
PHYSICAL REVIEW B VOLUME 40, NUMBER 10 1 OCTOBER 1989

Flux lattice melting in high-T, superconductors

A. Houghton, R. A. Pelcovits, and A. Sudbg
Department ofPhysics, Brown University, Providence, Rhode Island 02912

(Received 18 October 1988; revised manuscript received 4 May 1989)

We derive the wave-vector-dependent elastic moduli for a Aux line lattice in compounds with un-

derlying tetragonal crystalline symmetry. We find that it is essential to retain wave-vector depen-
dence of the moduli when dealing with compounds where ~ is large, as it is in the high-T, materials.
We use our results to establish a Lindemann criterion for Aux lattice melting, which we then com-

pare with experimental data on two materials, and find excellent agreement. The melting curves are
suppressed well below the mean-field superconducting-normal transition line and are linear in tem-

perature over a wide range of magnetic fields. The point 0=0, T=T, is approached as
1 —T/T, —H' . The degree of suppression of the melting curves among the different compounds is

accounted for in the main by differences in mass anisotropy.

I. INTRODUCTION

Many potential applications of the high-T, supercon-
ductors demand high critical currents. This, in turn,
makes detailed knowledge of the microscopics of the su-
perconducting fiux line lattice (FLL) of great importance.
To obtain high critical currents the formation of a Aux
lattice is essential since collective pinning allows relative-
ly few pinning centers to pin all of the Aux lines (FL's).
While there is now considerable evidence from Aux
decoration experiments' and mechanical measurements
that the vortex lattice melts well below T„which has
several obvious implications for potential applications,
there is at this time no theoretical agreement as to the
melting mechanism. One possibility which is appealing
because of the quasi-two-dimensional nature of these sys-
tems is the Kosterlitz- Thouless vortex unbinding theory.
However, as the observed melting in Bi2 2SrzCao 8Cu208
(Ref. 2) is essentially independent of whether the magnet-
ic field is applied parallel or perpendicular to the c axis,
this seems to be unlikely. Another possibility is simply
that the small coherence lengths and high-transition tern-
peratures make conventional thermal-Auctuation-induced
melting more likely. It is this scenario that we will in-
vestigate here.

We determine, within Ginzburg-Landau-Abrikosov-
Gorkov (GLAG) (Ref. 8) theory, the wave-vector-
dependent elastic moduli for a FLL in a compound with
underlying tetragonal crystalline symmetry. This calcu-
lation generalizes Brandt's earlier work on the elastic
moduli of an isotropic superconductor. As in the latter
case, we find that nonlocal effects (i.e., the finite wave-
vector dependence of the moduli) are crucial when deal-
ing with compounds where ~, the ratio of penetration
depth to correlation length, is large, as it is in the high-T,
materials. Specifically, the moduli are significantly softer
than- they would be in a purely local theory. We then find
the mean-square displacement of a FL due to thermal
Auctuations and use the Lindemann' criterion to esti-
mate the melting temperature of the FLL. For simplici-
ty, we only consider the geometry in which the magnetic
field is aligned parallel to the c axis of these highly aniso-

tropic materials (i.e. , perpendicular to the Cu-0 planes).
We show that the melting curves given by this criterion
are essentially parallel to the mean-field superconduct-
ing-normal phase boundary H, 2(T) over a wide range of
field values, but the point 0 =0, T = T, is approached as
(1—T/T, )-H' . The melting curves are suppressed
well below H, 2( T) due to the large value of tc, for tc values

10 the melting curve is indistinguishable from the
mean-field phase boundary. For compounds with
values in the same range the degree of suppression of the
melting curve below H, z( T) can be accounted for in
terms of the difference in mass anisotropy (i.e. , the spac-
ing between Cu-0 planes). It should be noted that the
conclusions drawn from this analysis do not apply to the
immediate vicinity of the lower critical field H„where
the FL spacing is of the order of the penetration depth or
more. " In this regime it has been argued that the ground
state is a superAuid entangled vortex liquid.

This paper is organized as follows. In the next section
we derive the elastic moduli by generalizing the earlier
work of Brandt to the case of tetragonal symmetry (i.e.,
uniaxial anisotropy of the effective mass tensor). These
results are then used in Sec. III to formulate a
Lindemann criterion for melting which is then compared
with experimental data. Technical details appear in the
appendices.

II. THE ELASTIC MODULI
OF AN ANISOTROPIC FLUX LATTICE
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In this section we derive the nonlocal (i.e., wave-vector
dependent) elastic moduli for a FLL in a compound with
underlying tetragonal symmetry. The starting point of
our analysis is the Ginzburg-Landau (GL) free energy of
an anisotropic superconductor given by
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Here M ' is an inverse mass tensor, V X A =H, e is the
electronic charge, and F is the free-energy density of the
superconductor relative to the normal state at H =0. To
a very good approximation the mass tensor for the high-
T, oxides can be written as

M=MT

1 0 0
T= 0 1 0

0 0 M

Z

(2.2)

Here the c axis has been chosen parallel to z and the Cu-
0 planes lie in the perpendicular (x,y) plane; M, is there-
fore a quasiparticle effective mass along the c axis and M
describes the Cu-0 planes.

We consider the situation in which an external magnet-
ic field is applied parallel to the z axis. The solution of
the linearized GL equations [derived from Eq. (2.1) on
setting 13=0] will therefore be the well-known Abrikosov
triangular FLL with FL's parallel to the z axis as in the
isotropic case. Hence, to derive an elastic Hamiltonian
from Eq. (2.1) we need only generalize Brandt's work on
the isotropic case where M, =M. We imagine a general
FLL defined by the locii of the zeros of the order parame-
ter, equivalently the centers of the FL's,

r (z)=R +s (z), (2.3)

(i,j ) =x,y, (2.4)

where c66, cL, and c44 are the wave-vector-dependent
shear, bulk, and tilt elastic moduli, respectively; to be
determined. An obvious approach one might take to
derive a Hamiltonian of this form from Eq. (2.1) would be
to take the Abrikosov solution with modified argument
Eq. (2.3), insert it into the free energy, and expand to
second order in s. However, not only does this linearized
solution fail to reproduce results obtained from thermo-
dynamics in the local limit (k~O), but cL and c44 even
diverge in this limit. The shear modulus, c66, however,
depends only weakly on k, and we will follow the usual
procedure of assuming it to be dispersionless. We now
outline a procedure, due to Brandt, which removes these
divergencies and moreover correctly reproduces the ther-
modynamic limit.

For convenience, we rewrite the free energy in dimen-
sionless form

where s, =[s "(z),s~(z), 0] is the displacement of the vth
FL from the position R =(X„Y„z)it acquires in the
Abrikosov solution. Then to study the fluctuations of the
FLL in the continuum limit, we define an effective elastic
Hamiltonian governing these fluctuations. For an ideal
triangular FLL the elastic Hamiltonian in the harmonic
approximation takes the simple form

H =
—,
' ps, (

—k)[ cI (k)k, k
k

+5; [c66(k)ki+c~~(k)k, ] Is (k),

f — co+ 2' +H + Vq —Ai
lK

2

=coo(x,y )[ 1+—,
' g(x,y ) ] +0 (s ) . (2.6)

An explicit expression for coo will not be needed and we
do not specify it further. In the continuum limit, g is
given by

rl~ri=2b~ (V s)/k~, (2.7)

where k z
=k +k and b = (H ),z/H, 2,H, z being the

upper critical field, which is ~ in these units. The brack-
ets ( ), indicate a space average.

The strategy now is to make a variational ansatz for
the solution of the full nonlinear GL equation by multi-
plying 1(& by a slowly varying complex function modulat-
ing both the amplitude and the phase of the order param-
eter, but leaving the zeros unchanged,

/=1(i(1+9/2) e' x,
co= i/i =co&(1+8) .

(2.8)

The functions 0 and y are then variationally determined
by minimizing the free energy, Eq. (2.5). In Appendix A
we show that after minimizing with respect to the local
field the free energy can be written

f = —co+ —,'co +cogiii+(M/M, )cogji, —h hii+B

(2.9)

Here B=(H), , H=Bz+h=VX Aii+VX Ai„
VX A& =8, and VX A„=h. The fields h and h~ satisfy
the second Gl equation which here takes the form

VXh= coT Q, —
(2.10)

VXhii = coT Qii, —

where T is defined by Eq. (2.2). The supervelocity Q is
given by

Q=Qa+ A (2.11)

where Qs =Qii &

—Vy and Q~ &
is the supervelocity of the

linearized theory

2
V,+ —A, (2.5)

Z

Here i~=ki/gi, Xi=[Me /4vr(2e) (P/~ta~ )], pi=(fi /
2M~a ), and co=~P~ . The lengths A, i and g~ are the
penetration depth and correlation length in the Cu-0
planes, respectively. The order parameter g is now mea-
sured in units of the London solution ~irj ~

=~a~/P, the
magnetic field is measured in units of &2H„where the
critical field H, =4vr(~a~ /P), and lengths are measured
in units of A,i. By co& we denote the two-dimensional (2D)
linearized solution obtained by inserting Eq. (2.3) into the
Abrikosov solution coo(x,y) and expanding the order pa-
rameter to linear order in s. For the moment, if we
neglect the shear deformation of the lattice, the result is
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Z X VQ)I
Qa, i

= — +zQa, i2K') I

B
Qs, =0,= — - (z.VXs) .

(2.12)

jp 2

c44(k ) — & coo )4~ M, ki+(M/M, )(k, +&coo))

(2.19)

The central part of the minimization procedure is the
determination, by solving Eq. (2.10), of the fields h and
h~ in terms of the variational functions I9 and g. The
solution is given in Appendix 8 and the results are

h=h'"+h

h~ —h~'+ hi
(2.13)

~&,)+ —zV s+ (2.14)

the spatial average of the Abrikosov order parameter

& coo) =(1—b)2a. /[(21c —1)P+1)]
and /3= 1.16 for the triangular ideal FLL. We find within
the geometry considered here that

h, =—

)
i(kXz)C

[k + & co ) + ( M /M, —1 ) & co )k, /k ]

(2.15)

where C =Q, —By/Bz + 2„';„and

a &~o& B
(z VXs),+ mo ()z

(2.16)

hP is found by deleting & coo) in the denominator of the
last term of h'" and

Here the isotropic component of the field h which was
derived by Brandt is given by

& coo ) ( 1+ri+ 8) —coo'"= Z
2K

and

c i i ( k ) =cL ( k ) +c66

g2 [k +(M/M )&Co )]
4~ (k'+ & co, ) )[k,'+ (M /M, )(k,'+ & co, ) ) ]

1

ki+(M/M, )k, +k~
(2.20)

where k
&
=2( 1 b) I/i—. Since the shear modulus is

essentially dispersionless and the magnetic field is applied
parallel to the c axis, we may use the result obtained pre-
viously for the local isotropic case

Bcz b(l —b)2

4~ 8~2
(2.21)

PL

c ) ) (k)k i +c44(k )k,
(2.22)

with elastic moduli given by Eqs. (2.19)—(2.21),
PT = (5;~.—k;k~ Iki ) is the transverse projection operator,
and PL =k;k Iki (i,j=x,y).

All of the results of this section were derived from the
GL theory and are applicable when the fields of many
FL's overlap, or if ~)&1 when —,'K & b & 1, i.e., at essen-
tially all fields of interest in the oxides. In the isotropic
case the moduli have been rederived from microscopic
theory' and shown to apply even at low temperatures.

This completes the derivation of the elective Hamil-
tonian governing the Auctuations of the FLL. The elastic
propagator therefore can be written

G;,.(k)=ksT PT

c66(k)k i +c44(k )k,

h&a
i (k Xz)Cs

1 &COO

Z k
(2.17) III. LINDEMANN CRITERION

AND THE MELTING OF THE FLL

f fo=-,'-[c&&(V s) +c44(B—,s) ], (2.18)

where fo is the Abrikosov contribution to the free energy
and the elastic moduli are given by

where C~ =Q, —By/Bz.
The unknown functions 0 and g are now determined

by minimizing the free-energy function equation (2.9)
with respect to 0 and y. The details of this calculation
are given in Appendix C; the result is d (T)= gs =gT G, (k) .

V k

(3.1)

Here & ) indicates a thermal average with respect to the
elastic Hamiltonian Eq. (2.4) and G;.(k) is given by Eq.
(2.22); hence

To examine the stability of the FLL against thermal
Auctuations we need to determine the mean-square dis-
placement of a FL from equilibrium

dk, g2 dk~

c66(k)k i +c44(k)k, [cL(k) +c66(k) ]@i + c44(k)k 2
=d, (T)+d2(T) . (3.2)
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Then according to the Lindemann criterion' the FL will melt when d ( T)=cl; here l is the lattice parameter of the vor-
tex lattice determined by the ffux quantization condition, v'3l /2= 4&o/8 for the triangular lattice considered here, 4o
is the ffux quantum and c is a constant typically of order 0.1. In Eq. (3.2) the ki integral has been approximated by tak-
ing it over a circular Brillouin zone of radius A, A =2b/gi. Henceforth, it will be convenient to introduce a dimen-
sionless wave vector q =k/A, in which case the nonlocal elastic moduli, Eqs. (2.19) and (2.20), as functions of q take
the form

c ( )= B (1 b) —M
44 1 4

1

qi+(M/M, )(q, +mi )
(3.3)

and

B (1 b)—c„(q)= 4~ 2b K'

(q + (M/M, )m & )

(q +mi )[qi+(M/M, )q, +(M/M, )mz]
1

qi+(M/M, )q, +m
&

Since c66 is dispersionless it is still given by Eq. (2.21). In
Eqs. (3.3) and (3.4) we have defined m&=(1 b)/b a—nd

mq =(1 b)/2b—~ .

The moduli, Eqs. (3.3) and (3.4), reduce to known ex-
pressions in the local limit but crossover to nonlocality is
at q ~ m&, which is extremely small in the high-T, ox-
ides, K~100. In the local limit c66 vanishes at b =1,
whereas c44 and c» achieve their maximum values at the
upper critical field. However, when q) m&, the lattice
softens significantly', all moduli vanish at b =1. The an-
isotropy of the elastic moduli is manifest in the ratio
(M/M, ); it should be noted that the eff'ect of anisotropy
is to modify the cutoff m& as well as to rescale q, .

To determine d (T) from Eq. (3.2) we must integrate
over the full Brillouin zone 0(q~(1. Therefore, it is
clear that a fully nonlocal theory is essential. For arbi-
trary field and temperature the integral over the two-
dimensional Brillouin zone, Eq. (3.2), can only be evalu-
ated numerically; however, with some restrictions, ana-
lytic results can be found. The contribution to d (T)
from the first term of Eq. (3.2) can be evaluated analyti-
cally for all b ) 1/2K; however, useful analytic forms for
the second term, which involves the bulk modulus cL,
can only be found subject to the further constraints that
m& ((1, i.e., b ))—,

' or m&))1; b «-,'. We will discuss
the latter in detail as this condition is generally well
satisfied on the melting curve near T„and, as we shall
see, in Bi2 2Sr2Ca0 8Cu208 over the whole field and tem-
perature range. We find that

d, (T)= A
0 0c44c 66

1/2
2b

XK
1 —b

1/2
Z

M

(3.5)

for b) 1/2K and

dz(T) = k~T

C44C 11
0 0

1/2

K
b

1 —b

(3.6)

for b) I/2' and (1—b)/b)) l. In Eqs. (3.5) and (3.6)
the results of isotropic local elasticity theory are given by

the terms in square brackets. The local elastic constants
c4&, c66, and c ii can be obtained from Eqs. (3.3) and (3.4)
in the limit q —+0. In the local limit, dz(T) is negligible
compared to a'&(T) as c66, which is always less than c ii,
vanishes at b =1. The mean-square variance of a vortex
line in an anisotropic superconductor within local elasti-
city theory has been inferred previously by Nelson and
Seung. Local elasticity theory, however, significantly
underestimates the elastic response of the vortex lattice
as can be seen from Eqs. (3.5) and (3.6); both d, (T) and
dz(T) diverge as b ~1. In addition, d, ( T) is enhanced
by a factor of v, dz( T) by a factor of v, a result of no im-

port for conventional pure type-II superconductors, K—= 1,
but a dramatic effect in the high-K oxide superconductors.
The variance d is also enhanced as a result of anisotropy
as conjectured in Ref. 7. However, the origin of the
enhancement factor of (M, /M)' in Eqs. (3.5) and (3.6)
is in the anisotropy of the nonlocal elastic constants. In
the local limit the elastic constants are independent of
(M, /M). As a result the in-plane elastic correlation
length gi, which can be estimated from local theory, is a
factor of (M/M, )'~ smaller than inferred in Ref. 7 and
the aspect ratio of a correlation volume (g, /gi) is corre-
spondingly more anisotropic. In related work, within iso-

tropic GL theory, Moore has estimated d (T) from an
effective Hamiltonian deduced from the behavior of the
shear modes of a Iigid FLL. He found

dq
d (T)=ks TA—

o 2' o 277 c66(q)qi~+p q~
(3.7)

where p, is the super Quid density. This result is
recovered from d i ( T) in Eqs. (3.2) and (3.3) in the nonlo-
cal limit q )m& and as such gives a good estimate of this
contribution to the variance of an FL. The effective
Hamiltonian leading to Eq. (3.7), therefore, does not
correctly describe the physics in the local limit q ~0, the
limit of interest for critical phenomena, when, as can be
seen from Eq. (3.3), local elasticity theory is recovered.
Therefore, we believe Moore's conclusion, that the lower
critical dimension for superconductivity is d =3, to be in-
correct.

Introducing the explicit values of the elastic constants
we find
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d (T)= 1

2'

1/2
eM,

(3.8)

and the melting criterion is given by

[t/(I —t)'/ ][b'/ /(1 —b)][4(v'2 —1)/(1 b—)'/ +1]&2m.
M

—1/2

C:—CX (3.9)

Here t =T/T„and e is the Ginzburg criterion parame-
ter

e = 16m a. ( k~ T, ) /4&OH, ~ .

In arriving at Eqs. (3.8) and (3.9), we have used the result

H, z( T) =H, z(1 t). su—bstituting the values of the univer-
sal constants we find

a —=2 X 10 c (H /T2)1/2(M/M ) I/2/&2

Typical parameters for a conventional superconductor
are ~—= 1, H, 2

=—10 G, and T, =—10 K which, when setting
the mass ratio equal to unity and taking c =0.1, gives
e—= 10 which, in turn, means that the effect of thermal
fluctuations in these materials is negligible unless
H =—H, 2. However, in the high-T, superconductors
~—= 100, H, 2

=—10 G, T, =—100 K, and the mass ratio
(M, /M)=—10 which gives a=—10 ' a reduction of 5 or-
ders of magnitude and hence the Aux lattice should be
melted over a wide range of field H &H 2. Most of this
effect is due to the increase in ~, i.e., a- I/v . However,
for fixed K the effect is more pronounced as the mass ratio
(M, /M) becomes larger, i.e., as the spacing between the
Cu-0 planes increases. For T-=T, it is easily seen from
Eq. (3.9) that the shape of the melting curve near T, is
given by H'/ ~ (1—T/T, ).

Finally we compare the melting curve deduced from
the Lindemann criterion with the experimental results of
Gammel et al. We have integrated Eq. (3.2) numerical-

ly over the two-dimensional Brillouin zone with elastic
moduli given by Eqs. (2.21), (3.3), and (3.4). To compare
with the data for YBa2Cu307 we took ~=50, the mass ra-
tio (M, /M)' -=5 (deduced from the ratio of the parallel
and perpendicular critical field slopes given by Iye
et al. '

), H, &
=440 kG, and T, =87 K, the latter two

values were given in Ref. 2. The Lindemann parameter c
was then varied to give the best fit to the data. The result
with c =0.4 is shown in Fig. 1. Fixing c and using pa-
rameters for Bi2 2Sr2Ca0 8Cu208 obtained from Palstra
et al. ,

' (M, /M)' =60, H, ~=440 kG, T, =87 K (these
values were found using the midpoint of the resistivity
curve), the data was best fit with a=95, which is within
the range quoted by Batlogg et al. ' (Fig. 2).

IV. CONCI. USIDNS

In conclusion, we have derived a nonlocal elastic
theory for a FLL in a superconductor with underlying
tetragonal symmetry. In the high-T, materials where ~
and M, /M are large, the elastic moduli are found to be
significantly softer than those predicted by an isotropic,
local elasticity theory. Accordingly, a Lindemann cri-
terion based on the nonlocal theory predicts melting
curves suppressed well below the mean field H, z(T) due
to the large value of K, with features in general agreement
with experimental data on a variety of compounds. The
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FIG. 1. The phase diagram for Aux lattice melting in
YaazCu307. The solid line is given by Eq. (3.9) with c =0.4,
K —50, ( M, /M )

' = 5, and T, =87 K. The experimental data
from Ref. 2 is denoted by the squares. The dashed line indicates
H, &(T)=440 kG (1—t). For values of K less than about 10, the
melting line given by Eq. (3.9) would be indistinguishable from
the straight dashed line.

FIG. 2. The phase diagram for Aux lattice melting in

Bi»Sr&Cao 8CuzO8. The solid line is given by Eq. (3.9) with
c =0.4, K=95, (M, /M)' =60, and T, =87 K. The squares
denote the data from Ref. 2 for this material, and the dashed
line indicates H, z(T)=440(1 —t). Note that the data points
would extrapolate linearly to a point on the T axis, well below,
while the theoretical curve predicts a sharp bend in the melting
line at low fields towards the point 0=0, T = T„which is ap-
proached with zero slope.
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predicted melting curves are linear over a wide range of
fields but the point H =0, T = T, is approached as
1 —T/T, -H' . It is remarkable that despite this cur-
vature, the data of Ref. 2 can be fit with parameters
which are in the general range of those quoted for
YBa2Cu307 and Biz 2SizCa0 3Cu208 Measurements on
TIBa2CaCuO (Ref. 16) and on Bi22Sr2CaasCu20s and
T1Ba2CaCuO (Ref. 17) in weak fields exhibit positive cur-
vature consistent with the picture given here and in con-
trast to the melting curve deduced from 2D melting
theory which has negative curvature. ' The degree of
suppression of the melting curves below H, 2(T) among
the different compounds is mostly accounted for in terms
of the difference in mass anisotropy (i.e., the spacing be-
tween Cu-0 planes). It should be noted that the con-
clusions drawn from this analysis do not apply to the im-
mediate vicinity of the lower critical field H, i where the
FL spacing is of order of the penetration depth or more. "
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APPENDIX A: THE FIELD-DEPENDENT TERM
IN THE FREE ENERGY

We consider the field-dependent terms, denoted by f
in the free energy, Eq. (2.5), with general anisotropy

f =(cog;T;, Q, +H ) . (A 1)

Here Q=QB+ Ah, H=Bz+h, VX Ah =h, and QB is
defined in the text. Noting that, given the symmetry of
the mass tensor,

(V XhB ); = coT—; QB

and then the second term in Eq. (A7) can be written

—Ah (VXhB)=V (Ah XhB) —hB (VX Ah) .

Again, after discarding the total derivatives, we find

(A8)

(A9)

= ( ocg BT, QB
—hB h ) +B (A10)

Consequently, when the specific form of T, [Eq. (2.2")] is
used, the free energy is given by

f = ( —co+ —,'co +cogBi+(M/M, )cogB, —h hB ) +B

(A 1 1)

where the fields h and hB satisfy Eqs. (A4) and (AS), re-
spectively.

APPENDIX 8: SOLUTION TO EQ. (2.9)

We now consider in some detail the solution to Eq.
(2.10) of the text

(VXh), = coT, Q, . —

In vector form, with T; given by Eq. (2.2), (Bl) can be
written

V Xh= —co Q+ —1 zg,
M

Z

Here Q=Q"'+ Ah„Q"'=QB+ Ah", Ah = Ah" + A„„
VX Ah h=VX A +VX Ap]=h +h]

where h'" satisfies

(A7)

Now, after discarding total derivatives, we dePne a field
hg via

Qi Tij Qj QBi Tij QBj + ~hi Tij ~hj +2 ~hi Tij QBj V X hlso — Qlso (B3)

coTj Ahj+2coTjQB +2(VXh), =0, (A3)

and that 8 =B +h, since the cross term represents a
total derivative, we minimize (Al) with respect to Ah
and find

Equation (B3) has been analyzed in detail in Ref. 9 and
has the solution

[(co )(1+i)+8)—co ]'"= z
2K

or equivalently

(VXh), = arT, Q"—
Here we have used the identity

5 (VX Ah) =2(VXh)
6Ah

valid in the gauge V AI, =0. Furthermore, as

(A4)

(A5)

B&co, &+
k +(co0)

Bs—zV.s+
Z

—V h, = —(co0)h„—

where r1=2bic (V s)/ki. We find that hi satisfies

(B4)

(VX Ah) = Ah. (VXh)+ (A6)
—V'h„= —(co, )h, + —1 (co, )c) Q, , (B5)

M,

where the ellipsis represents surface terms; using this re-
sult together with Eq. (A5) we find that f at its
minimum is given by

hi, =0,
where
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Q, =.Q,'"+Aq„,
C =Q,'-=0, —ay/az+ ~„' (87)

A„";=(B/k )[(co )(k +(co ) )][(BIBz)(z.VXs)],

l

k
X

Fourier transforming, Eq. (810) takes the form

(k +(coo))h, = —(coo) —1 ik C-
Z

(89)
and

Q, = (B—Ik j )[(8IBz)(z.V X s) ] .

(k'+ (,) )h „=(,) —1 ik„C-
M,

l

k
X

Then, on using VX Ag]=b& and V. A&, =0, it can be
shown that

(88)

and therefore,

iki iX
~ 2

(k +(coo)) k
(810)

where X—=k h&„—k h&, we can now solve for X. After
I

k~ C
k' [k'+ (,) +(MIM, —1)(,)k', Ik']

C' [k'+ & ~,&+(MIM, —1)& ~, &k', Ik'] '

Using this result together with Eqs. (85) and (86), we find h, and h, are given by

M
h „=—&coo)

Z

(811)

(812)

z

C' [k'+ (~, )+(M/M, —i)(~, )k', /k']

By a similar method we obtain

l ky
h, s, = —(coo) —1 Cs,

M,

M
h )gy (coo) 1

Z

—
Q

Xa
B z

ik

k
CB, (813)

Equations (812) and (813) can be written in vector form as follows:

h =—
1

h&B

M C
M, [k~+(coo)+(M/M, —1)(coo)k|/k ]

—1 (coo)(ikXz)

CB—1 (coo)(ikXz)

(814)

(815)

Equation (814) together with Eq. (84) then solves Eq. (81).

APPENDIX C: MINIMIZATION OF THE FREE ENERGY

Using Eq. (2.9) in conjunction with the results of Appendices A and 8, the free energy can be written

&~o)

4 2
k2( —~g)2~k2g2~ 9 ~( ) k2 2~ g X

)~O Z& ~ z

k(k+ coo ) M, 2b~

k
,
' &cc, )

k

&~o) M —1
M,

(C(a/az)(z VXs))
[k + (coo)+(M/M, —1)(coo)k~/k ]

&~oo) M Ca+B .
—1

2
(2 2X22))tB22-

k'+&co, & M, k' Bz

(Cl)
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where fo is the free energy of the ideal, nondeformable FLL (the Abrikosov solution) given by

f = —(co )(1—b)+ (co ) [(2g —1)P+1]+B1

which, when minimized with respect to (coo), gives

(1 b)2—a.
(~o&=

(2a —1)P+1
The variational functions 8 and y are now determined by minimizing the free energy, Eq. (Cl), with respect to 8 and g.
Varying with respect to 0 gives

and

[k~+(M/M, )k, ]
[k~+ki+(M/M, )k, ]

(C2)

q+ 0=2hz
[k ~+ kl+(M/M, )k, ]

and varying with respect to g gives

(C3)

and

kB z M
k k M,

1
2

(z VXs)
ki+(M/M, )(k, + (coo) )

(C4)

By B
Bz

M
M,

k,
(z VXs).

k', +(M/M, )(k,'+ (~, ) ) Bz

Substituting these expressions involving the variational functions 0 and y into the free energy, Eq. (Cl), and using
'I=2hz (V s)/k~ together with

(k.s) +(kiXs) =kis

the free energy reduces to

f f0= —,'[c„(V s)—+c4'(Bs/Bz) ],
where c4' and c» are given in Eqs. (2. 19) and (2.20), respectively.
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