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Hubbard model with one hole: Ground-state properties
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The ground state of the two-dimensional Hubbard model on a square lattice is studied in the
large-U limit in a half-filled band with a dynamical hole. For a 4 X4 lattice with hopping =1 and
coupling J <J,=0.075, the ground state has zero momentum (k) and spin 15/2 (ferromagnetic
background). For J 2 J, the ground state is degenerate with nonzero k and spin 1/2, in agreement
with recent variational calculations. The nonzero k of the ground state comes from a nontrivial
phase in the overlap of the spin states before and after a hole move. For small lattices we show that
the effective Hamiltonian of the hole is that of a particle moving in a magnetic field. We also find
that many of the features of the weak-coupling region carry over continuously to the strong-

coupling region.

The understanding of the mechanism underlying high-
temperature superconductivity! is one of the most chal-
lenging problems in condensed-matter physics at present.
It is evident that strongly correlated electrons are
involved in the phenomenon. Following the obser-
vation of antiferromagnetic order in La,CuO, and in
YBa,Cu;0q., ,,’ it was proposed that the quasiparticle ex-
citations in the normal and superconducting phases of
these materials are strongly influenced by the spin corre-
lations. Anderson suggested® that the spins are in a
“resonating-valence-bond (RVB) state” of resonating spin
pairs, with each pair coupled to total spin zero. This is
suggested to occur for large Hubbard interaction U in an
antiferromagnet when doping is included. In the small-U
limit, antiferromagnetism occurs through spin-density-
wave (SDW) order. In this case the quasiparticles are
holes with an associated region of decreased antiferro-
magnetic order. This spin bag is a spin-1 charged fer-
mion and leads to a pairing attraction which may ac-
count for high-T, superconductivity in a natural way
based on the standard pairing theory.*

An important issue is whether similar spin-bag effects
occur in the large-U limit as well. In particular, we are
interested in whether the antiferromagnetic spin correla-
tions (S;-S;,, ) at sites near an added hole are reduced
in magnitude, by how much and over what range. Also,
what is the nature of the ground state of the system in the
presence of the hole? Do two such dressed holes, or bags,
attract each other? If so, what is the depth and range of
the potential? In other words, does a spin-bag picture de-
scribe the physics of dynamical holes in the strong-
coupling regime as well as in the weak-coupling regime
for which it was introduced? In this paper we address
the questions related to the physics of a single hole
through a numerical study of the strong-coupling limit of
the Hubbard model on a two-dimensional square lattice.
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Note that although many of our conclusions are in quali-
tative agreement with the spin-bag ideas, our results are
independent of them and should be reproduced by any
approach to the physics of one hole in the Hubbard mod-
el in strong coupling.

The model we study is described by the Hamiltonian

H=J3(S;S; ;= qnini )~ X (EIaEi+é,a+H‘c') :

i, i,8,0
(1)

Thus, we consider a Heisenberg interaction for the spins
and an electron hopping term acting with the constraint
of no double occupancy with J =4t2/U and t =1 in the
standard notation of the Hubbard model:

i=% 2 ciTao'a,BciB
af

is a spin-1 operator at site i of a two-dimensional square
lattice with periodic boundary conditions. € denotes unit
vectors in the two directions. The operator © }‘0 is defined
as ¢ L=c,t,( 1—n;_,), where c,-t, is the electron creation
operator and n; _,=c;_,¢;, _, withn;, =3 n;,.

As a numerical technique, we use a modification of the
Lanczos method.>® The algorithm starts with some ini-
tial trial state having a nonzero projection on the exact
ground state. Applying H to the trial state we can con-
struct a vector orthogonal to it and by diagonalizing the
2X2 Hamiltonian matrix in that subspace we improve
the initial values of the energy and ground state. This
process can be iterated. After the starting vector is
selected the method spontaneously generates the correc-
tions in a systematic way. It converges to an excellent

" approximation to the exact result after some number of

iterations, depending on the required accuracy in the
ground-state energy and wave function.”
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Due to memory constraints we have worked with a
4X 4 lattice® in the subspace with 3;SZ=1. Since many
of the interesting properties of the model are short range
in space, we expect these observables to be relatively well
represented with this lattice size. We use translation in-
variance to reduce the dimensionality of the Hilbert
space by requiring that our states have a definited
momentum. In practice this involves using a basis where
each vector represents a linear combination with ap-
propriate phases of the 16 translational copies of a state
having a given hole location and spin configuration (both
spins and the hole are translated together). Details will
be presented elsewhere. After this reduction the number
of states is 6435, which presents no computational
difficulties, as the present method requires the storage of
only a few vectors of this size.

Our results are summarized in Fig. 1. The ground-
state energy per site of the Hamiltonian Eq. (1) in the
one-hole sector is given in Table I, and the lowest levels
in the six independent momentum sectors for various J
are given in Table II. We find the remarkable result that
the ground state has a finite total momentum
k=(xw/2,£7/2), (0,7) or (,0) for J>J, with
J.=~0.075. Thus the ground state is degenerate above J..
Note that the finite momentum of the ground state was
also found in a spin-wave and variational calculation by
Shraiman and Siggia.” Our numerical results confirm the
validity of those approximate calculations [also on previ-
ous numerical work on 10-site lattices!® it was observed
that the ground state of one hole had k=(37/5,7/5)].
For J <J, the ground state is ferromagnetic as will be
shown (in fact, in a narrow region around J,, other states
with intermediate values of spin become the ground
state). By replacing the Heisenberg term in Eq. (1) with
an Ising interaction we find that this effect disappears and
the ground state has k=(0,0) for all J. Therefore quan-
tum fluctuations from the transverse spin-spin interaction
play an essential role in this result. Exact results on a
3X3 lattice also show this unusual behavior.!! We have
also numerically studied “‘square” lattices of 8, 10, and 18
sites (the last one for only a few values of the coupling).
The aforementioned values of k already appear in the
ground state for the 8-site lattice. In the 10-site lattice
those values of k are not allowed but the ground state has
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FIG. 1. Schematic phase diagram of the Heisenberg model
with a dynamical hole in a 4X4 lattice. k is the total momen-
tum of the system.
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TABLE I. Ground-state energy per site E, of the 2D Heisen-
berg model with one hole on a 4 X4 lattice (at ¢t =1). For com-
pleteness we also include the energy E, in the absence of holes.
The error is in the last digit.

J E, E,

0.0 —0.250000 —0.000 000
0.1 —0.279237 —0.120178
0.2 —0.371 506 —0.240356
0.3 —0.466 585 —0.360534
0.4 —0.563352 —0.480712
0.6 —0.760078 —0.721068
0.8 —0.959 552 —0.961424
1.0 —1.16085 —1.20178
2.0 —2.183 10 —2.403 56

the closest momentum to them. For the 18-site lattice
and J =0.1 we found that the ground state has a momen-
tum closer to k=(£w/2,£7/2) than to k=(0,7) or
(7,0), but that may depend on J. From the analysis of
different lattice sizes plus the good agreement obtained
with spin-wave calculations® we believe that our results
will survive the bulk limit.

To get an intuitive feeling as to why the ground state
has a finite k we solved analytically the 2X2 lattice.
Since the total spin is conserved it suffices to consider
only the total S, = manifold, which contains three spin
states, S =3, 1, and . The 2 state corresponds to a hole
freely hopping in a passive ferromagnetic background,
while the doublets are dynamically mixed as the hole
hops. The nonzero k of the ground state is a direct
consequence of the nonzero phase of the overlap of the
initial and final spin states of a hole move. It is instruc-
tive to map this problem onto an effective one-body Ham-
iltonian in one dimension,

o, 4 i
H=J|—=—1|+t 3"}, a,+H.c.) . 2)

n=1

This describes a hole with pseudospin 1 (representing the
two spin-i states in the physical problem) hopping
around a 4-site ring (a, is a hole operator). The energy
eigenvalues are

E,,=—J +cosk+(J?/4+3sin’k)!?,

n

with allowed values of k of 0, =7 /2, and 7. The lowest
energy is for k== /2 and with the lowest-energy dou-
blet (—) (for J, =J ~1). We believe that the renormaliza-
tion of the bandwidth, the nonzero k of the ground state,
and related effects on large square lattices all follow from
the effect encountered here; as the hole moves the overlap
of the spin states is reduced from unit magnitude and has
a nontrivial phase ¢. This phase induces a counter phase
from the momentum in order to obtain a low-energy state
leading to k#<O0.

It is instructive to study a special case of Eq. (2). Con-
sider the limit of J =0 in the 2 X2 lattice and let us work
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TABLE II. Ground-state energy for the six independent momentum sectors on a 4X4 lattice at
different values of the coupling J. The error is in the last digit.

k J=0.0 0.2 0.4 1.0 2.0
(0,0) —0.25000 —0.35523 —0.52166 —1.08621 —2.08124
%,o —0.24525 —0.36215 —0.54699 —1.13663 —2.15624
%% —0.24009 —0.37151 —0.56335 —1.16085 —2.18310
(,0) —0.24009 —0.37151 —0.563 35 —1.160 85 —2.18310
125,77 —0.23604 —0.36517 —0.554 58 —1.15400 —2.18267
(ar, 1) —0.232 46 —0.35608 —0.526 60 —1.10749 —2.15356

in the sector of spin § =]. We know that for J =0 the
ground state in fact is in the S =2 (ferromagnetic phase).
However, it is instructive to analyze the subspace that
contains the state that will become the ground state for
J 2 J,. We solved this problem in a basis where the hole
is fixed in a given site while the spins are combined in two
linearly independent spin-1 states represented schemati-

cally by
PE=(1ID) +y It D)+t /3,

where ¥ =e*2"/3, In this basis the Hamiltonian in the

subspace of each of the two doublets can be written as a
4 X4 matrix

0O —ty 0 —ty
—t 0 —t¥y O
=] 7 _ 3)
0 —ty O —ty
-ty 0  —ty O

This result is a special case of Eq. (2) after a rotation to
the z axis in “isospin” space. By inspection we realize
that this matrix is isomorphic to that of a single particle
moving on a 2X2 lattice in a nontrivial background
gauge field or a particle moving around a 4-site ring cou-
pled to a gauge field. This gauge field (4;;,,=+2m7/3)
corresponds to a nonzero magnetic field in each plaquette
(it cannot be contracted to zero). The ground state of Eq.
(2) has a total momentum k=(0,7) or (m,0) (or
k==1/2 for a ring) but not (0,0). If we take y =1 we
obtain the Hamiltonian matrix of a free particle hopping
without external fields. That corresponds to a total spin
maximum, S =3 and the ground state has k=(0,0). We
hope to generalize this equivalent Hamiltonian mapping
to lattices of arbitrary size. It seems likely that one can
always find a basis where the Hamiltonian in the sector
with lowest spin (singlet or doublet) can be written as a
N XN matrix (N =number of sites) equivalent to the
Hamiltonian of a single particle moving in an external
magnetic field. This result may be a first step towards an

understanding of some recent speculative ideas about
“flux” phases in the Hubbard model.!?

Note that the momenta of the ground state for J = J,
are equal to those of a hole in a Hubbard model with
U =0 (free theory) with a half-filled band. In fact, we
have also solved exactly the Hubbard model on a 2X2
lattice (without any strong-coupling approximation). The
results are in excellent agreement with the picture previ-
ously presented. After some (very large) critical coupling
U,.~18 the ground state has momentum (0,7) or (,0)
and that state continuously maps into the ground state of
a hole in a free theory. However, as previously shown,
we believe that the physical explanation for the finite k of
the ground state in strong coupling lies in the phase fac-
tors coming from the overlap of rotated wave functions.
So the intuitive physics of both limits appears to be
different. Nonetheless, it is remarkable that in many
respects there is a smooth interpolation between the
strong- and weak-coupling regions. Both regions are con-
tinuously connected at least in the one-hole sector.

One of the consequences of the ground state having a
finite k is that spatially extended observables measured
with respect to a reference frame moving with the hole
may appear nonsymmetric around the hole. In fact the
shape observed in some variables resembles the cigarlike
distributions found in Hartree-Fock calculations in the
context of the spin-bag approach for small U.*!3 They
are a simple consequence of the nontrivial fact that the
ground state has a finite momentum. As an example, in
Fig. 2 we present our results for (S%m)S*m-+¢€))
(where m,m+¢€ are two-dimensional vectors correspond-
ing to nearest-neighbor sites measured with respect to a
reference frame located at the hole). The diagonal distor-
tion can clearly be seen.

At small J we observed a change in the ground state.
At J,=0.075, there is a crossing of levels leading to a
new ground state for J <J, with zero total momentum
(other states with total spin between the maximum and
minimum are the ground state in a narrow region around
J. so the transition is not completely abrupt). This is
reasonable since for J =0 we would expect a behavior
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FIG. 2. Correlation functions for a dynamical hole showing
asymmetry along a diagonal. [J=0.4,t=1,k=(7/2,7/2)].

corresponding to that of a single particle in its lowest en-
ergy state at zero momentum and all spins parallel, con-
sistent with Nagaoka’s theorem.'* To test the fer-
romagnetism expected in this new ground state we mea-
sured the total spin S,,,=(S?). For J <J, we obtain a
result {S?)=63.7500(1) which is in excellent agreement
with the maximum spin state of 15 particles, i.e.,
L(L+1). In contrast, for J=J, we found
S0t =0.750000(1) which corresponds to the minimum
spin state of our 15 fermions, i.e., 2(++1). Note that
these results are difficult to obtain numerically unless the
ground-state wave function is known with high accura-
cy.® Another important detail we learn from measure-
ments of the total spin is that the energies quoted in
Table II correspond to states with different values of
(8?). Then, in principle, they should not be interpreted
as belonging to the same band.

What is surprising in our results is that while the
Nagaoka picture is lost very quickly increasing J, the
ground state simultaneously acquires a finite k. The
smallness of the critical coupling J, corresponds to the
loss of exchange energy in the ferromagnetic state which
scales as the number of spins while the delocalization en-
ergy of the hole is approximately independent of the size
of the system. For a 2X2 lattice J.=0.2629 (exact re-
sult), while it is approximately 0.075 for a 4X4 lattice.
Presumably J,—0 in the thermodynamic limit.!6~ 13
However, if we interpret our results on a 4X4 lattice
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with one hole as a good approximation to the bulk limit
results at a finite doping fraction (%), then J, and the fer-
romagnetic phase acquire a physical meaning. This is
currently under investigation.

We have also obtained information about the bag sur-
rounding the hole. For 0.1 <J <0.4, correlation function
(S¥m)S*m+¢€)) measurements show that the weakest
correlation is along a diagonal, due to the elongated
shape of the bag, and is between 40% and 50% of the re-
sult far from the hole (see, also, Fig. 2). These strong-
coupling results are in good agreement with the expected
behavior of the spin distortion around the hole as predict-
ed by the spin-bag theory.* We have also carried out a
numerical calculation of the spin correlation in the Ising
limit of Eq. (1) using a random-walk Monte Carlo tech-
nique.'® The Ising model is studied because in this case
there are no problems associated with negative signs.
Our Monte Carlo study on lattices up to 8 X 8 sites simi-
larly finds that the antiferromagnetic spin correlation
near the hole is reduced about 50% relative to the corre-
lation at large distances from the hole.

In a separate publication we will also discuss results on
a 8-, 10-, and 16-site lattice showing that for large J two
holes in the Heisenberg model form a bound state.
Dynamical properties of the #-J model will also be dis-
cussed in that publication.?’

After completion of this work we received unpublished
work?! with results about one and two holes in the t-J
model and where the nonzero k of the ground state in the
one-hole sector is also briefly mentioned.
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