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First-order phase transition in order-disorder ferroelectrics
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A four-spin coupling term is introduced to the pseudospin model Hamiltonian to account for the
recently observed first-order phase transition in order-disorder ferroelectrics. The critical behavior
is investigated and characteristic temperatures are calculated. We have also expressed the free ener-

gy in terms of microscopic variables and demonstrated that, in the limit of small mean spin (S ), its
behavior near the critical point is identical to what is expected in thermodynamical theory.

I. INTRODUCTION

A first-order phase transition in certain order-disorder
ferroelectrics has been observed recently. The transition'
of C4H204 near 373 K is just one example. It can be well
understood in terms of Landau's thermodynamic theory,
especially in the neighborhood of the critical point where
the theory correctly predicts characteristic temperatures
of the first-order phase transition: the paraelectric
phase-stability-limit temperature To, the critical tempera-
ture T„and the ferroelectric phase-stability-limit temper-
ature To . The thermodynamic theory, however, can nev-
er interpret the observed phenomena in terms of the mi-
croscopic atomic interactions.

A pseudospin model is able to account for the order-
disorder phase-transition phenomena. The theory cannot
handle the first-order phase transition by itself even
though it explains the second-order phase transition quite
successfully. Further work on the coupling between the
pseudospin and lattice has been suggested to discuss the
phase-transition problem of order-disorder-type fer-
roelectrics. Again, it does not yield satisfactory results
for the first-order phase transition.

It appears, therefore, necessary to examine more care-
fully the structure of order-disorder —type ferroelectrics in
order to understand the phase-transition properties. One
of the typical order-disorder ferroelectrics is potassium
dihydrogen phosphate (KH2PQ4, KDP), in which the
group PO4 forms a tetrahedron with P + at its center and
the four oxygen ions at its vertices. Hydrogen bonds con-
nect each of the vertices to other molecules on equal foot-
ing, and the potassium ion may be either above or below
the tetrahedron as shown in Fig. 1. At higher tempera-
tures, protons move back and forth along the equilibrium
hydrogen bonds and the system is in a disordered state.
%'hen the phase transition occurs, the upper two protons
move away from, and the lower two protons move to-
ward, the tetrahedron. The system becomes ordered and
a net dipole moment is produced along the c axis because
the ion P + is pushed upward and K+ moves downward
to cause the spontaneous polarization.

The squaric acid (C~H204, H2SQ) has a layered struc-
ture, as can be seen in Fig. 2. Each molecule is a square
with oxygen ions at its four vertices linked by hydrogen
bonds on equal footing. At room temperature the layers
are ferroelectrically ordered and antiferroelectrically
stacked. Protons move randomly along the hydrogen
bonds above the transition temperature, and ordered
motion results at critical temperature. The net dipole
moment produced in this case lies in the plane of the
square, a difFerent situation from the KDP.

From the above discussion, it is clear that in a fer-
roelectric material of order-disorder type, the four hydro-
gen bonds usually appear as a group and every one is
equivalent to another. This means that the four-body in-
teraction in such structures is generally important. In
fact, Deiningham and Mehring have pointed out the ex-
istence of four-body interaction in the C4H204 structure
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FIG. 1. Tetrahedronic structure of KH2PO4 crystal.
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FIG. 2. Schematic diagram of the structure of squaric acid
crystal cut across the layers. Diferent layers are denoted by
open and shaded circles. Large and small circles represent 0
atoms and C atoms, respectively. Double arrows indicate the
hydrogen bonds.

but neglected it in their actual calculation, hence, their
result is still a second-order phase transition. A similar
conclusion follows also from the Slater-Takagi model.
Slater assumes that only two protons can approach the
tetrahedron, and his theory predicts only the second-
order phase transition. On the other hand, Takagi con-
siders all possibilities and obtains the first-order phase
transition. It is therefore necessary to include four-body
interactions in the discussion of the first-order phase
transition.

On the other hand, in the theoretical studies of the Is-
ing model, ' it has been shown that a first-order phase
transition is possible only if the number of coupled spins
is four or larger. But these investigations are carried out
by means of either a renormalization group or finite-size
scaling, and they do not involve dynamical properties.

On the basis of the pseudospin theory, we consider in
this paper the four-spin interaction. The method of re-
tarded Green's function is employed to study how the
transition order is related to the coupling strength. It is
found that the system exhibits a first-order phase transi-
tion when the four-body coupling strength J')4J/3,
where J is the two-body coupling strength. The charac-
teristic temperatures To, To, and T, are all calculated.
To compare with the results of thermodynamic theory,
we also derive an expression for the free energy. We find
that in the limit of small mean spin (S'&, its behavior
near the critical point is in complete agreement with pre-
dictions of the thermodynamic theory.

II. THEORY

The order-disorder system is described by the Hamil-
tonian

H= —0gs; —
—,
' g J;J.S Sf —,

' g J;jkis—SJ'.Sksf,

where the first two terms constitute the original pseudo-
spin model and the third term represents the four-body

e~ —1
(4)

where P=k TiiIt is n.ot difficult to show from the
definition (2) that the Green's function remains un-
changed when the operators are changed by constants.
That is,

« A+ylB+y'»=«AIB»,
where y and y' are arbitrary constants. But the correla-
tion function

((B+y )(A+y)&W(BA & .

This is evidently inconsistent with the spectral theorem
(4) which implies that the correlation function does not
change when constants are added to the operators. - This
inconsistency has been resolved by the method of un-
determined constant. "

Let us choose the operators A =S,S;+,S; and
8 Sj Sj to form Green's functions. With the Hamil-
tonian (I), higher-order Green's functions result from the
equation of motion (3). We apply the Tyablikov scheme'
to decouple the Green's functions involving two pseudo-
spins,

y J,,«s's;Is„'» = y J,, &s;&«s' ls„»
J J

=J(s'&((s' Is' »,
where we have assumed for simplicity J = QJ J;J, and
(S &=(SJ&=(S'&. The Green's functions involving
four pseudospins are decoupled according to a scheme
proposed in a recent paper, ' that is,

interaction. S, is called the tunneling operator, which
measures the tunneling power of the proton between the
hydrogen double well, 0 is the tunneling frequency, and
S,' is half of the difference of occupation probabilities for
the proton to be found in the two equilibrium positions of
the hydrogen bond. The two-body coupling J;. is the
same for every pair of protons in KDP. In the case of
H2SQ, it represents the coupling between protons in
neighboring layers as well as those in the same layer. The
four-body coupling J; kl refers to the four hydrogen bonds
in the PQ4 group in KDP, and in H2SQ crystals it
represents the interactions between the four hydrogen
bonds in the C404 group.

The retarded Green's function for any two operators
A (t) and B (t') is defined by

((A(t)IB(t')»= —i(t —t')&[A(t), B(t')]&, (2)

where B(t) is the step function and the commutator
[ A, B]= AB BA. —The Fourier component of the
Green's function satisfies the equation of motion

co(( AIB » =(2m) '([A,B]&+(([A,H]IB », (3)

where H is the Hamiltonian of the system. The correla-
tion function (BA & is related to the Green's function by
the spectral theorem

(BA &=i f defoe
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y J,',.„,&(S.s;s;s'Is„)&= y J,',„&s;&&s„'&&s;)«s.'Is„'&) =J'&s'&'(&s.'Is„')),
j,k, l j,k, l

where J' = XJ „I ~j„I
The Fourier components of the linearized Green's function satisfy the equation of motion

co 0/2 —0/2
0 co —K 0

0 co+A
ro LI /2 —0/2
Q co —K 0

—0 0 co+A

G "(co)
6+'(co)
6 '(co)
6' (ro) 2m.

6 +x(~ }

,6 "(io)

0
—&s+ &

(s-&
0

&s'&
—(s'&

where K =J(S')+J'(S'), and G "(ro}=((S ~s")),
m, n =x,y, z. Following the procedures described in Ref.
11, we obtain, after some calculation, the following self-
consistent equations:

[&s")(J+J'&s'&') —n](s'& =o,
(s ) n ~o

— coth
2[(S ) +(S') l ro 2k T '

(1oa)

(lob)

III. STABILITY-LIMIT TEMPERATURES

When the system is in the ferroelectric phase, or
(S')Wo, we have from (loa)

(Sx)—J+J &s'&'

Substituting in (lob), we find

ro =[0 +(J+J'(S') ) (S') ]'

It can easily be seen that Eqs. (10) possess two sets of
solutions. (S') =0 corresponds to the paraelectric phase
and (S')%0 corresponds to the ferroelectric phase. In
the following sections, we shall discuss the properties of
these phases on the basis of (10).

For J'/J ~4/3, or cases corresponding to curves a and
b, the system has two sets of solutions. When T~ To,
there is only one solution with (S') =0 corresponding to
the paraelectric phase. When T & To, both solutions
with (S') =0 and (S')%0 are possible. As it will be-
come clear in Sec. V, when we analyze the behavior of
the free energy near To, the solution with (S') =0 is un-
stable for T (To, and only (S')%0 is a stable solution.
This means that the system changes continuously from
the paraelectric phase ((S')=0) to the ferroelectric
phase ((S')%0) when its temperature decreases from
above To to below. Thus the system exhibits a second-
order phase transition with the critical temperature To.

For J'/J )4/3 or the case corresponding to curve c in
Fig. 3, the system has three sets of solutions. When
T~ To, it has a paraelectric solution with (S ) =0.
When To & T (To, the equation has three solutions: one
with (S') =0 and two with (S')%0 corresponding to
the solid and dashed lines of the curve. When T & To,
there are two possible solutions with (S') =0 and
(s') wo.

It is observed from Fig. 3 that To is the limiting tem-
perature below which the system can be found in the fer-
roelectric phase. The value of To can be determined by
the condition

aT
a&S')

J+J'(S') o1= tanh-
2coo 8

(12}

0.75
For simplicity we assume Q=O without loss of generali-
ty; then (12) becomes, upon substitution of (11),

(Sx) i hJ(S)+J(S)
2

0.5

The variation of temperature with the mean spin value
( S') for different ratios of the coupling strength J and J'
is plotted in Fig. 3. To study the critical behavior, we
have introduced a characteristic temperature To =J/4k&
for the unit of temperature in the plot. The unit of (S')
is its value (S')o at T=0. The three curves are for the
relative coupling strengths (a) J'=J/3, (b) J'=4J/3,
and (c) J'=7J/3.

Q25-

0
0 0.5

Trv.

FIG. 3. Temperature dependences of &S'). (a) J'=J/3, (b)
J'=4J/3, (c) J'=4J/3.
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Solving (14) we find the mean spin &S'& at To. Com-
bining (13) and (14), we obtain

4k T =(1—4&s'& )(J+3J'&S'&' ), (15)

3 (J'/J —4/3)
16 J'/J + 16/15

(16)

Again from the analysis of the free energy in Sec. V,
the ferroelectric phase is metastable but the paraelectric
phase is stable in the neighborhood of To. Hence, the
system remains in the paraelectric phase when the tem-
perature drops down to To. On the other hand, the
paraelectric phase is metastable and the ferroelectric
phase is stable at To+0+, or the system remains in the
ferroelectric phase as the temperature increases to
To +0 This implies that To is the limiting temperature
for the stable paraelectric phase. Therefore, paraelectric
and ferroelectric phases coexist when the temperature is
within the interval To (T (To. We then conclude that
within this interval there exists a temperature T, at
which the stability of the two phases are equal. This is
the Curie temperature of the first-order phase transition.

IV. DETERMINATION OF T,

which, together with (13), yields the critical values for To
and & S'& . An approximate expression can be obtained
for sufficiently small &S'& . We expand (13) around
&S'& =0 to the fourth order in &S'& and then combine
with (15) to find

i J&sz&2 ] Ji&sz&4
2 4

sz+ ,'kiiT—ln(l—4&S'& )+kii Tin
1 —2&s'&

(22)

At the critical point, bF =0 and & S'& =
& S'&o, we have

—2J&S&& —& J'&S'& + & k T ln( 1 —4&s'&2)

1+2&S'&,
+kriT, ln =0,

1 —2 S', (23)

which, together with (13), can be solved for T, and
& S'&, . If one assumes & S'&, to be small, these equations
can be expanded around & S'&, =0 up to the fourth order
in &s'& to find an approximate expression for the Curie
temperature

+ 1 (J'/J+1/5)(J'/J —4/3)
(J'/J +4/5)

(24)

A comparison with (16) then yields To )T, ) To, as ex-
pected.

r

1+2 S'
2pE = —J&S'& J—'&S'& +ksT ln

' ' . (21)
1 —2&s'&

Substituting (21) in (18) and integrating over & S'&, we ob-
tain

The critical temperature T, and the order parameter
&S'&, are determined by the condition that the system
possesses the same free energy in both phases. Hence, we
proceed to calculate the free-energy change when the sys-
tem changes phase. The Helmholtz free energy F is relat-
ed to the external electric Geld E by

V. FREE ENERGY NEAR THE CRITICAL POINT

Landau's thermodynamic theory of phase transition is
based on the expansion of the free energy in a power
series of the polarization which serves as the order pa-
rameter of the system. Thus, the free energy for the fer-
roelectric phase can be written as

Bp
(17) F =F0+—,'a(T —To)p + ,'bp + ,'cp——(25)

where H is given by (1). Repeating the procedures that
lead to (13), we find

h
J&S'&+J'&S'& +2PE

2 2kB T

which can be rewritten as

(20)

where p stands for the polarization intensity. For the
present problem, we have p =2Np&s'&, where p is the
effective dipole moment and X is the number of hydrogen
bonds per unit volume. Equation (17) can then be put in
the integral form

b,F=N I 2pEd&s'&, (18)
0

which gives directly the free-energy difference between
the two phases. In order to express the electric field in
terms of the mean spin & S'&, we start with the Hamil-
tonian

H(E) =H 2pE gS—
+ —",,k, T&s'&' . (26)

A direct comparison with (25) leads to To=J/4k&,
which means that the Curie-Weiss temperature (the limit-
ing teinperature for the stable paraelectric phase) is
directly proportional to the two-body coupling strength
J. Since (26) is an expansion around the critical point,
and since the coefficients of the second and third terms

where Fo is the free energy for the paraelectric phase and
the coeScients a, b, and c are assumed to be temperature
independent. %'hen b )0, the last term can be ignored
and F may be employed to describe the second-order
phase transition. When b (0, only c )0 yields a stable
minimum free energy. Thus the last term must be includ-
ed to explain the Grst-order phase transition.

In order to express the quantities a, b, c, and To in
terms of the microscopic parameters J and J', we expand
(22) around the critical point up to and including & S'&:

= (4k T —J)&S &+ ( —k, T —J)&S &'
2 4 3 B
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have no singularities at T = To, we can replace with good
approximation T= To =J/4k~ in these terms. Thus, Eq.
(26) becomes

=—'(4k T —J)(S') +—'(4J/3 —J')(S')

+ —'J(S') (27)

It is observed from (27) that the coefficient b in the
thermodynamical expansion (25) is proportional to
4J/3 —J'. Therefore, a positive b implies J'&4J/3, and
the free energy describes a second-order phase transition.
In this case, the last term of the order of (S') can be
neglected. When b &0, J')4J/3, and F describes a
first-order phase transition, exactly the same as what
Landau's theory concludes. The critical strength
J'=4J/3 for the onset of first-order phase transition is
determined approximately here by the expansion around
the. critical point. It is, in fact, an exact result. '

To compare, in more detail, predictions near the criti-
cal point by the microscopic model and the macroscopic
theory, we plot the reduced free energy f =bF/NJ cal-
culated from (22) in Figs. 4 and 5. For the case of
second-order phase transition or J'&4J/3, Fig. 4 illus-
trates the behavior off at different temperatures. Above
the critical temperature To, the reduced free energy has
only one minimum at (S') =0, as shown in 4(a), while it

has two minima at +(S') and a maximum at (S') =0
for T & To, as shown in 4(c). Therefore, the paraelectric
phase is unstable below the critical temperature. When
T = To, the free energy as can be seen in 4(b) still has a
minimum at (S') =0, but the curve has a flat bottom in-
dicating a vanishing second-orPer derivative.

The case of first-order phase transition or J') 4J/3 is
depicted in Fig. 5. The reduced free energy has two mini-
ma at +(S') for T & To when the system is in the fer-
roelectric phase. This is illustrated in 5(a). Another

(a)

l l I

(b)

(a)

(c)

(b)

I I I

(c)

(e)
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8 0
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4 8
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0
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FIG. 4. Polarization dependence of the reduced free energy

f=SF/NJ near the second-order phase transition temperature
To. In our numerical calculations, however, we have intro-
duced the dimensionless temperature O=k&T/J. (a) T & To
and O=0.25009, {b) T=To and 0=0.25, (c) T & To and
0=0.2498.

FIG. 5. Polarization dependence of the reduced free energy
near the first-order phase transition temperature T, . (a) T & To
and 0=0.25, (b) T, & T & To and 0=0.25004, (c) T = T, and
0=0.25006, (d) To & T & T, and 0=0.25008, (e) T=To and
0=0.250 09.
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minimum with larger free energy occurs at (S') =0 for
temperatures within the range T, )T )T, , as shown in
5(b). This indicates that the system may be found in the
paraelectric phase, which is far less stable than the fer-
roelectric phase. Figure 5(c) shows the situation for
T=T, when three minima of equal free energy exist.
Thus, the two phases can coexist with equal stability, as
discussed in Sec. III. The order parameter changes
abruptly from (S'), to zero and the transition is of the
first order. When the temperature increases to above T,
but still below To, the minimum at (S') =0 has lower
free energy, implying a stable paraelectric phase and a
metastable ferroelectric phase. Figure 5(d) illustrates this
situation. When T = To, the ferroelectric phase starts to
disappear, as is shown in 5(e). The system can only be in
the paraelectric phase at this temperature, since it has a
minimum free energy only at (S') =0.

VI. DISCUSSIQN
We first showed in this article that the four-spin in-

teraction is responsible for the first-order phase transition

observed in the order-disorder ferroelectrics. The critical
four-body coupling strength J'=47/3 was then calculat-
ed by the method of retarded Careen's function. By inves-
tigating the variation of the order parameter (S') with
temperature, we found the conditions for the determina-
tion of the limiting temperatures To and To for the
stable paraelectric and ferroelectric phases, respectively.
For the special case in which the tunneling frequency
vanishes, approximate expressions for these limiting tem-
peratures were derived.

On the basis of the above results, the free energy of the
system was expressed in terms of the microscopic param-
eters, and the Curie temperature T, and the correspond-
ing order parameter (S'), were calculated. Finally, we
analyzed the critical behavior of the free energy at
different temperatures. Our conclusion from this analysis
is that, in the limit of small mean spin (S ), the micro-
scopic model completely predicts the same behavior of
the free energy near the critical point as the macroscopic
Landau theory.
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