discussion it should be clear that
the present theory will give results different from KR (a)
in the mean-field theory whenever the spin quantization
axis is spatially nonuniform, (b) in any approximate cal-
culation of the spin dynamics, and (c) whenever fluctua-
tions are included. This gives rise to a number of in-
teresting applications of the SRI formalism. For exam-
ple, a proper treatment of spin-rotated singly occupied
states is clearly necessary to study incommensurate spiral
states thought to play a role in the destruction of Neel or-
der with doping in the strong-coupling regime, ' or gen-
eral antiferromagnetic order in nonbipartite lattices.
Furthermore, approximate calculations of spin dynamics,
especially in the antiferromagnetic state, depend sensi-
tively on the preservation of spin-rotation invariance. It
should be interesting to calculate the spin-wave spectrum,
as well as the incoherent excitation part, as a function of
U and filling. Finally, one expects quantum Auctuations
to strongly modify the mean-field 'ground state, rendering
a straightforward expansion in fluctuations impossible for
the spin- —,

' case. It is possible that a self-consistent one-

loop theory of interacting fluctuations may provide a
controlled approach to the problem. Interacting Auctua-
tions should also be important at higher temperatures,
where the mean-field theory is known to give unphysical
results. ' Work along these lines is in progress.
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