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Gap energy and long-range order in the boson-fermion model of superconductivity
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From the observations of very small coherent lengths for all high-temperature superconductors,
we conclude that the pair state is reasonably well localized in the coordinate space and therefore
can be represented phenomenologically by a local boson field P. The underlying mechanism for su-

perconductivity is assumed to be through the "s-channel" reaction 2e~g~2e. This leads to a
mixed boson-fermion model. We examine the long-range order, gap energy, and Meissner e6'ect in
such a theory.

I. INTRODUCTION

A. Small coherence length

emission and absorption of phonons,

2e —+2e+phonon~2e . (1.2)

The observation' of a small "coherence length"
g(=10 A) in the newly discovered high-temperature su-
perconductors ' indicates that the pairing between elec-
trons, or holes, in these materials is reasonably localized
in the coordinate space. Hence, the pair state can be well
approximated by a phenomenological local boson field
P(r), whose mass M is =2m, and whose elementary
charge unit is 2e, where m, and e are the mass and charge
of an electron. It follows then that the transition

2e —+$~2e
must occur, in which e denotes either an electron or a
hole; furthermore, the localization of P implies that phe-
nomena at distances larger than the physical extension of
P [which is O(g)] are insensitive to the interior of P.
Since g is of the same order as the scale of a lattice unit
cell, it becomes possible to develop a phenomenological
theory of superconductivity based only on the local char-
acter of P. The purpose of this and a previous paper is
to demonstrate that this is indeed the case.

Of course, physics at large does depend on several
overall properties: the spin of P, the stability of an indivi-
dual P quantum, the isotropicity and homogeneity (or
their absence) of the space containing iI), and so on. The
situation is analogous to that in particle physics: the
smallness of the radii of pions, p-mesons, kaons, . . .
makes it possible for us to handle much of the dynamics
without any reference to their internal structure, such as
quark-antiquark pairs or bag models. Hence, the origin
of their formation becomes a problem separate from the
description of their mechanics. An important ingredient
in this type of phenomenological approach is the selec-
tion of the basic interaction Hamiltonian that describes
the underlying dominant process. In the usual low-
temperature superconductors, g' varies from about 10 to
a few hundred A. The corresponding pairing state P is
too extended and ill defined in the coordinate space;
therefore (1.1) does not play an important role. Instead,
the BCS theory of superconductivity is based on the

In the language of particle physics, (1.1) is an s-channel
process, while (1.2) is t channel. (See Fig. 1 for nomencla-
ture. ) The BCS theory may be called the t-channel
theory. As we shall see, the s-channel reaction (1.1) leads
to a new theory (which, however, shares many features in
common with the BCS theory) -of superconductivity,
whose validity rests only on the localization of P, and is
independent of the detailed microscopic origin of the
pairing mechanism; in addition, its long-range order can
be represented by the macroscopic occupation number of
the zero-momentum bosons, as in the Bose-Einstein con-
densation. Together, these two (s-channel and t-channel)
formulations provide a rich body of theoretical means,
which may prove useful in analyzing the large variety of
superconductivity and superAuidity phenomena that exist
in nature.

The use of a boson field for the superAuidity of liquid
HeII has had a 1ong history. However, there are some
major difFerences in the following application to (high-
temperature) superconductors.

(1) The P quantum is charged, carrying 2e, while the
helium atom is neutral.

(2) We assume each individual P quantum to be unsta-
ble, with 2v as its excitation energy. (As we shall see, this
assumption makes it possible for the s-channel theory to
exhibit many BCS-like characteristics, yet without the
isotope effect. )

In the rest frame of a single P quantum, the decay

$~2e

occurs, in which each e carries an energy

k —V
2t1l

Consequently, in a large system, there are macroscopic
numbers of both bosons (the P quanta) and fermions
(electrons or holes), distributed according to the princi-
ples of statistical mechanics.

At temperature T & T„ there is always a macroscopic
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FIG. 1. In e(k& )+e(k2)~e(k3)+e(k4. ), in terms of the two initial and two final four-momenta there are only two independent
kinematic scalars (excluding k&, . . . , k4). It is customary to label s =(k&+k2) =(k3+k4) and t =(k) —k3) =(k4 —k2) . (i) is a
t-channel reaction and (ii) is s channel.

distribution of zero-momentum bosons coexisting with a
Fermi distribution of electrons (or holes). Take the sim-
ple example of zero temperature. Let c.F be the Fermi en-
ergy. When EF=v, the decay $~2e cannot take place
because of the exclusion principle, ' therefore the bosons
are present. Even when cF & v, there is still a macroscop-
ic number of (virtual) zero-momentum bosons in the form
of a static coherent field amplitude whose source is the
fermion pairs. This then leads to the following essential
features of the present boson-fermion model.

As we shall see, below the critical temperature T, the
long-range order in the boson-fermion model can always
be described by the zero-momentum bosonic amplitude 8
of the P field, as in the Bose-Einstein condensation (and
therefore similar to liquid Hei?). Because of the transi-
tion (1.1), the zero momentum of the boson in the con-
densate forces the two e's to have equal and opposite mo-
menta, forming a Cooper pair. Therefore the same long-
range order also applies to the Cooper pairs of the fer-
mions. Furthermore, the gap energy. . 6 of the fermion
system is related to B by

concentrate on the two-dimensional Cu02 plane; their
tunneling between these planes gives rise to the three-
dimensional character. The average separation c between
Cu02 planes is approximately constant for different ma-

terials:

c—=6 A

Introducing a two-dimensional density

0 =pc

one may express (1.4) as

T, cuba. /m* . (1.4')

Because in a two-dimensional Fermi distribution of mass
m*,

cF/kg Tc = 16

EF —7TO/m'
the experimental results (1.4) and (1.5) can also be stated
as

where g is the coupling for P —+2e.

B. T, versus (carrier density/mass)

Recently, Uemura et al. discovered that in all (high-
temperature) cupric superconductors there is a universal-
ity law:

T, ~p/m*, (1.4)

where p is the number density of superconducting charge
carriers and m* their effective mass; the proportionality
constant is the same for all materials, about

40 K to 4X10 cm /m, , (1.5)

assuming each carrier bears a charge e. Uemura et al.
point out that in a two-dimensional system the density of
a Fermi distribution is proportional to the Fermi energy

In these cupric superconductors, the charge carriers

40 K to 10 cm /m, . (1.5')

In a Bose-Einstein transition, the following two lengths

for all cupric superconductors where kz is the Boltzmann
constant. (The above ratio is independent of the effective
mass m '.) However, the BCS theory relates T, not to cF
but to a Debye frequency coL) « cF, which is quite
different. Furthermore, it seems difficult to account for
the large constant ratio 16. (See, however, the mecha-
nism proposed by Emery and Reiter, in which coD is re-
placed by a much higher-energy scale —eF.) In an s-
channel theory, the relevant fermionic energy scale is c.F,'
therefore it is natural to have T, ~EF. [See, e.g., (5.23)
below. ]

One may explore an alternate possibility. If the mea-
sured p is interpreted as due to bosons of charge 2e on
planes with the same spacing c, the proportionality con-
stant (1.5) would be reduced by a factor 4; it becomes
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k~o =—8, (1.6)

i.e.,

Xr/d -=2&2

for all cupric superconductors. (Again these numbers are
independent of M; i.e., m *.)

For an ideal two-dimensional boson system, there is no
Bose-Einstein condensation; the corresponding values for
(1.6) would be logarithmically ~. However, the cupric
superconductors are three-dimensional structures, made
of parallel layers of Cu02 planes. Even without a definite
theoretical idea, one may approach the problem heuristi-
cally by using the ideal two-dimensional boson formula
but introducing an infrared cutoft I ' for the boson
momentum k; this gives

A, z.o. =1n(2Ml ks T)=—8

and (for M -2m, and T-40 K)

I, —103 A,
which is of a reasonable magnitude. (The same formula
would imply a variation of about 10% from La, 214, to
Th, 2223. )

In practice, there can be several candidates for I: the
transitions between Cu02 planes render the system three
dimensional and give rise to superconductivity and
Meissner efFect (the typical London length is about the
same order as the above l). Alternatively, in our model
the logarithmical divergence is removed by the presence
of fermions, which (as we shall see) can cause a change in
the bosonic low-energy excitation spectrum; in addition
the phase transition can take place at a chemical poten-
tial lower than the boson threshold. We do not yet have
a clear theoretical understanding of l. Nevertheless it
seems promising to interpret (1.4') as due to some com-
bined two-dimensional action of fermionic Cooper pairs
and bosonic pairing states. A11 these possibilities give an
important additional impetus for the study of the boson-
fermion model. [The charge density deduced from the re-
cent muon spin-resonance experiment is lower than that
inferred from stoichiornetric measurements; the new
value gives (1.6), which alters our previous view concern-
ing the relevance of Bose-Einstein condensation. ]

C. A prototype s-channel model

In this paper, we discuss the prototype of a boson-
fermion model (or an s-channel theory of superconduc-

should be of comparable size:

d =o '" and Xr =+2~/Mks T, ,

where d is the interparticle distance, A. z- the thermal
wavelength, and the-boson mass M is now the carrier's
mass m *. Set T, =40 K. Using (1.5') and c =6 A, one
finds the corresponding two-dimensional density-to-mass
ratio to be

o /M =pc/m'=-6X 10' cm /m, .

Hence, in terms of the boson picture, the experimental re-
sults (1.4) and (1.5) may also be stated as

tivity). We assume P to be of spin 0 and that the space
containing P is a three-dimensional homogeneous and
isotropic continuum (except in Sec. VII when we discuss
the two-dimensional model). As noted before, for realis-
tic applications, a more appropriate approximation of the
latter would be the product of a two-dimensional x,y con-
tinuum (simulating the Cu02 plane) and a discrete lattice
of spacing c along the z direction. The two-dimensional
layer character of Cu02 planes helps in the localization of
the pair state in the z direction, making the P quantum
disc shaped. The space that P moves in becomes a three-
dimensional continuum when c~0, but two dimensional
when ciao. This interesting case, plus the generaliza-
tion to higher spin, are planned to be discussed in a
separate publication.

Here we consider an idealized system consisting of the
local scalar field P and the electron (or hole) field g
where cr = 1 or 1 denotes the spin. The Hamiltonian is
(A'= 1)

H =Ho+H]

in which the free Hamiltonian is

Ho= f pt 2vo — V' /+re 1
V g d r

2m

(1.8)

with the repeated spin index o. summed over and f denot-
ing the Hermitian conjugate. The interaction H] can be
either a local Hamiltonian,

H, =g f (P g&P&+H. c. )d r,
or a nonlocal one,

H, =g J d r f d I p (r)f& r+—I

(1.9)

Xg r ——+H. c. u(l)I

Both P and ilj are the usual quantized field operators
whose equal-time commutator and anticornmutator are

[P(r), P (r')]=5'(r —r') (l.10a)

Ig (r), gt.(r')I =5 .5 (r —r') . (1.10b)

The total particle number operator is defined to be

N= f (2$ /+gag )d r (1.11)

which commutes with H and is therefore conserved.
Expand the field operators in Fourier components in-

side a volume 0 with periodic boundary conditions:

y II—1/2 ik r

k

(1.12a)

with the coupling constant g and the form factor u(l)
both real, and u(l ) satisfying

u(l)d l =1 .
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and

y II—I /2 b e i k r

k

(1.12b)

with Iak, ak', 'I t'k, k'~ ' l. bk bk'f ~kk' e««na-
tion (1.9') can then be written as

In Sec. VII we discuss the case when the space dimen-
sion D =2. It is well known' that the long-range-order
parameter B of the Bose condensate disappears in this
case. We give arguments which suggest that the gap en-
ergy h=g(B*B)' may remain. -If so, there is still a
phase transition in D =2, and it should at least exhibit
quasisuperconducti U&ty.

Hi = —y(b pap/2+k tap/2 k $uk+H. c.),p p p

where

u„=f u(l)e'"'d'i .

(1.13)

(1.14)

II. LONG-RANGE ORDER

To derive the long-range-order parameter, it is con-
venient to add to the Hamiltonian H of (1.7) an
infinitesimal term that breaks the N conservation. Define

In (1.7), 2vo is the "bare" excitation energy of P. Be-
cause of the interaction, the "physical" (i.e., renormal-
ized) excitation energy 2v in reaction (1.3) is given by

HJ =H+ f (j'p+j p )d r, (2.1)

where j is a constant (i.e., r-independent) infinitesimal.
The corresponding grand partition function is

lu„l2
2v=2vo+ g P

2A k v cok

—P(H. —pX)6 =tre
J (2.2)

where P denotes the principal value and

(1.16)

with p being the chemical potential (same as the Gibbs
thermodynamic function per particle), and p=(kii T)
The ensemble average of any operator 0 is

(2.3)
The decay width I is given by

I =(g /m)m &v/2(u„i (1.17)

at k =(2mv)'/ . In the following, we assume for simpli-
city

uk=1 for I &W. (1.18)

Because the theory (1.7)—(1.9) is renormalizable, most of
the physical applications are insensitive to the ultraviolet
cutoff A; i.e., we may take A = ~.

In Sec. II we examine the definition of the long-range-
order parameter 8. The thermodynamic functions are
calculated in Sec. IV by using the Bogoliubov-Valatin
transformation ' introduced in Sec. III. The details of
temperature and density variations of the gap energy 6
and the chemical potential p are given in Sec. V. One
sees how the typical BCS-type formulas can be analytical-
ly connected to the standard Bose-Einstein expressions.
In this way, these two approaches become further unified
in the boson-fermion model.

The Meissner effect" is examined in Sec. VI. For com-
pleteness, we give a self-contained analysis of the (well-
known) spontaneous symmetry-breaking mechanism.
The difference between the particle number N =0 sector
(as in the usual standard electroweak theory in elementa-
ry particle physics) and the N macroscopic and %0 sector
(important for superconductivity) is emphasized. For ex-
ample, in a relativistic theory without the electromagnet-
ic coupling (i.e., e =0), the Nambu-Goldstone boson' '
travels with the velocity of light c in the former case, but
with the sound velocity &(c in the latter. Yet, all these
can be brought into a single formulation. As we shall see,
the s-channel theory has an intrinsically simpler structure
than the t-channel theory, ' this makes it possible to take a
deductive approach, thereby rendering the model attrac-
tive on the pedagogical level.

and

8 lna
(b &= —k Tn-'/2

(b,'& = k, Tn '/2—-8 lna

J

r) lna
Bp

(2.4)

(2.5)

The long-range-order parameter 8 is given by the double
limit

B = lim lim 0 '/ ( bo ) .
j—+p Q~ oo

(2.6)

As we shall see, below the critical temperature T„BAO;
furthermore,

B'B=lim lim 0 '(hobo) .
j~p Q —+ oo

The order of double limit in (2.6) is important, since

(2.7)

lim lim ( b o ) =0,
Q —moo j—+Q

(2.8)

even though in the same double limit

lim lim 0 '(hobo) =B*B,
Q~oo j~O

(2.7')

identical to (2.7).
Introduce p as the Leg endre transform of

0 kii T 1naj in the limit of infinite volume:

Regard in@~ as a function of j, j*,and p (besides T and
Q). Because the partial derivatives of H/ —pX with
respect to j*, j, and p are 0'/'bo, nl/2bo, and N, we-
have (with bo, bo denoting bk and bk at k=0)
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p. —= lim Q ' ksTlna + f (j *P+jP )d r (2.9)

which, through (2.4), can be regarded as a function of

is also invariant under an arbitrary x-dependent a(x)
transformation. SuperAuidity is then connected with the
long-range coherence of the gauge-invariant relative
phase

B.:—lim Q '~ (bo),
Q —+ oo

B.'—= lim Q ' (bt )J Q~ oo

and p. We find

Bp.J
M

(2.10)

(2.11)

I

P (x')exp 2ie f A„dx„g(x),
x

(2.16)

III. A CANONICAL TRANSFORMATION

Let

where A„ is the electromagnetic four-potential, 2e is the
charge carried by P, and x and x' have spacelike separa-
tion.

Bpj

J

(2.12)
ak $ =ai, )cosek —e a i, gsinek,lf

a k g
=e' ak gsinOk+a k gcos8k,

(3.1)

p =llmpJ
j—+o

(2.13)

To evaluate the ground-state energy 6 d of H, or the
partition function 6, we may regard H, of (1.9) as the
perturbation and

Ho+ f (j *p+j p )d r (2.14)

In the limit j—+0 we have B ~B, BJ.*~B*,and p be-
comes the (physical) pressure of the system b, =b, —n'~'B,

bk =bk (kAO),

where

8 = fB(e'&,

sin28k =g8~/Ek, cos20k =(co& p)/Ek, —

E =[(ai —p) +g2~8~~]'

(3.2)

(3.3)

(3.4)

as the zeroth-order Hamiltonian. Either lsd or lna~ can
be expressed as a sum of one-loop, two-loop, . . . , dia-
grams of the perturbation series. The summation of all
one-loop diagrams can be done explicitly. In the next
section, we shall calculate the same sum by a simpler
method through the use of a canonical transformation U
which is a product of a Bogoliubov-Valatin transforma-
tion ' times a translation in the P space.

Evidently I ak ~, a k ~ ] =5k, k 5 ~ [bk b k ]=5k k, the
transformation (3.1) and (3.2) is therefore canonical.

Then from (1.7)—(1.11) and (2.1) we have

' k'
Vf =HJ —pX =g — +2(vo —p) b kbk

k

+(cok —p)ak ak +H, +Qs

A. Remark

which can be written as

&=%0+%,+Qs~ +&;„,, (3.5)

Since the theory is invariant under a constant phase
transformation

0e"

where, in terms of the transformed operators ak and bz,

&0=g(cok p Ek )+2(vo ——p)—QB *8

and

4.e'

(2.15)

k

k
2M

+2(vo P) b kbk+Eka k, ak,

the absolute phase angle of the long-range parameter B is
not an observable. The introduction of an infinitesimal
symmetry-breaking j which determines the phase of B
[given by (4.11) in Sec. IV] is only a mathematical device.
All physical quantities depend on B*B. However, the
relative phase between P(x) at two different spacelike
separated points x and x' is an observable. It is the long-
range coherence in this relative phase that gives rise to
the superAuidity of liquid He II, in the example when the
P field represents a macroscopic system of helium atoms.
When P carries an electric charge, as is the case here,
with the inclusion of the electromagnetic field the theory

(3.6)

A, =2(vo —p)Q' (8*bo+Bb 0),
s =Q '~(j b +jb )J

=j*(8+ho/Q'~ )+j (8*+b 0/Q' ),

(3.7)

(3.8)

6 =tre
J (3.9)

and &;„,is cubic in bk, ak, and their Hermitian conju-
gate (but independent of j). The partition function (2.2)
can be evaluated by using
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In (3.2), B is just a constant parameter. Anticipating
(2.6) and (2.10), we require (since j~0 in the end)

O' B =6~ 'tr(boe ~ ),
which, because of (3.2), is equivalent to

6, (b 0) =tr(b()e ~ )=0 .

(3.10)

(3.11)

U, =exp(Q' Bb —O' B*b ), (3.12)

We note that ak, bk can also be obtained from the un-

itary transformation defined by U = U, U2 where
v —

)L(, =Q g tanh —,pEk+P 1

4, E, V COk
(4.3)

2

v()
—p, —0 ' g tanh —,'pEk =0 .

k k

[This is obtained to leading order by using (4.1) which
omits &;„,entirely. The same equation can be obtained
directly from (3.11) but only by including &;„,to first or-
der. ] By using (1.15), we may express the above formula
in terms of the physical excitation energy 2v of the P
quantum:

2 exPy Ok( k, t —k, 1 —k, i k, ] )
k

as

ai, = U2a~ U2, bi, = U, bkU, .

(3.13)

(3.14)

where P denotes the principal value. The right-hand side
is convergent in the ultraviolet region. Hence, we may
take the ultraviolet cutoff' A of (1.18) to be ~. The parti-
cle density p—= (,N)/0 is given by (Bp/B)M)T2), which
gives

The ground state of &0 is just UlO) where

ak lO) =b lkO) =0 for all k, o. (Therefore (2k UlO)
=bkUlO) =0.) The state UlO) is analogous to the trial
wave function in BCS theory. Our theory has the
mathematical advantage that the corrections to UlO) can
be evaluated perturbatively in a systematic way.

We may either regard H
1

of (1.9) as the perturbation
or, alternatively, regard the corresponding

(3.15)

as the perturbation. The former contains one-loop as
well as two-loop, three-loop, . . . , diagrams; the latter
has no one-loop diagram when (3.11) is satisfied. The ap-
plication of the canonical transformation (3.1) and (3.2) is
then equivalent to summing over all one-loop diagrams.
Note that &, is linear in bo and b (), because of (3.11) it is
reasonable to include &, as part of the perturbation
(3.15). Condition (3.11) is equivalent to (2.10), which led
to (2. 11) and (2.12). As we shall show, it also determines
B. [See (4.3) for lBl and (4.11) for the phase of B.]

IV. THERMODYNAMIC FUNCTIONS

p(mo+n. . )
The zeroth-order Q is tre ' ' . By using (3.6),

(3.8), (2.9), and (2.13) we find that the zeroth-order ex-
pression of the pressure p as a function of T, p, and 8 is
(setting j~0 in the end)

p= —2(v, —p)lBI2+II 'g(Ek+/2 ~k)
k

+2(/30) 'gin(1+e ")
k

—(Pfl) ' g in[1 exp/3[2@—2v —(k —/2M))},

p
—2lB 2+2@—1 g(e/3[2v+(k /2M) 2P] 1)

——1

k

+f1 ' g[Ek(1+e ")]

—PE~X [Ek +p —mk + (Ek /2+(ok )e— " ] .

(4.4)

From (4.3) and (4.4), p and lBl can be determined as
functions of p and T. [Equation (4.3) is similar to the gap
equation in the BCS theory, and Eq. (4.4) is the generali-
zation of the density equation in the Bose-Einstein con-
densation. ]

Let 8, V, and 4 be the energy, Helmholtz free energy,
and entropy of the system. We have

0 'V(T, p) =p/2 p. — (4.5)

At a fixed (N ), 52= —$5T p50. Since—5p =p5p
+(Bp /f]T)„5T, we have

(n-'v)
aT 'P

ap
aT B

(4.6)

k+n 'y„m„2v+ +2n„E„
k

(4.7)

where mk and nk are the ensemble average of b k bk and
a k a&~.

which can be readily calculated by using (4.1). The ther-
modynamic energy 8=7+ TS is then given by

0 '( =2vlBl +0 'g((ok /2 Ek)——

(4.1)

P[2v+(k /2M) —2p] 1 )
—1

mk —e (4.8)

where, as before, mk =k /2m and

[( (o )2 +g
2

l
B l

2 ]I /2 (4.2)

On account of (2. 11)—(2.13), (()p /()lBl )„T=0, which
gives

nk =(e "+1)~Ek (4.9)

From (4.2) we see that the fermion excitation has a gap
energy, which is related to the long-range order 8 of the
boson field:



GAP ENERGY AND LONG-RANGE ORDER IN THE BQSON-. . . 6751

a=lgBI . (4.10) V. GAP ENERGY AND CHEMICAL POTENTIAL

y =@(8)=~+N(j ),
where + is the phase.

From (4.1), it follows that

(4.1 1)

The phase of B depends on the phase of the symmetry-
breaking infinitesimal j. In accordance with (2.10), (2.11),
and (3.3), it can be shown that

The gap energy 5= lgB l
and the chemical potential p

are functions of the temperature T and the particle densi-

ty p determined by (4.3) and (4.4). In this section, we dis-
cuss these two functions b, ( T,p) and p( T,p ). All formu-
las here pertain to three dimensions.

A. T=0

P

8 p 13g 1 d tanhx &0,
g(lBl ) 16' „ E„ dx x

(4.12)

At zero temperature, denote

b,o
—=h(0, p) and po=—p(0, p); (5.1)

where x = ,'PEI, . —Hence, the magnitude of the long-
range-order parameter B is determined by the maximum
of p ( T,p, ,8 ) at fixed T and p.

We shall now prove that lBl can also be determined by
the minimum of the Helmholtz free energy, but at fixed T
and p. First, use (4.4) alone to solve for p=p, (T,p, B),
and substitute it into (4.5) to obtain Q V( T,p, B). When
this is done, let us minimize V with respect to 8 at fixed
T,p. (In the following, write lBl as 8, for convenience. )

Indeed, at fixed T we have

(I2o)' —2+in
0

and

p=2IBo 12+(3~2) '(2m po)'"

with

(5.3)

po is the same as the Fermi energy. Neglecting (ho/p, o),
we find (4.3) and (4.4) to be (proved in the Appendix)

' 2 3/2

V P g (5.2)
7T 2

r

BV Bp
M dB

~ P .P

Bp
aB .P

~o= lgBol (5.4)

It is convenient to introduce the dimensionless coupling
constant

pa
aB

Bp
i3B

Bp 0p
Bp BB

2 ' 3/2

(5.5)

since p = (Bp /Bp)ii; therefore

From (5.2), it follows that

V Pp
60= 8paexp —2—

g 2( )1/2
(5.6)

—i 8
BB

Bp
aB BB

Since (5.2) is derived under the assumption (b,o/po) « 1,
the exponent in the above expression should be negative
and not small; hence,

0 p
aB'

Bp 8 Bp

aB, oj, aB „

V) Pp

Define

(5.7)

8 p
aB' „

Bp Bp 0 p
Bp BB BpBB

2
0 p
BB

Bp

Bp
Bp

(4.14)

Qn account of

(4.15)a2p
aB'

since (8 p/dB )„&0 as in (4.12). Hence, the magnitude
of the long-range order B can also be determined by the
minimum of 0 'V(T, p, B) at fixed T and p, in agreement
with the general principles of thermodynamics.

p =(37r ) '(2mv) (5.g)

po—= (3~ p) i /2m . (5.9)

Upon substitution into (5.6), this determines Ao as a func-
tion of p. These formulas are similar to those in the BCS
theory.

(ii) p) p . As the zeroth approximation, set po=v;

the fermionic density when the Fermi energy equals v,
with the excitation energy of the P quantum being equal
to 2v. (After the completion of this work, we learned
that in the particular case of p (p but not near p, which
will be discussed below, our model is related to the one
studied recently by Newns, Rasolt, and Pattnaik. '

)

(i) p &p and (p, —p)/p =O(1). From (5.3),
p & (3ir ) '(2m po) which means in this case
(v —I2o)/v=O(1). In the weak-couPling limit g 2«1,
both (5o/po) and lBol /p are, in accordance with (5.6),
exponentially small. Hence (5.3) gives



6752 R. FRIEDBERG AND T. D. LEE

therefore, from (5.3)

(5.10)
f (x)

We may use the above formula and (5.2) to derive the
erst-order correction:

x +y =p

pp=v 1 g ln 2
SV

(5.11)

which gives, in the weak-coupling limit,

(v —po)/v=O(g lng) . (5.12)

Note that in case (i), the long-range order Bo of the
Bose-condensate amplitude appears only as a result of the
s-channel "virtual" transition (1.1); in the weak-coupling
limit, the boson density IBoI is much smaller than the
fermion density. The system exhibits a BCS-like charac-
teristic. In case (ii) when p is )p, the Fermi energy pQ
approaches v,' the system now deviates from the typical
behavior of the BCS theory. Its Bose-condensate ampli-
tude Bp builds up steadily with increasing density, similar
to that in the usual Bose-Einstein condensation. In both
cases, the Bose-condensate amplitude determines the gap
energy of the fermion system.

(iii) p near p, . To examine more closely the transition
from p (p to p) p, we introduce the following dimen-
sionless quantities:

0.5 x

and (4.4) to be (proved in the Appendix)

V P

2 3/2

(p, )
/ —2+y+1n1 j2 8Pc~c

(5.18)

FIG. 2. The solid curve is y =f(x), defined by (5.14) and
plotted for g=0.3. The dashed curve is the circle x +y =p
(here, for p=0. 9). The intersection between these two curves
determines x and y, and therefore, through (5.13), also the gap
energy 60(p) and the chemical potential JMO(p) at T =0.

—
( / )3/4 —(2IB I2/ )1/2 (5.13a)

and

P=p/p. . — (5.13b)
(2m@ )

3~2

Mk~ T,
(z, ), (5.19)

Equations (5.2) and (5.3) become

y =f(x)—:(4 v3/e g)x exp[ —(x ' —x ')/g ]

(5.14)

where
oo I

g3/2 ( ) X 3/2 (5.20)

p=x +g (5.15)

and Euler's constant

y =0.5772 . (5.21)

B. Critical temperature T,

At T„both the long-range order B and the gap energy
6 are zero. Denote

p, =p(T„p), P, =(k~T, ) (5.16)

and the fugacity of the bosons at the critical temperature

Figure 2 gives f (x) versus x (plotted for the example of
g =0.3). The intersection of f (x), solid curve, and the
circle (5.15), dashed curve, determines x and y. For
g=0. 3, when x is &0.8, the curve f (x) is near zero
which gives x —=p

'/ and y =f (p
' ), in accordan—ce with

case (i). When x is near 1, f(x) rises almost vertically
parallel to the y axis; hence, y -=(p —1)'/ in agreement
with (5.10).

For z & 1, g3/2(z) is analytic in z. At z =1,
g3/2(z)=QP l / =2.612, but its derivative is
Hence, in (5.19) z, & 1, and therefore

V P (5.22)

From (5.5) and (5.18), we have

V P
k~ T, = ( 8p, /m. )exp —2+y-

g 2( )1/2
(5.23)

(i) p &p and (p p)/p =O(1). I—n this case,
(v —p, )/v=0(1). In the weak-coupling limit g ~&&1,
we have k&T, /p, exponentially small, and therefore z,
and g3/2(z, ) are (exponentially) small. Hence, in (5.19),
the boson density (second term on the right-hand side)
may be neglected and

z, =exp[2/3, (p, —v)] . (5.17) p, =—(3~ p) / /2m . (5.24)

Neglecting (k&T, /p, ) and exp( —p,P, ), we find (4.3) Combining it with (5.6), (5.9), and (5.23), we derive
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=me ~=1.7639,
k~T,

(5.25) Mk T,=2 612g
2m

(5.27)

the same relation as in the BCS theory. The chemical po-
tential p, (at the critical temperature T, ) increases with
density p, and p, approaches v as p —+p .

(ii) p )p„. On account of (5.22), as the zeroth approxi-
mation, set p, =v; hence, z, -=1. From (5.19), the critical
temperature is given by

Mk T
2 =(p —p )/2. 612 . (5.26)

The combination of (5.10) and (5.26) gives, instead of
(5.25),

1.e.)

b,o=2 612. g 3/~v(ks T,M/m ) (5.27')

In this case, as p increases (but still assuming kz T, ((p),
the fermion density remains approximately a constant
=-p, while the boson density increases according to
—,'(p —p ); the same quantity is approximately ~BO~ at
T=O, but becomes 2.612 (MksT, /2~) / at the critical
temperature, and that leads to the above relation.

We note that when p is larger than but near p, it is
possible to neglect (k&T, /p, ) . However, as p increases
further, terms proportional to (k&T, /p, ) must be in-
cluded. As shown in the Appendix, (5.18) and (5.19) are
replaced by

V P g
7T

(p, )' —2+y+1n +
~k T, 96 Pc Pc

5!~ 7~4 kaT
8'.! 120

(5.28)

and

=
MkT'" (2m@, )

/
p=2 g3/3(z )+

2m 3772

'2 4
3~ k8 Tc 1 21% k8 Tc1+ + + ~ ~ ~

48 p, 8!! 10 p,
(5.29)

3/2
mk~ T,

2'p =2(2.612)

For g ((1, (5.28) indicates that p, =v[1 —0 (g )].
Setting p, -=v in (5.29), we derive the zeroth approxima-
tion of T„now including the (k sT/ p,A) corrections;
substituting the result into (5.28), we derive the first
correction to v —p, . In this way, T, and p, can be de-
rived as a power series in g

As p keeps on increasing, so does kz T„and eventually
kz T, becomes larger than v, when that happens, the fer-
mions are no longer degenerate and, in the approxima-
tion p, =-v, (5.29) is replaced by

Mk T
+2

2m'

x, =—(p, /v) and y, = ,'(3/'3'—e —~)(vP,g )

Equations (5.18) and (5.19) become

(5.32)

y, =f(x, ) (5.33)

(iii) p near p . To see more clearly the transition from
p(p to p) p„we introduce, similar to (5.14) and (5.15),
the following dimensionless quantities:

where

(5.30) 3 1/4
p=x, + — (Meggy, /m )

/
g3/3(z, ),

27r
(5.34)

V/kg Tc= —e (5.31) where p, g, and f(x) are given by (5.14) and (5.15), and
. From (5.22) it follows that

and g3/p is defined by (5.20).
For p) p„and (p —

p )/p, =O(1) we have
k&T, /v=O(1). But on account of (5.10), b,o/v =O(g );
hence in the weak-coupling limit

ho (((ks T)~,

which is quite di6'erent from the low-density formula
(5.25). When the density is so large that the distance be-
tween bosons becomes comparable to the intrinsic size of
the boson, then our locaI-Beld approximation of the pair-
ing state breaks down.

x, ~1 . (5.35)

The graphic determination of x, and y, follows closely
the steps described in case (iii) of Sec. VA. Change the
coordinates x,y in Fig. 2 to x, and y, ; the solid curve
f (x) becomes f(x, ). Replace the dashed circle by (5.34),
which has a similar overall shape. The intersection of the
solid and dashed curves now gives x, and y, . The steep
rise of f(x, ) near x, =l "explains" the rapid change
from case (i) to case (ii).
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C. Variation of 5 versus T TABLE I. The function F(Ph) vs Ph. See {5.39) for the
definition of F (pb ).

Equation (4.3) can be written as
2 3/2

v —p= —,
' — — f(b,p),

where

f(A, P)= 1 (co„)' 'den„ tanh —,'PE„+P

f(b„P)=2&@ —2+in +F(Ph)

and F(Pb, ) is given by

I.—1F= lim g (l+ —,') +
tt =0

Hence, for PA/2' & —,
'

2 1/2

—lnL,

/kB T
Neglecting (ks T/p), e, and (b, /p), we find

(5.36)

(5.37)

(5.38)

(5.39)

0.2
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
4.0
5.0
6.0
8.0

10.0
12.0
15.0
20.0
30.0
50.0

100.0

1.9593
1.9467
1.9261
1.8983
1.8641
1.7567
1.6302
1.4970
1.3653
1.1227
0.9142
0.7368
0.4513
0.2284
0.0461

—0.1770
—0.4647
—0.8702
—1.3810
—2.0741

(2n —1 !!F=y+2ln2+ g ( —1)" ' „"(2 "+'—1)
2n I!

F(Pb, ) =(5.40) =@+In(4T/T, ); (5.45)

Xg(2n+1)
2K

2'

(5.40)

likewise, since at zero temperature 6=A0, it is more con-
venient to use (5.41) to determine b, at very low tempera-
ture (Ph & 1):

F=ln(4'/Pb, )+2 g (
—1) Ko(mPb ),

m =1
(5.41)

where Ko(z) is related to the Bessel and Neumann
functions by Ko(z) =

—,'vri[Jo(iz)+iso(iz)], and
Ko(z) +( ,'n/z)'~ e—' —as z —+~. The proof of (5.41) is
given in the Appendix. Table I lists F versus Ph.

—p/k~ T
Neglecting (ks T/p), e, and (5/p), we find

that (4.4) can be written as

Mk T
(5.42)

(2m p. )'"
g3y2 (z) +

3772
p=2/a f'+2

where g(3) =1.202, g(5) =1.0369, . . . are the values of
the g function, and as before, y =0.5772 is Euler's num-
ber. An alternative expansion, which is useful for large
Pb, /2rr, is

F(Ph) =(5.41)=In(4rrks T/6o) .

Thus, as T~T, —,from (5.45)
1/2

2

ks T, 7g(3)
1/2

T=3.0633 1—
C

and as T~O+, from (5.46)

2~k~ T—1—
~0

o/ka
e

60

(5.46)

(5.47)

(5.48)

(ii) p & p, . As the zeroth approximation, we may again
set

(5.49)
where g3&2(z) is defined by (5.20) and

z =exp[2(p — )/kvTjs. (5.43)
In accordance with (5.43), z ==1, and consequently (5.42)
gives

(i) p(p and (p, —p)/p, =O(1). A good zeroth ap-
proximation in this case is, as in (5.9) and (5.24), b, =g !B!=g —,'(p —p ) —2.612—Mk T

2m

p=(3~ p) ~'/2m . (5.44) (5.50)
Substituting it into (5.36)—(5.39), we determine 6(T,p).
In (5.39), the function F depends only on the product PA.
Hence, 5 at any temperature can be related to 5 at a
di6'erent temperature. Since at the critical temperature
T, , 6=0, we may use (5.40) to determine b, at any tem-
perature T not too much lower than T, (Pb, (~):

(5.51)

which is quite diA'erent from case (i).

Combining this expression with (5.10) and (5.27), we find
3/2

I—2=2 T
T.
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VI. MEISSNKR EFFECT

A. Spontaneous symmetry breaking
4(x)= C+ R (x) exp[2io(x)]

1

v'2 (6.6)

The Meissner effect" is closely connected with the
spontaneous symmetry breaking of the electromagnetic
gauge invariance inside the superconductor. For
mathematical convenience, we shall use a relativistic lo-
cal field 4 to represent the bosons; hence, 4 and @ com-
mute at equal time, in contrast to (1.10a). Let A„be the
electromagnetic four-vector and it| the same nonrela-
tivistic field for the electron, as before, with o = 1' and J, .
The Lagrangian density (in units A'=c = 1) can be written
as a sum of terms:

'Il (x)—=g (x)exp[ i—0(x)] (6.7)

V (x)—:A (x)——1 BO

e Bx„
(6.8)

with C, R (x), 8(x) all real and C a constant. Note that
for any complex function 4(x) and real constant C, we
can use the above equation to define R (x) and 0(x). Be-
cause of (6.4), introduce

X„+X~+X,+X, , (6.1)
with V4=iV0. As we shall see, the constant C will turn
out to be related to the long-range-order parameter 8 by

where
C =(2M ) '"I&l . (6.9)

aA.
Bx

aA„'
X

In terms of these transformed variables, X„,X&, X„and
Xi can be written as

+2ie A„
Bxp

0V

ax„
BV„
Bx

X —2ieA W —M +~4,2

Xp p (6.2)
1 BR
2 Bx

—[4e (V —Vo)+M ] C+ —Rv'2

and

i —eAo —m
J

1 [(V+ie A)itj ](V ie A)it-
2Pl

X,=g(2M)' (N gtfi+4PiQt) . and

i —eVo —m
a
Bt

1 (V+ieV)%' (V ieV )4—
2Pl

(6.10)

2vO=M —2m . (6.3)

The repeated spin index 0 is summed over 1' and 1, , the
Greek indices p and v are summed over from 1 to 4, with
x4 =it and A4 =i Ao. The electric charge e is negative if

.represents the electron field. For simplicity, we set
the "bare" excitation energy of the boson to be

X,=g(2M)'" C+ — R (%,%', +4'ti%, ) .
1

v'2

The density (6.5) becomes
'2

p
———8eV C+ =—R +0 %0 0 CJ (6.11)

The theory is invariant under the gauge transformation

N~4e ' X= pd r. (6.12)

its integral is the total charge of the system (in units of e)

and (6.4)

where a is an arbitrary real function of x„. The electric
charge density in units of e is given by

Because in our problem the quanta of both 0' and N
carry charges of the same sign, the above charge density
p is also of the same sign everywhere. There should be, in
addition, a background constant charge distribution p„,
of opposite sign due to external sources, which can be in-
troduced through the gauge-invariant Lagrangian density
ty

p= 2i [(C& ——2i A eb )&9—4& (4&+2ieA N)O]+P P
+ext e VOpext (6.13)

where the dot denotes the time derivative.
Write

(6.5)
The total Lagrangian density L is

&=&,+&~+&,+&,+&„, . (6.14)

So far C is just a constant parameter. In the next two
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m =Se C (6.15)

given by the constant part of the coefficient of —,'V in

(6.10), as in the Higgs mechanism. ' (Further discussions
will be given below. )

The conjugate momenta of V, R, and %' can be ob-
tained by diff'erentiating the Lagrangian density X:

sections, we shall show that CAO for both the ground-
state energy and the partition function (at temperature
T(T, ). Hence, in (6.8) and (6.10), the massless A„ field

joins the "Nambu-Goldstone" field12 13 ae/axe to form a
massive vector field V„ofmass squared

(which is an external constant parameter). In terms of p
given by (6.11), the above equation is simply Gauss's law:

V E=e(p —p ) (6.20)

which implies

p,„,=II ' fpd r=Q (6.22)

In the following section, when we pass from the La-
grangian to the Hamiltonian, we shall freely partially in-
tegrate; this is possible provided

fVEd r=O, (6.21)

—E=az a
av
at at

(6.16)
with 0 equal to the volume of the system, as before. Sub-
stituting (6.11) into (6.22) and expanding fpd r as the
average of a power series in Vp, R, and %', we have

and

II—=aX/aR =R, (6.17)

i% =aX/a%' (6.18)

2 —1

Because Vo is absent in X, Vo does not have a
conjugate momentum; instead, we use the equation
5fX d r /5 Vo =0,

p,„,= —8eC Vo
—8i/2eCR Vo+

where f=0 ' ff d r for any f, so that

VO=0 ' I Vod r,
R Vo = Il ' fR Vod 3r, etc.

B. Hamiltonian and quantization

(6.23)

(6.24)

Vo= 8e C+ —R1

2
(
—V E+e+ 4 —ep, „,),

(6.19)

The Hamiltonian H is given by
r

H = —E +IIR+i%~% — d3r .
at C7 0 (6.25)

to regard Vp as a function of R, E, and N and p„,
I

2

H= fd r —'E +—'(VXV) + C+ —R (4e V +M )
1

2 2 V'2

2 —1

By using (6.10) and (6.13)—(6.19), we find

+—8e C+ —R1 2 1

2 2
[(V E) —e (4" III —p,„,) ]+—,'ll + —,'(VR ) +4 (eVO+m)%

+ (V+ieV)%' (V —ieV)% +g(2M)'~ C+ —R (4't%'t+%'(%t) —eVop, „,2m 2
(6.26)

Keeping E, V, II, R, 4, and 4' (or course, also the
constants C, e, g, and M) fixed, but taking p,„, as a vari-
able and regarding Vp as a dependent function on p,„,
through (6.19), we derive

—eVo=m+ (6.30)

identify —eVp as the Gibbs energy per particle, but in-
cluding the rest mass m; i.e.,

aH/ap„, = —eA Vo . (6.27) where p is the chemical potential. Correspondingly,
(6.28) becomes

Introduce its Legendre transform

H+ e Qp, „,Vo—
&=H —(m+p)N .

(6.28)
Define

(6.31)

and treat gf' as a function of Vo and the field variables E,
V, II, R, +, and 4 (with p,„, now as a dependent vari-
able; it follows then that

Wf'/a(e Vo ) =Ap, „,=N, (6.29)

on account of (6.12) and (6.22). Recalling that in our pre-
vious nonrelativistic case a(H —pN ) /a( —p) =N, we

Up= Vp Vp

where, by definition,

(6.32)

Uo —II J Uod r —0. (6.33)

By using (6.30), (6.32), and (6.33) we can rewrite (6.23) as
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p,„,=o',„,+Q f 4~%~d r,
where

o,„,=8(m+p)(C ++2CR+ —,'R ) —8+2eCRuo+

(6.34) gate momenta to satisfy the following commutation and
anticommutation relations:

[ V, (r, t ),E~(r', t )]= —i5; 5 (r —r'),
[II(r, t )R (r', t )]= —i5 (r —r'),

uo= —mi, (V E)+4mi, '(m+p)(R —R)+ (6.36)

in which mi, =2&2eC and . . contains quadratic and
higher powers of R, E, + with their averages subtracted.
Likewise, it follows from (6.34) that the following expres-
sion [occurring in H of (6.26)] becomes

' —2

( I' 4' —p,„,) d rf C+'R
2

' —2

C+ —R1

2
O + e ~ e d Pe

ext

=64Q (m +p. ) (C +&2CR+2R ——,'R )

(6.35)

is the average of —8eVo[C+(I/&2)R] . Combining
(6.19) with (6.30)—(6.33), we obtain the following expan-
sion of vo as a power series of the field variables:

I'P (r, t ),4" (r', t ) I
=5 .5 (r —r'),

IiIi (r, t), % .(r', t)I =0

(6.42)

C. Determination of C

with all other equal-time commutators between them
zero.

As remarked earlier, when we make the Legendre
transformation (6.28) from H of (6.26) to & of (6.38)—
(6.41), there is a switch of independent variables: in H we
regard one of the independent variables to be p,„,with Vo
dependent on p,„„whereas in & the independent variable
is Vo (or equivalently, the chemical potential
p= —eVO —m) with p,„, as the dependent variable given
by (6.34) and (6.35). In the quantized theory, the right
sides of (6.34) and (6.35) are operators; so then is

p,„,=Q 'X. This is particularly useful for the grand
canonical ensemble, since at a given p it is now possible
for us to include states of different eigenvalues of X.

+ RVE +
PPl y

(6.37) The grand partition function is

a=tre (6.43)
where . contains only cubic and higher powers of
these field variables.

In the same way, &, defined by (6.28), can be written as

where, as before, P=(kii T) '. Similar to (3.11), in order
to determine C we require

&=&o+&o+&,+&;„, (6.38) tr(Re ~ )=0 . (6.44)

where &o depends quadratically on ~Ii and 0', &0 is a
quadratic function on other field variables, and &, is
linear in R:

In evaluating 6, we regard

(6.45)

&o= fd r [M' —4(m+p)']C'+ V~Iit V@
1

as the perturbation. As noted before, &i is linear in R;
because of (6.44), it can be included as part of the pertur-
bation, as in (3.15). The zeroth-order partition function
1s

—p+.+.+g(2M)'"C(% „0,+e', e', ) —P(A'o+ &o )
tre (6.46)

(6.39)

~o= ,' fd'rI—E'+m '(V.E)'+(VXV)'+m'V'+lI'
To determine C to the zeroth order in e, we need only

consider

+(VR) +[M +12(m+p) )R

(6.40)—8mi, '(m+p)RV EI

&,= f d r I [M —4(m +iu, ) ]&2C—8(m +p) R I R,

—/3A'o

q =tre

%'rite

&o=h+Q[M —4(m+p) ]C

(6.47)

(6.48)

(6.41
where, on account of (6.39),

where R = jR d3r; the interaction Hamiltonian
consists only of cubic and quartic terms of field operators
E, V, II, R, %', and ~Ii . In (6.40), the product term
R V E is somewhat unusual; it comes from the o.,„, term
in (6.37), which in turn arises from the Ruo term in (6.35),
with uo given by (6.36); for its physical significance, see
remarks 2 and 3 at the end of Sec. VI C.

For quantization, we require V, R, 4, and their conju-

h =g pak ~a-k
2m

+g(2M)' Cg(ak ta i, (+a i, t'ai, t),
k

and ak, ak are the Fourier components of 4 and 4':
qi (r) gQ —I/2a eik. r

k
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with {az,az ~ ] =5|,|,5, as in (1.12). The matrix h
can be diagonalized by the Bogoliubov-Valatin transfor-
mation Uz of (3.13) with y=O and C=(2M) ' IBI in
agreement with (6.9). We have Xi'=e'(p)/m, (6.58)

London's length' A, L for the Meissner effect is deter-
mined by the ensemble average of (6.56):

h =/[(cvk p Ek )+EkcT k ak ],
k

where, as in (3.4)

E„=[(~,—p)'+g'IB I']'"

(6 49) where

(p)=6 '«(pe

(6.50) D. Remarks

(6.59)

and cok =k /2m. Define po to be the partial pressure:

po—:ka TA 'lnq (6.51)

Using (6.3), (6.9), and neglecting (vo/m) and (p, /m),
in the nonrelativistic limit the constant term
A[M —4( m +p ) ]C in (6.48) is

20(vo —p) IB I' .

(1) From (6.40), one sees that the coefficient of —,'R in

o 1s

A%0= M + 12(m +p) (6.60)

If we include the second-order effect of the trilinear cou-
pling g(2M)' (R/v 2)(g&g~+g~1t t) term in &;„„then
Af0 is replaced by its renormalized value

Hence, JR = 16(m + p) (1+u ), (6.61)

po = —2(vo —p)IB I
+A 'g(Ek+p cok )—

+2(flQ) 'gln(1+e ") .
k

(6.52)

By following the same steps leading from (3.11),
tr(boe ~ )=0, to (c)p!ALIBI)„T=O, which gives the gap
equation (4.3), we can start from the corresponding con-
dition (6.46), and derive (c)po/c)IB

I )„T=0for the present
problem. In this way, as expected, we derive the same
gap equation (4.3):

v —p=Q ' g tanh —,'PE&+P1 ] 1
(6.53)

Substituting the result into (6.15), we find the vector mass
squared to be

m~=4(e /M)IB
I

(6.54)

Recall that the gap energy 6 of the fermion system is
g IB I; we obtain

m~=4(e /Mg )b, (6.55)

Since the mass term has an effect similar to the gap term
on the spectrum, the above equation relates the two
"gap" energies, one for the bosons and the other for the
fermions.

Because the V quantum is moving in a medium com-
posed of the electron field 0 and the "Higgs field" R,
from (6.10) we see that the coeKcient of —

—,
' V in

L~+L, is

where

u'=g IB I'g(8mE„'Q)
k

(6.62)

JN= JN, -=—(2M, ) (6.63)

which is the threshold mass squared in the creation of a
pair of N and anti-4 quanta. For nonrelativistic applica-
tions, the R-mode excitation can be neglected. (It is the
product of our artifice of using a relativistic field operator
@for the bosons. )

(2) If we were in the sector with total particle number
X=O, then p,„,=O; in that case, as can be seen from
(6.26), there is no direct coupling between R and V E in
H. [In (6.26) the R V.E coupling appears in the last term
—e Vop, „, through Vo, which is determined by (6.19).] At
a given momentum k, the vector meson V has two trans-
verse modes and one longitudinal mode, all of the same
energy (mz+k )'

(3) In our present case, XWO and is macroscopic; this
necessitates p,„„@0and leads to an R V E product term
in &0, given by (6.40). The normal modes of &0 for a
given momentum k consist of two transverse vector
mesons of energy (mz+k )'i, one longitudinal vector
meson of energy co, and one R quantum of energy co+
where

with fI being the volume and E& given by (6.50). As we
shall see, u is the sound velocity (when e =0). From
(6.3), M =4(m +v); here, vo is also replaced by its re-
normalized value v. In the nonrelativistic limit v/m,
p/m, and u are ((1;therefore

2

8e' C+ R + gag
2 m m

(6.56)

cv+=k +—'(A, +m~)2

+ [ 16k 2(m + )2+ i (~2 2 )2]1/2 (6.64)

where, in accordance with (6.11), ep is the charge density
in the nonrelativistic limit, since in that limit evo/m and
p/m ~0; therefore e Vo =e( Vo+ vo ) becomes

In deriving this expression, we have replaced in &0 the
coefficient A, o of —,'R by its renormalized value Al . For
m v/m and p/m « 1 and small k .

eVo —-—eVo—= —m . (6.57) co =JR +2k =(2M) +2k (6.65)
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confirming (6.63). Correspondingly,

co =m +k u +(k /4M ) (6.66)

When e =0, m~=0, and co ~k u as k~0; therefore u

is the "sound" velocity for the propagation of the phase
angle 0 in N when e ~0.

When e —+0, the longitudinal vector quantum becomes
the Goldstone boson; its velocity in the section X =0 is
the light velocity c =1, but becomes u «1 in the sector
N macroscopic and %0.

(4) Historically, the inspiration of the Higgs mecha-
nism came from the Landau-Ginsburg equation' for su-
perconductivity. Our theory differs from the Landau-
Ginsburg equation in being a mechanical system. We
start from a (temperature-independent) Lagrangian and
the thermodynamics is derived from the partition func-
tion, whereas the Landau-Ginsburg equation is, by con-
struction, a thermodynamical model with its Lagrangian
temperature dependent.

VII. GAP ENERGY IN TWO DIMENSIONS

So far we have considered only the three-dimensional
continuum case. In this section we turn to the two-
dimensional problem. It is well known that when the
space dimension D =2, . the long-range-order parameter
8, defined by (2.6), vanishes. The proof due to Hohen-
berg' can be readily generalized to the present case of a
mixed fermion-boson model.

Write the boson field P as

P(r)= P(r)le' ". (7.1)

The long-range-order parameter 8, defined by (2.6),
denotes the coherence of 8(r) over a macroscopic dis-
tance. When D =2, 8(r) has to have sizable fluctuations
over a length

o.A, &/2
(7.2)

where A, z =(Mkii T/2n. )
' is the thermal wavelength

and o. the two-dimensional particle density; consequently
B =0. However, the gap energy 6 of the fermion system
depends only on the constancy of boson density ~P~ over
a macroscopic distance, which can be realized in D =2 as
well as in D =3, as we shall see. ,

Consider the analog problem of liquid helium. In
D =3, liquid He II has both a constant density ~P~ and a
long-range coherent phase angle 0. Liquid He I has only
the same co'nstant liquid density ~P~ . The vanishing of
the long-range coherent phase parameter is the origin of
the A transition from He II to He I. The phase transition
from He I to helium gas is connected to a change in

~ P ~
.

In the hypothetical case of D =2, He II would cease to
exist because of (7.2), but the phase transition between
He I and helium gas would remain. Of course, He I is not
a superfluid.

For practical applications, set M = 5m, and T= T,
=10 K, then

r=30 A

Since on a typical Cu02 plane of any of the high-T, su-

g'm 2(Vov)'"
pp — ln

4m
(7.3)

o. =2(bo/g) +(mpo/m') (7.4)

where o. is the two-dimensional particle density. At
T=T„ the gap energy is zero; instead of (5.18) and
(5.19), T, and the chemical potential p, are given by

g m
v p 4~

)
I/2

@+in
B c

(7.5)

MkB Tc 2~p~ln(1 —e ' ')

mkB T,+ ln(1+e ' ') . (7.6)

We neglect (ke T, Ip, ) in (7.5), but (7.6) holds to all or-
ders in k&T, /p, . In (7.6), the first term on the right-
hand side is two times the boson density which diverges
at p, =v', hence

p, &v.
As in (5.8), define

(7.7)

o —=mv/m . (7.8)

the two-dimensional density when the Fermi energy
equals v.

(i) o (o, and (o —o )/o =O(1). In the weak-
coupling limit, both Ap/p, and kB T, /p, are exponential-
ly small. Hence, from (7.4) and (7.6), we derive as an ap-
proximation

perconductors, cr is —(10 A), the length l would be
=2X10 A. (In reality, these superconductors are all
three dimensional. Here, we consider the hypothetical
case of a two-dimensional material. ) Imagine a division
of an infinite two-dimensional system into regions of size
(l, but much larger than g (the coherence length).
Within each region, at sufficiently low temperature the
parameter B exists. The phase of B wanders from region
to region, but its magnitude ~B

~
remains the same. Since

the gap energy b. depends only on ~8 ~, we have the same
6 for the entire system. Hence, for such an infinite two-
dimensional system there can be a genuine phase transi-
tion in the gap energy 6; at T (T, we have b, &0. Be-
cause the fermion system is closely tied to the boson sys-
tem, we are not able to establish that there would be
genuine superconductivity in a strictly two-dimensional
system, even though the fermions may have a gap energy.
However, it seems reasonable to expect at least quasisu-
perconductiuity in D =2; i.e., superconductivity (includ-
ing Meissner effect) over a finite distance =l. In the fol-
lowing, we shall compute the critical temperature.

As will be shown in the Appendix, for D =2, instead of
(5.2) and (5.3), the gap energy b,o and the chemical poten-
tial po at T =0 are given by (neglecting b,o/po)
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P =Pc =m'O/m

and therefore, from (7.3) and (7.5)

(7.9) de/E =dz /(z —g )', (A2) can be written as

f2(b, ,P) = lim [I(Y,Z)+ln(/3v/Z)], (A6)

6O =me-r=1 7639
kBT,

(7.10) where

the same relation as in (5.25).
(ii) o ) o . As the zeroth approximation we may set

po=v in (7.4) and p, =v in the last term on the right-
hand side of (7.6):

I( Y, Z) = f dz+ f dz (z —g )
' tanh —,'z (A7)

and Y—= (p +b, )' P=pP.—
From (A6), we obtain (A4) directly provided that F is

defined by

and

2

(o —o )'=
2

(7.1 1) 4m2F(Pb, ) = lim [I(Y, Z)+ln
Y, Z~ oo YZ

(A8)

B c 2(p —v)/k~ T
ln(1 —e ' ')

(7.12)

By using (7.5) and (7.12) we can solve for p, and T, . Sub-
stituting (7.11) into (7.3), we derive the first-order correc-
tion in v —po.

In D =2, the boson density diverges at p, =v. Hence,
as noted before in (7.7), /2, (v. Except for this important
difference, the overall dependence of Ao on T, is rather
similar to the three-dimensional case.
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APPENDIX

I( Y,Z)= f 2 2 I/2
tanh-—r(z —

g )' 2
(A9)

along the solid path indicated in Fig. 3.
Let C be the closed contour consisting of the solid path

and the three dashed paths

C&. z=Z to Z+2i~tV,

In the complex z =x+iy plane, (z —
g )' has two

branch points: z=+g. Arrange the cuts along the, real
axis from x = —oo to —

g and then from x =g to ~, as il-
lustrated in Fig. 3. Immediately above the cuts
z =x+i0+, choose (z —

g )'/ positive when x )g.
Therefore it is negative when x ( —g, i.e., (z —g )' is
odd in x above these two cuts. On the real axis, between
two cuts (z —g )' =i(g —x )' which is even in x.
Hence, along the real axis the integrand in (A8) is even in
z immediately above the cuts and Odd in z between the
cuts. Thus we may write

1. D=2 C2. z =Z+2i ~X to —Y+2i~N,

In two dimensions, the gap equation (4.3) becomes

v —p=(8') 'mg f2(b. ,P),
where

(A 1)

and

C: z= —Y+2i~N to —Y,

oo 1 1f2(b„p)= f de —tanh —,'Ep+p
O E V CO

(A2)

where X is a very large integer. Since tanh —,'z has poles at
z =in(2n + 1) with n being any integer,

and

E —[( )2+ g2]1/2

p/kg T
Theorem. Neglecting 0 (e ) and O (b2/p2),

f2(A, P)=2F(bP)+ln[P vp/(2n ) ],

(A3)

(A4)

dz zfc 2 2I/2(z —
g )

X —1

=4~ g [vr (2n +1)2+$2]
n=0

(A10)

where, as in (5.39), F(bP) is given by

Jv —1 pgF= lim ' g (n+ —,') +
+—+ oo

2 2m.

2 1/2
—in% . . (A5)

[Note that the same function F(hp) appears in the for-
mulas for D =2 and D =3.]

Proof Let z=PE and g.
—=Ph)0. Replace the upper

limit in (A2) by z =Z, with Z~oo in the end. Since

Along CI, neglecting e we may approximate
tanh(z/2)—= 1; likewise, along C3, neglecting e -=e
we may approximate tanh(z/2)-=—1. Keep Y and Z
fixed (but large) and choose 2mN))Z, or Y. The .sum of
the integrals along C, and C3 [neglecting also (b, /p);
this approximation can be easily improved) is
In(4n. N /YZ), while the integral along C2 ~0 as
+—+ oo.

Thus, subtracting C&+C2+C3 from (A10), we find
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2 - x+ i)j'

-Y+ 21~N Z+ Rim'N

FIG. 3. The contour C for the integration of (A9) in the complex z plane.

' 2 —1/2N —1

I(YZ)= lim 2 g (n+ —,') +
=0 2m

(A 1 1)

from

(i) 0 to p r, —
(ii) p r to p+—r,
(111)P+ r to A, ,

2. D=3

In three dimensions, (4.3) becomes
2 ' '3/2

V P= 1 g f3(b„p),2 7T
(A12)

where f3(b,P) =f(b„P) of (5.37):

which with (A8) gives us (A5).
Expanding tanh( —,'Ep) in the integrand of (A2) as a

power series in e ~, and comparing with (A4), we find
that F is also given by (5.41). Equation (7.3) or (7.5) now
follows from (Al) and (A4) by taking the leading term
from (5.41) or (5.40), respectively.

and A, ~De in the end. In (i) and (iii), we neglect e
(r/p), and (6/r); therefore tanh —,'Ep=—1. The integra-
tions of &co(tanh —,Ep)/E over (i) and (iii) give

(i)+(iii)=2'( —2+1n4p/r)+2v'A, ; (A14)

r

f3(b,P) =2&p —2+in +&pI ( W, 8 ) (A15)

as A, ~ae the term 2&A, just cancels the last term in
(A13). For sector (ii), we neglect (rip) and therefore
&co-=&p; next we regard r/6 »1 which makes the in-
tegral over (ii) just &pI( 8; W) with I given by (A7), and
W = (r p +g )

'~ =rp. —
Combining the sectors and canceling 2v A, , we obtain

f3(b„P)=f "Vcodco —tanh —,'EP+P
0 2 V 6)

(A13)

As we shall show, neglecting (kI1T/p), e, and
—p/k~ T

(b./p), f3(b,P) is given by (5.38) and (S.39).
Choose p»r»b, with rp»1 [but bp=O(1)].

Separate the integral into three sectors with co varying

which on taking W » 1 reduces to (5.38) in view of (A8)
and f3(E,P)=f(6,P). The expressions (5.39)—(5.41)
have already been shown equivalent to (A8).

Now (5.2) or (5.18) follows from (A12) with (S.38) by
using the leading term of (5.41) or (5.40). The higher
corrections in (5.28) and (5.29) are obtained from the
standard treatment of a nearly degenerate Fermi gas.
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