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We calculate the absorptive part of the frequency-dependent conductivity for a large class of an-
isotropic superconductors. The effect of nonmagnetic impurity scattering is included at the level of
a self-consistent t-matrix approximation. It is found that low-frequency absorption (0&Q&26)
takes place for any superconducting state with nodes of the energy gap on the Fermi surface. We
demonstrate that the limiting low-frequency dependence of o.(Q) on impurity concentrations can
help to determine the structure of the order parameter in candidate systems such as heavy-electron
compounds or high-T, superconductors. We also discuss how strong scattering, similar to that ob-
served in ordinary superconductors doped with Kondo impurities, may lead to absorption with a
threshold of Q=h rather than 26 as in quasiisotropic systems. Finally, we consider the contribu-
tion of order-parameter collective modes to the electromagnetic absorption, and show that this ab-
sorption may be substantial and depends sensitively on the impurity scattering rate.

I. INTRODUCTION

The observed temperature dependence of thermo-
dynamic and transport properties of heavy-fermion su-
perconductors has led to suggestions that the order
parameter is highly anisotropic, perhaps displaying
points or lines of nodes on the Fermi surface. ' Several
current model calculations predict anisotropic, in partic-
ular, "d-wave"-like pairing. With less conclusive ex-
perimental evidence, some theoretical model calculations
of high-T, superconductors also propose "extended s-
wave"- or "d-wave"-like pairing for these systems.

One probe which holds out considerable promise of
shedding further light on the nature of a possible aniso-
tropic superconducting state is electromagnetic absorp-
tion. As first shown by Mattis and Bardeen, ' the ab-
sorptive part of the frequency-dependent conductivity
o(Q) at zero temperature T vanishes for Q(2b„, except
for a 6-function peak at 0=0 reAecting the ideal
response of the superconducing condensate (here b, is the
isotropic energy gap). At finite temperatures the thermal
excitations give rise to an additional Drude-type contri-
bution of width of order 1jr The excitation . threshold at
2h is a consequence of the existence of Cooper pairs: ex-
citations at T=O involve the breaking of a Cooper pair
requiring at least the binding energy 2h. By contrast, in
an anisotropic superconductor with gap nodes, excitation

of Cooper pairs involving electrons near the location of
the nodes on the Fermi surface requires an arbitrarily
small energy. Consequently, the conductivity cr(0)
should be finite down to 0=0, often obeying a power-law
dependence on Q. Moreover, in the presence of
sufficiently strong impurity scattering such that the densi-
ty of states N(to) at co=0 is nonvanishing (true gapless
superconductivity), o (0) may be expected to tend to a
nonvanishing limit as 0~0 as well.

In this paper we examine the frequency-dependent con-
ductivity for a large class of superconducting states both
analytically and numerically. Our work thus generalizes
the calculation of o(A) for isotropic superconductors by
Mattis and Bardeen, Abrikosov et al. ,

' Skalski et al. ,
'

and others, although employing a substantially different
formulation. A simple adaptation of Mattis and
Bardeen's treatment, however, assuming their result to be
true for each direction in k space and averaging over the
Fermi surface, as attempted recently by Maekawa
et al. ,

' is found to be in error even for the polycrystal-
line systems they consider.

To understand why a naive generalization of the
Mattis-Bardeen (MB) result is not appropriate, we con-
sider a plane electromagnetic wave incident on a super-
conductor occupying the half-space z)0. In the clean
limit, only two length scales are relevant to the elec-
tromagnetic response: the penetration depth A(Q) over
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which the field amplitude decays, and the coherence
length go, which determines the order-parameter spatial
variation near the surface. The original Mattis-Bardeen
calculation' was carried through for a conventional s-
wave type-I superconductor, for which go»A (cf. Ap-
pendix B). In addition, it was shown that an identical re-
sult for the normalized conductivity o. /o. &, where o.z is
the normal-state conductivity, obtains in the dirty limit,
go» l, independent of A. Both situations correspond to
the extreme nonlocal electrodynamics of Pippard, where
the current at a point r is determined by contributions
from the vector potential in a neighborhood around r of
size go. Field-theoretical treatments by Abrikosov
et al. ' and Skalski et al. ' reproduced these results. In
particular, the latter work examined the London limit
A »go appropriate to type-II superconductors, but again
recovered the classic MB result in the dirty limit. Ex-
tremely important in this regard, however, is the large
separation between the energy scales determining trans-
port (e.g. , normal impurities) and pair breaking (e.g. ,
magnetic impurities).

As the heavy-fermion (and high-T, ) compounds are
strong type-II superconductors, the Pippard limit calcu-
lations will become relevant only if experiments are even-
tually performed on films of thickness d &&go. Neverthe-
less, we give a brief discussion of this case in Appendix B.
Our primary focus here will be the London limit, ap-
propriate for electromagnetic absorption measurements
in bulk type-II systems. In the collisionless limit Q~&&1,
we find a universal limiting form for the normalized con-
ductivity o.(O)/o&(Q) of an unconventional supercon-
ductor which bears a surprising resemblance to the MB
result even in the anisotropic case. By contrast, the sim-
ple universal MB form is appropriate neither for clean or-
dinary type-II superconductors nor for anisotropic type-I
systems. Furthermore, we do not recover the MB result
for an unconventional superconductor in the dirty Lon-
don limit. This is because for. both the anisotropic states
considered here and in Ref. 15, as well as the isotropic p-
wave state considered below, normal impurities are pair-
breaking and there is only a single relevant energy scale.
Any finite concentration of impurities also leads to
depression of T, and smearing of the gap "edge" in a
manner similar to that discussed by Skalski et a/. ' in the
case of magnetic impurities in a conventional supercon-
ductor.

In Sec. II, we present the general formalism from
which we derive o (0), and discuss the collisionless limit.
A number of conceptual di6'erences from the Bardeen-
Cooper-SchrieAer-Mattis-Bardeen result are then illus-
trated in Sec. III, where we discuss the isotropic p-wave
state. One interesting new eAect which arises in this case
is the important inAuence of the phase shift of the
scattering centers on absorption in the superconducting
state, leading in the extreme resonant limit of scattering
phase shifts near ~/2 (Kondo-type impurities) to an ab-
sorption threshold at co =6 rather than 26. Qrder-
parameter collective modes may lead to absorption near
Q-6 as well.

In Sec. IV, the results of Sec. III are generalized to an-
isotropic superconductors, and analytical and numerical

results for model states with points and lines of nodes on
the Fermi surface are presented. It is then possible to
derive power laws in frequency for the various tensor
components of o(Q) in the collisionless limit, as well as
gapless behavior at co =C.

In Sec. V we consider the e6'ect of order-parameter col-
lective modes on the electromagnetic absorption in the
simplest case, the pseudoisotropic Balian-Werthamer p-
wave pairing state in the clean limit. The efF'ect of impur-
ities and anisotropy is qualitatively discussed.

In Sec. VI, finally, we present our conclusions, reserv-
ing some technical remarks regarding impurity vertex
corrections and the Pippard limit for the Appendixes.

II. GENERAL FORMALISM

We begin by considering the usual expression for the
current response to an electromagnetic vector potential
A:

j(q, Q)=K(q, Q) A(q, Q)

= [K~(q, 0 ) ¹ /mc—] A(q, 0),

where the paramagnetic current response function is
given by

2 2e kp
K'~(q, 0 ) = —— g k;k~ T

pl c

~ g tr[g(k+, co+)g(k, co„)]

and k+ ——k+q/2, co+ =co„+0, ~, =co„. Vertex correc-
tions to (2) will be discussed later. The single-particle
matrix Green's function g(k, co„) for an anisotropic su-
perconducting state subject to nonmagnetic impurity
scattering has been calculated in Refs. 16—18 to be

l co„1 + gg r +E'er
g(k, co„)= 2 +$2 ++2

where 6& is the anisotropic order parameter,
g&

——k /2m *—p, is the normal-state quasiparticle energy,
and co„=co„—Xo(co„). The self-energy Xo due to impuri-

ty scattering is given within a self-consistent T-matrix ap-
proximation by Xo——I Go/(c +Go), where

Go ——(I /~NO ) g —,'tr[r g(k, co„)],
k

and %0 is the density of states at the Fermi level. The
scattering rate I is given in terms of the current relaxa-
tion time 7 in the normal state and the (s-wave) scattering
phase shift 5 as I =(2&sin25) ', and the constant
c=cot5. We have neglected an additional self-energy
correction X3 related to g&, as it may be shown to be
unimportant for this case. ' The gap function 5& is un-
renormalized in the case of s-wave impurity scattering
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and non-s-wave pairing, provided ( hk )z
——0 due to some

parity or reflection symmetry over the Fermi surface.
We will always make this assumption in what follows, but
believe that the qualitative physics will remain the same
if the restriction is relaxed to include gaps with general

(large) anisotropy. This is a consequence of the break-
down of Anderson's theorem in the anisotropic state.

In evaluating (2) it is convenient to represent the
Green's functions by their spectral representation and to
do the frequency sum over cu„, with the result

&~J(q, Q) =
2 f f dcp dcp'

2 g k;k~tr[a(k+, cp)a(k, cp')]m'e (2m)

tanh( —,
' pep) —tanh( —,

' pcp')

co —0—co —l 0 (4)

o;J(Q) =oo f dcp[tanh( —,'pcp) —tanh[ —,'p(cp —Q)] j2Q

where

XS;)(cp,Q), (5a)

Here a(k, cp) is the single-particle matrix spectral func-
tion and the function K'J(q, Q ) has been analytically
continued in 0 from the points 0 =2miTm to the real
axis 0+ i0.

In type-II superconductors, to which we confine our
discussion for the most part, the electromagnetic absorp-
tion is in good approximation given by the absorptive
part of the local frequency-dependent conductivity

o;~(Q) = limo;J(q, Q) = —(c/Q)lim ImK&~(q, Q) .
q~O q~O

This is a consequence of the fact that the magnetic
penetration depth A is much larger than the coherence
length gp (London limit), which governs the q dependence
of K~(q, cp) in (1). However, this standard argument does
not take into account the existence of massive collective
modes in anisotropic superconductors, which introduce
additional length scales, i.e., the wavelengths of collective
modes at the given frequency Q. At the frequency Q
where the wavelength matches the magnetic penetration
depth one expects maximal absorption into the collective
mode. This will be discussed for the simplest case, the
pseudoisotropic Balian-Werthamer state in the clean lim-
it, in Sec. V. The opposite limit of A being much smaller
than the coherence length (Pippard limit), appropriate for
type-I superconductors, will be briefly discussed in Ap-
pendix B. In order to evaluate the frequency-dependent
conductivity we now replace the momentum sum in (4)
by an integral over energy gk and an integral over
all directions k on the Fermi surface and perform the gk
integral by complex integration. The result is

I

co+ $——(cp Q—+iO) as well as gp+
——sgn(cp)(co+ —bk)'

and go+ ——sgn(co —Q) [(co + ) —b z]' with branch cuts
chosen such that 1m'+ & 0 and Imago+ & 0.

We first discuss a few limiting cases of (5). In the limit
T=O the cp integral in (5a) is restricted to the interval
from 0 to Q. For the normal state, putting 6k ——0 and re-
placing G+ co+——i /2w, etc. , one recovers the Drude result,

o;J(Q)=5joo/[1+(Qr) ]=5Jcrjv(Q) .

In the limit of weak impurity scattering such that
c »1 and 1/r&&b. , we find a simple result in the col-
lisionless limit, i.e., for Q~&&1 by expanding in 1/Qr.
For any anisotropic superconducting state with order pa-
rameter b.z such that (b,z) =0, or, more precisely, with
unrenormalized gap, i.e., Ai, ——hk, we find

o;~(Q) =—f dcp S, (cp, Q)[f (cp Q") f (cp)],—(6a—)o~(Q) Q

where f (cp) is the Fermi function f (cp) =(e~ + 1) ' and

S,z(cp, Q) = —,'[(k;k~Re(cp '+/go+ ) ) (Re(co+/go+ ) )

+ ( k;k Re(co+ /gp ) ) ( Re(cp '+ /go+ ) ) ] .

(6b)

The angular brackets denote an average over the Fermi
surface. Note the subscript —on gp in the second term
of (6b). We note that the strict criterion for the validity
of this simple expression is that the off-diagonal com-
ponent of the impurity self-energy X&z vanish. For s-
wave scattering and many simple order-parameter sym-
metries, (b,z)z ——0 is a sufhcient condition.

This expression deserves a few comments. First, we
note that, since

Re =N(co)/Np =N(cp),
~p+ k

)& Im
co+ j

@+ @ + 4o+ ko+

1+
co+ —cp gp+ gp

co~ =cp( cp +E 0 )Here we have defined

(5b)

and

where N(cp) is the quasiparticle density of states, Eq. (6)
is a kind of angle-dependent generalization of the
Mattis-Bardeen expression. ' It involves a convolution
of N(cp) with a moment of the angle-resolved density
of states (k;k~Re(cp'+/go+) ) instead of the N(cp)N(cp')
of Mattis and Bardeen. In addition, we note that
the "anomalous densities of states" D (cp)
—:1/m (Re(hk/gp) )z, which lead to an additional convo-
lution D(cp)D(c0') in the Mattis-Bardeen result, do not
occur in the regime considered (see Appendix B).
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III. ISQTROPIC STATE

We consider here a superconducting order parameter
which gives rise to isotropic quasiparticle excitations, but
whose average over the Fermi surface vanishes, leaving
its symmetry unperturbed by impurity scattering. A pro-
totype for such a state is the Balian-Werthamer (BW)
state of superAuid He. For such an order parameter,
Eq. (6) reduces to

1 ~ coiQ —coi
N Q 2 g2 i/2[( Q )2 g2]1/2

x[f (co —Q) —f (~)] . (7)

This is similar to the Mattis-Bardeen result' except for a
term —6 in the numerator under the integral, missing
because D (co)=0 in the odd-parity BW state.

At T=O, (7) takes the simple form

The full result (5) is valid for all scattering rates and
phase shifts. In particular, we consider below the "gap-
less" limit, which we take to mean the existence of a finite
density of quasiparticle excitations of zero energy. In the
isotropic BCS case, with c »1, this requires scattering
rates I N—:I /(1+c ) )b„as is well known (see, e.g., Ref.
14). For anisotropic states with lines of nodes, X(0)~0
for infinitesimal I, but does not become appreciable rela-
tive to No until I &-Ao again. ' All superconducting
states become gapless with small concentrations of im-
purities if the scattering is strong (c «1). In isotropic
states this takes the form of a low-energy bound state in
the gap ("Kondo-resonance" ), as first discussed by
Maki and Shiba ' for the s wave, and by Buchholtz and
Zwicknagl for the p-wave case. This bound state is
smeared and acquires a finite lifetime in the anisotropic
superconducting state, but still gives rise to zero-energy
excitations at surprisingly small impurity concentra-
tions. ' ' One expects that these effects should manifest
themselves in two-particle properties as well. '

ABcs(co) =Re[co/(co —b. )'/ ] .

Hence, at zero temperature there is no absorption, i.e.,
o(Q)=0 for Q &26.. Contrary to the singlet isotropic
pairing case, however, where o(Q) is found to increase
linearly with Q —2b, above the threshold, here cr(Q)
jumps to a finite value at 0=26+ iO. The linear slope of
o.(co) as a function of Q —2b, o usually found in calcula-
tions of the absorption arises only as a result of cancella-
tions resulting from the presence of the anoma1ous con-
volution D(co)D(co'), which vanishes here. As the im-
purity concentration is increased, the threshold moves to
lower 0 and broadens.

In Fig. 1, we have evaluated Eq. (5) for o (Q)/o. N(Q)
numerically for the BW state in the presence of weak
scatterers at T=0. The crucial difference from the
Mattis-Bardeen case is the discontinuous jump in absorp-
tion from zero to a finite value at co=25o in the clean
limit. Otherwise the progressive "smearing" of the gap
edge at 2b with increasing scattering rate I and eventual
gapless behavior at I N = b. (recall the gap magnitude 6 is
also depressed by pair breaking) is reminiscent of the
BCS case. '

For strong impurity scattering, such that I & 6 cos 5,
the behavior of cr(Q) is quite diff'erent. In this case the
scattering amplitude has a pole, which, as discussed in
Sec. II, gives rise to a resonance peak in the density of
states in the gap region, located at m=O for unitary
scattering (fi=vr/2) but centered at a finite frequency co„
for 6&+/2 (see Fig. 3). We examine first the case of reso-
nant scattering, c=O. Given the presence of low-energy
bound states, the small absorption features shown in Fig.
2 below A=A are perhaps not surprising; they corre-
spond to scattering of quasiparticles from filled bound
states just below the Fermi surface to empty ones just
above. The most unusual feature in the figure is the large
absorption edge at Q=b, (c=O). This may be crudely un-
derstood in terms of Eq. (8), which at Q=b, involves
products of the BCS-type density of states function at the

no.(Q)/cr (Q) =—f den N(co)A(co Q)'—
n o

(8)

alluded to above.
The result (8) is approximately valid for finite, but

small impurity concentration n;, such that I «h. [The
actual condition is

Im( co+ )Im( 1/go+ ) « Re(co+ )Re( 1/go+ ),
as seen from (6b).] The density of states is then given by
the general expression for 8'(co) given above.

However, even for I « b, , the conductivity o (Q) does
not necessarily resemble the known BCS result. We may
calculate the density of states by solving the self-
consistent equation for 6

1.0—
(

Z.

Cl

0
0.5

isotropic T = 0
c =10

(
—2 g2)1/2

+ +6+ =co+i I
c (co+ —b, )+co+

(9)

For weak impurity scattering strength (phase shift 5 « 1)
one finds a density of states close to the usual BCS densi-
ty of states

FICx. 1. Absorption in a Balian-Werthamer (isotropic) state
at T=O for weak scattering (c=10). Solid line: I /T, =0.1;
dashed: I /T, =10.0; dashed-dotted: I /T, =100.
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2.5 -r = 0.01-
c=0

l

/
I =0.12.0—
c=O

r

r

r

r

f

1

t

!

& 1.5-
z

1.0—Q

0.5—

0.10

0.5
0 /ho

isotropic T = 6

PIG. 2. Absorption in a Balian-Werthamer state at T=O for
strong scattering. Solid line: I /T, =0.01, c=O; long dashed:
I"/T, =0.1, e=O; short dashed: I /T, =0.1, c= 1.

For nonresonant scattering phase shifts, the bound
state moves away from zero energy. Thus it is easy to
understand the short-dashed curve in Fig. 2 (c= 1) in
terms of the schematic of Fig. 3. Below A=A, no phase
space is available for scattering. At 0=6, quasiparticles
may be scattered from bound state to bound state with
small amplitude (type-I process). Above 0=1.55o, pro-
cesses of types II and III contribute, scattering quasipar-
ticles from gap edge to bound state and vice versa. Pair-
breaking processes of the usual type also occur above
0=206, where 2AG is the density-of-states energy gap
in the presence of impurities, but do not serve to deter-
mine the absorption threshold.

In ordinary superconductors with Kondo impurities,
where few measurements have been made, observation of
an absorption threshold at 0=ho would be an interesting
and useful confirmation of the single-particle picture we
have presented. [While we have not treated the gap re-
normalization correctly for this case, we expect that the
qualitative features, particularly the threshold in o (0),
should be preserved in a more complete calculation. ]

gap edge ~=A with the density of states at zero energy.
Whereas for weak scattering the latter is zero, for reso-
nant scattering the weight in N(co) due to the bound state
is folded in with the singularity in N(co) at co= 5, giving
a large absorption. Physically this corresponds to
scattering a quasiparticle from the bound state at the Fer-
mi surface into unoccupied states near the gap edge.

h,p—
Q,G

QG
h, p—

-2hp—

FIG. 3. Schematic of absorption in Fig. 2, I /T, =0.1, c= l.
I: scattering processes from filled to empty resonant states; II:
scattering from filled resonance to gap edge; III: scattering
from filled states at gap edge to unoccupied resonance.

IV. ANISOTROPIC STATES

The general result (5) of the absorptive part of the bare
current response is correct for anisotropic order parame-
ters only insofar as we may ignore vertex corrections.
These are of two types: (a) pair interaction vertex correc-
tions, which correspond to collective modes of the tensor
order parameter, which may couple to electromagnetic
waves, and (b) impurity dressings of the bare current ver-
tex. In order to maintain a fully conserving approxima-
tion to o., one should solve the coupled diagrammatic
equations which result from consideration of both types
of corrections together, as attempted recently by May
in the context of sound propagation in heavy-fermion sys-
tems (cf. discussion in Sec. V). Even in the clean limit,
solution of the full collective-mode problem is an arduous
task, and has only recently been solved by Hirashima and
Namaizawa for some special cases. In Sec. V we will
calculate the contribution of collective modes to the elec-
tromagnetic absorption for the simplest case of a quasi-
isotropic order parameter (Balian-Werthamer state ), in
the clean limit. Even at low frequencies, however, impur-
ity vertex corrections will in general contribute to o (0).
For certain choices of order-parameter symmetry, these
vanish altogether, as discussed in Ref. 18. There is, for
example, no coupling of any even-parity order parameter
with the odd-parity bare current vertex. ' Even in the
case of odd-parity pairing, the largest tensor component
of any current-current correlation function (q=O) is un-
renormalized by impurity vertex corrections. In what
follows we focus on exactly these components, since they
are expected to dominate the qualitative behavior of the
conductivity except for certain special directions. In Ap-
pendix A, we give a prescription for calculating impurity
vertex corrections and discuss how they might affect the
observed conductivity anisotropy at low frequencies, for
example.

In the following we present results of an evaluation of
o.(Q) as given by (5). To simplify our discussion we cal-
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culate cT ( Q ) for two model states representative of
broader classes of states with nodes on the Fermi surface.
We consider (1) an axial state b.k

——b,o(k, +ik~) with
point nodes on the Fermi surface, and (2) a polar state
Ak =kpk with a single line of nodes. In the spirit of
Sec. III, it is very instructive to examine the collisionless
limit, where Eq. (6) holds. The required quantities

(go ')z have been calculated in Ref. 18 for various order
parameters. In particular, for an axially symmetric gap
one finds

2.0

z
1.0

(

( I—r=0.01.=o

/
'i

I(—r = o. ~

c=o

/(

axial ll

T=O

2 —1(k,Re(1/go) )k —— z — ln
0 2 z —1

where z =co/b, o, and

( Re(1/go) )k
= ln

260 z —1

For a polar gap one gets

(Re(1/( ) )-„= si
1 . i 1

0

and

(10a)

(10b)

(10c)

o.5 — I'
I
I

~ /

j/
0

FIG. 4. Absorption in an axial state at T=O. Solid line:
I /T, = 1, c= 10; short dashed: I /T, = 10, c= 10; long dashed:
I /T, =0.1, c=O; dashed dotted: I /T, =0.01, c=O.

and yo =
Uo /b, o is a solution of the equation

( k,'Re(1/g, ) )-„=
0

1—(z' —1)'"+z'sin-'—
z

r f (y) —"=y'f'(y),
~0

(13)

(10d)

In the limit of small frequencies Q&(60, one finds at
T=O

with f (y)=([y +(bz/bo) ] 'i )z. For the axial
state f (y) =tan '(1/y) and for the polar state
f (y) =sinh '(1/y). The finite frequency correction
coe%cient a is given by

c7(i i Q

o~(Q) ' bo a =1— 60
h b" c'/f '(y )],— (14)

where pll
——4 and pi=6 and ali ———,'„az ———„', for the axial

state, while for the polar state pal
——4, and p] =2 and

a
ii

——3~ /160, a i = vr /16. Note that in this regime
cT&(Q) —Q, so that, e.g. , o i(Q) —const and crii(Q) Q
for a polar state, in contrast to the result of Maekawa
et aI. ' These power laws are clearly visible in the solid
and short-dashed lines of Figs. 4 and 5 for the polar l and
axial ii components of a at T=O.

On the other hand, the behavior of o. in the strong
scattering case is dominated down to the lowest frequen-
cies by the resonance analogous to the bound state de-
scribed in Sec. III. For A I', we may perform a low-
frequency expansion appropriate to the gapless regime
for the polar state generally, and for the axial state pro-
vided 1 /b, o~2c /~ (see Ref. 18). Using the result ob-
tained in Ref. 18 for the renormalized frequency
co=iuo+aco for co~0 we expand (5) in powers of co with
the result

2.0—

r =- 0.1

c=0

polar l
T=0

z
1.0—

(

0.5

—0.01

1

10

10
10

where h =ho(b&(uo+b&) )k. Note that in the limit

o.;~(Q)
cr ~(0)

2
1 —,a 2

pp+ (12a)
0

0 2
A / h, p

where

k;kS;=—', b'J
(

2 ~((2 (3/2 )- (12b)
FIG. 5. Absorption in a polar state at T=O. Solid line:

I /T, =1, c=10; short dashed: I /T, =10, c=10; long dashed:
I /T, =0.01, c=O; dashed dotted: I =0.1, c=O.
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2.0

1.5—

polar J
r= 10
c =10

(

1.0
I

05 -i 05 rj

o/
0 ~ I

0 1 2

FICx. 6. Finite temperature absorption in a polar state (weak
scattering, 1 /T, =10, t". =10). Solid line: T/T, =0.9; dashed:
T/T, =0.5; dashed dotted: T/T, =0.

V. COLLECTIVE-MODE CONTRIBUTION
TO THE ELECTROMAGNETIC ABSORPTION

IN THE BALIAN-WERTHAMER STATE

The frequency-dependent conductivity given in Eq. (5)
neglects absorption resulting from collective modes of the
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FIG. 7. Finite temperature absorption in a polar state (strong
scattering, i /T, =0.1, c=0). Solid line: T/T, =0.9; dashed:
T/T, =0.5; dashed dotted: T/T, =0.

I /bo))1,
vo-~l ~

—= ( I/2r) =I /(1+c')
and g, ~$, (b 0/I ~ ), so that o; (0)/c. r~(0)~

At any finite temperatures, some absorption will be
caused by scattering from thermally excited quasiparti-
cles. In Figs. 6 and 7 we show results for o (0) in a polar
state at various temperatures for weak and strong scatter-
ing, respectively. Obviously when the gap magnitude is
sufficiently reduced by temperature, anisotropic states be-
come more or less indistinguishable.

order parameter. The role of collective modes in the elec-
tromagnetic response of superconductors is an old subject
which originated with questions raised about the gauge
invariance of the original BCS theory. Anderson's 1958
paper provided a gauge-invariant formulation of the
pairing theory and elucidated the role of the collective
modes in super conductors. These modes may be
classified into (i) Goldstone modes, associated with spon-
taneously broken continuous symmetries, and (ii) exciton
modes, a generic title assigned to modes that involve a
time-dependent deformation of the order parameter. Ex-
citon modes have a dispersion relation with a gap at
q=0. In conventional superconductors, those in which
only gauge symmetry is broken, the only Goldstone mode
is the phase oscillation of 6k. However, the phase mode
oscillates at the plasma frequency 0

&

——4mne /m, be-
cause of the coupling to long-wavelength charge Auctua-
tions, and so is uninteresting for experimental supercon-
ductivity. Many authors, beginning with Anderson and
Bogoliubov, Shirkov, and Tolmachev, predicted the ex-
istence of exciton modes with energies Q &26k, corre-
sponding to excited, bound states of Cooper pairs. Ex-
citon modes have never been definitively observed in any
superconductor to our knowledge. The probable reason
is that the exciton modes are always nested close to the
gap edge of 2h for any conventional superconductor.
For an exciton mode to exist with energy below the gap
edge in a conventional s-wave superconductor, there
must be pairing interaction VI, binding Cooper pairs with
relative angular momentum I, that is nearly as attractive
as the s-wave pairing interaction Vo that binds pairs in
the ground state. This was shown theoretically to be the
case by Tsuneto, and Bardasis and Schrieffer. The en-
ergies 01 for excitons of angular momentum 1 are func-
tions of

~
1/Vo —1/Vi

~

and are located near 26 except
for V&

—Vo. The existence of two nearly degenerate pair-
ing channels is an unlikely occurrence for conventional
superconductors in which the pairing is mediated by the
electron-phonon interaction, except perhaps in highly an-
isotropic conventional superconductors.

In unconventional superconductors, exciton modes
with energies well separated from the gap edge do not re-
quire the existence of a second, nearly degenerate pairing
channel. The reason is that, in contrast to an s-wave su-
perconductor described by a scalar order parameter, an
unconventional superconductor is described by an order
parameter that breaks the rotational symmetry of the
normal state, in addition to gauge symmetry. Rotational
symmetry breaking implies that the order parameter be-
longs to a nontrivial representation of the symmetry
group of the normal state. That ~k belongs to a higher
dimensional representation implies that there is a spec-
trum of pairing states belonging to this representation,
and thus bound by the same pairing interaction. This
feature of the collective mode spectrum is well known in
superAuid He, which is an unconventional superAuid
with an order parameter that breaks rotational symmetry
in both spin and orbital space. '

If heavy-fermion superconductors are unconventional
superconductors, then collective modes of the order pa-
rameter should play a more important role in the elec-
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tromagnetic response of these superconductors, at least
in the limit of high purity where co~; &&1. For this
reason, several authors ' have examined the spectrum
of collective modes for various models of the supercon-
ducting ground state. What is common to all of these
studies is that unconventional superconducting phases of
either space parity (i.e., even-parity singlet states or odd-
parity triplet states) exhibit a spectrum of order parame-
ter collective modes including the gauge mode and exci-
tonic modes with excitation energies lying below the gap
edge.

Here we calculate the contribution that excitonic
modes make to the absorptive part of the electromagnetic
response of an unconventional superconductor. We
choose the odd-parity triplet Balian-Werthamer state as
our model unconventional superconducting phase simply
because the isotropic gap of the BW phase allows us to
carry out the calculations of the absorption analytically.
The main features of this calculation are also qualitative-
ly, and semiquantitatively, correct for anisotropic uncon-
ventional superconductors with exciton modes lying in
the gap. Those results that are not general are discussed
below.

Heavy-fermion metals (UPt3, UBe») are type-II super-
conductors with field penetration lengths A that are large
compared to their coherence lengths go. This is impor-
tant because it implies that an electromagnetic wave
penetrates relatively deep into the superconductor at a
vacuum-superconducting interface, and probes the bulk
order parameter by exciting currents far from the inter-

face where the order parameter is distorted from its bulk
form.

The previous results for the frequency-dependent con-
ductivity omit any excitonic contribution to the current
response. To include the collective-mode contributions
to the current, the bare paramagnetic response function
K discussed in Sec. II is generalized to include vertex
corrections resulting from polarization of the medium by
the field. In addition, at any finite q, K (q, Q) is renor-
malized by vertex corrections due to impurity scattering.
To treat the response in the presence of impurities in a
fully gauge invariant, conserving random-phase approxi-
rnation (RPA) one should, in principle, include all the
diagrams shown in Fig. 8. For simplicity, we focus on
the collisionless regime, where impurity vertex correc-
tions may be neglected and collective mode contributions
are included by solving a transport equation for the dis-
tribution function 5g(kzco;q, Q) for electrons propaga-
ting along the direction k with excitation energy co in the
presence of a Geld A. The details of this calculation are
lengthy and omitted here. The current response is given
in terms of the distribution function as

j= eNO I —vz 1 des 6 g( k, co; q, 0),dQ
4~ k

where 5g (k, co;q, II) is the solution of the transport equa-
tion and is given by

I A

+ ~ ~ ~ ~

i —' y'I i-
Zt) d~ k, ia, oo 5h~ q, D

FIG. 8. Diagrams contributing to the electromagnetic response in the presence of impurity scattering (see Ref. 24). The shaded
triangle is the complete vertex function and the wiggly line is the pair potential. Note that the impurity vertex function A and the ir-

reducible vertex I are discussed in Appendix A.
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0 g Vk

Id' 5g (k, tp;q, Q) = k(v& A) 2—ie (1 —A )(v&.E)+A, [h.d(k)],
c Q —(q vz) b,~

where 1, is the finite-q generalization of the pair response function introduced by Tsune to:

2cpQ(P+ —P )+ rt (P++P )
A(Q, q)=

i

b-„) 2~i (4' —ri )(Q —g )+4
~

Aq ~

(+2
[
g

)

2)li2

Here P+ ——P(co+Q/2), g=vz q, and 6, = ——,tr(icr ghz) is the vector representation of the spin-triplet gap matrix b, z.
The term proportional to d(k) —= Im5b, i, represents the contribution to the distribution function due to excitation of the
order parameter, and

~
hz

~

=b for the BW state. This expression is clearly gauge invariant since under an
infinitesimal transformation A~ A+i qg, the order parameter transforms as

. 28
. 2e

h.-~ h,-e ' =6- 1 i-
k k k

For the transverse gauge, q A =0, E=i Q A/c, in which case

Q
Jdcp5g(k, tp;q, Q)= A+ (1—A, ) (v~ A)+A,

~ [h~ d(k)] .
Q —(q.v~)

k

The response of the order parameter, d(k), is given by the time-dependent gap equation. The result calculated from the
quasiclassical transport equations may be written

d(k)= —,
' I V, (k k') y+ [Q —4b, —(q v-, ) ] d(k')+ b,-,[h-, d(k')] — (q v-, )(v-, A)b;,2k, 28K,

2g2 k' g2 k* k' g2 k' k' k'

(20)

where V, =3V, (kk') is the p-wave pairing interaction
and y =2/V, .

The solutions to the homogeneous equation for q=O
have been studied extensively in the context of ultrasonic
absorption in superfiuid He-B. For q=O the homogene-
ous equation is solved by expressing the components of d
as d;(k)=d Jk, and assuming the simplest BW state
6'I, ——Ak;. The eigenfunctions are then the spherical ten-
sors t,

'~ ' with J=0,1,2 and
~

M
~

=0, 1, . . . , J. Only the
collective modes with J=O and 2 couple to the elec-
tromagnetic field. For these modes the eigenfunctions
and frequencies are

d;. = g a (Q, q)t
J,M

(22)

The spherical tensors satisfy the orthogonality relations,

Tr( t t ) 5JJ'5MM( JM) ( J'M') (23)

[Q' ——,'{qu&) ]app —
—,', (qu/)'(&2a~p) =0,

[Q —
&

b, —&&(qu/) ]app —
&& (qu/) (&2app)

4A
5

q(ugI, t,' ' AJ),
C

which we use to project out the amplitudes aJM(Q, q)
from Eq. (22):

t,' '=&3/2(s, s ——,'5,"), Q= &12/5b, ,

t,
' ' "=+—,'[s, (u+iv), +(u+iv), s, ], Q=&12/5b, ,

t
~

' +'= ,'(u+—iv);(u—+iv)J, Q =&12/5b, ,

(21)

4k 2e
p(q (p +i)+ g )

S c qv&, t,j. '

J

where (u, u, s) is a fixed set of orthonormal coordinate
axes defining the orientation of the collective modes; the
orientation and coupling to these modes is dictated by the
external field A and the direction of propagation q. To
determine the collective-mode contributions to the
current response we solve the inhomogeneous equation
for d; by expanding in the solutions t - ' of the homo-
geneous equation; choosing the quantization axis of the
modes to be q, we have

[Q ——", b. ——,'(qu/) ] +~=
4A

5
qu&(q;tI 'A ) .' —

C

In the transverse gauge q. A=O, only the modes with
J=2,

~

M
~

=1 are excited by the electromagnetic field;
all other matrix elements, q, t,.' 'A. , vanish. Note in par-
ticular that the phase mode, corresponding to J=O, does
not contribute in the transverse gauge. This result is
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peculiar to isotropic states. ' The resulting amplitude
for the J=2,

~

M
~

=1 modes becomes

~4 8 hvFq 2e

~,+~, Q' —Q,'+, (q)

(25)

where

1

x "A(Q, qvFx) .
—I 2

1.05--
2Z

0.95-

0.90-

0.85-

0.80-

SQ mode Dispersion

22, +1=

2A,o
—18K,2+20K,4 4+ Q2

AP+ A2 5
(26a)

These modes are excited resonantly by the electromagnet-
ic field at frequencies

12 2 ~2 ~4

5 AP+ A2

FIG. 9. Collective mode frequency Q/2A as a function of
UFq/2A. Points: exact solution of Eq. (26a). Solid line: ap-
proximate dispersion, Eq. (26b).

= —", b, + ', (qvF ):——Q, (q) (26b)

Note that the last term in (26a) is of order q .
The dispersion of these modes may be calculated by

solving (26) self-consistently for Q=Q&+i, as shown in

Fig. 9. The initial quadratic rise in 02+1 is weakened by
a level repulsion eA'ect as 02+, gets close to the pair-
breaking continuum above 0=26. The mode frequency
reaches the pair-breaking edge at q =q, = 1.2(26 /uF ).
Beyond this point, the mode is damped by pair-breaking j;(q, Q) =(K,;"+If, 'd') A (27)

processes. These modes play an important role in the
electromagnetic absorption as we show below. Impurity
scattering modifies the response by broadening the collec-
tive mode. We can include this broadening qualitatively
by replacing 0—+0+i /~, where ~ is of order the electron
lifetime due to impurity scattering. However, for the es-
timates that follow we assume 1/r « b, . Equation (1) can
now be written in the form

where E -' gives the current response of the single-particle excitations and K; ' ' gives the current response from excita-
tions of the collective modes with 7=2 and

~

M
~

= 1. The response of the single-particle excitations is given by
~ex ~exp

&J &J
'

ne , 1 dx1+ ,' f —(1—x )[1—A, (Q, qufx)]x—1 2 gVf

For temperatures above T„K'"is simply proportional to
the frequency-dependent conductivity for an impurity-
free metal, and determines the power absorption in the
anomalous skin region. The corrections to K" below the
superconducting transition due to single particle excita-
tions were discussed earlier in the long-wavelength limit
in Secs. II—IV. The

~

M
~

=1 collective modes give
~mode g ~mode g

V J

I(q, Q)=

(u)I( Q)
mc Q —Q2 +,(q)

~2 ~4
x (1—x )k(Q, qvfx) .

O+ 2

(29)

In order to estimate the importance of the collective
modes to the current response we calculate the power ab-
sorption P(Q) from the collective modes and compare

the result with the normal-metal power absorption in the
anomalous skin region. Because the field penetrates only
a distance of order the skin depth into the metal we are
required to solve the boundary value problem of an elec-
tromagnetic field incident on a vacuum-metal interface
and penetrating into the metal a distance of order A.
Thus, we expect collective modes to be excited for wave
vectors q & 1/A & 1/g. The power absorption at frequen-
cy Q is given by integrating the Joule dissipation over the
half-space of the metal,

P(Q)= ,' f dz—R—e(En jn) .

The half-space boundary value problem is mapped onto a
full-space boundary value problem by assuming specular
boundary conditions at the vacuum-metal interface.
We specify the magnetic field 80(Q) on the vacuum side
of the interface, and obtain from Maxwell's equations and
this boundary condition,
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A (q, Q)=
2Bo(Q)

q — K(q, Q)
4m

c

The result for the power absorption becomes

(31) N
I

0.20-- s

I

I

I
t

I

0.i5
I

I

l

\

t
'l

\

P(Q)=—2Q
l
Bo(Q)

I ~ 1 Im[K(q, Q)]
c 0 27T 4~

q — K(q, Q)
c

0.10-

().05-

(32)

In the impurity-free normal metal the absorption be-
comes

P~(Q) = Q
i
Bo(Q)

i

A2'

1.0 2.0 3.0 4.0 50 ~P 60

Vg

FIG. 10. Power absorption in the normal state
P~(Q)/[3/16'

~
Bp(A}

~
U/] vs reduced frequency QA/u/

Dashed lines: asymptotic behavior given in Eqs. (35) and (36).
Solid line: exact evaluation of Eq. (34).

where

X „dq ImK„(Q/quf )

~
(qA) +K&(Q/quf)

1/2
Pic

4~ne

(33) 3 (q, Q) =6(ne /mc)(quf ) I (q, Q)/Q .

Here,

4~
EQ) ——

c 2 4m ~exq +
C

is the T=O London penetration length, and

ImK~(z)= — z(1 —z )8(1—
~

z
~
),4

T

3 j. 2 1 —zReKz(z)—:—z z ——(1—z )ln

(34)

In the limit (QA/uf ) «1 this reduces to the power ab-
sorption in the anomalous skin effect region

1/3

P~(Q) = 1 2
8v'3 3~ vf ~

Bo(Q)
~

(QA/uf ) (35)

With increasing frequency, Pz(Q) reaches a maximum at
Q -uf /A and decreases as

if a frequency shift is induced by the collective mode con-
tribution in the denominator of the integrand of (32). It
is convenient to introduce the wave vector q, (Q) at the
mode crossing Q=Q&(q, ); thus,

0, Q(QO
q, (Q)=

(Q —"b, )' Q&Q—
c(

(38)

iB (Q)iP,d, (Q) =
100~

where Qo=Q&(0) and c, =&2/5uf is the velocity that
determines the dispersion of the collective mode. In the
limit quf «Q, the denominator of P,d, (Q) may be the
approximated K'"-ne /mc and EQ&(q) may be neglect-
ed, with the result

Px(Q) = uf I
Bo(Q) '(uf /QA)

3
192m

(36) Q(Q' —Q,')'"
XA,o(Q, q =0) . (39)

(Q —Qo+c, /A )

—2Q
I
Bo I'P,d, (Q) = f dq

Im(K ' ')

q 2+ +cx4m

C

2

(37)
Im(K ' ')-~A (q, Q)5[Q —Q, (q) —EQ, (q)],
where

for 0 ~ Uf /A. The result of a complete numerical evalua-
tion of Pz(Q) is shown in Fig. 10.

In the superconducting phase the absorption from the
collective modes for 0 & 2A becomes

At T=O the power absorption in the BW state is zero
below the threshold 0 & Qo; at these frequencies only the
supercurrent is excited by the field. The absorption in-
creases rapidly for Q & Qo and reaches a maximum for

2
1 UfQ„=Qo+ — & 2b. for A ))(-

A Qo
(40)

The width of this absorption peak is -c] /A, and its total
area is a factor of A/go larger than the integrated power
absorption in the normal state up to 0—=26. With de-
creasing ratio A/go the peak rapidly disappears. Above
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FIG.G. 11. Power absorption in the Balian-Wertharner state at T=O normalized to P (0) for A/~~ =0 1 1 0 10 d f
(0/2h).
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the gap edge (0 & 2b, ) the single-particle excitations that
are produced by pair breaking contribute to the power
absorption. The qualitative behavior just discussed is
borne out by a detailed numerical evaluation. Figure 11
shows the power absorption as a function of frequency,
normalized to the absorption in the normal state, for
several values of A/go. The collective mode peak is seen
to dominate the absorption for large values of A/go and
is well separated from the pair breaking continuum above
0=26.

The main results of this calculation are that excitonic
collective modes of the order parameter, w'hich are a gen-
eric feature of clean unconventional superconductors,
contribute significantly to the power absorption at fre-
quencies well below the quasiparticle gap edge of 2A. In
the BW state the threshold for exciting collective modes
is Go=1.55A; however, this threshold frequency is sensi-
tive to a variety of "real-metals" effects, including
Fermi-surface anisotropy, impurity scattering, and
Fermi-liquid effects. Impurity scattering in particular
will broaden the collective modes, eventually overdamp-
ing them and washing out any structure in the absorption
spectrum when wA ~ 1.

Although the BW state should be qualitatively
representative of all unconventional superconductors in
that it exhibits order parameter collective modes that
couple to the electromagnetic field, the important distinc-
tion between the BW and most of the unconventional su-
perconducting states that have been suggested as possible
ground states for the heavy-fermion superconductors
UPt3 UBe,2, etc. , is that the BW gap does not vanish in
any direction in k space. Polar and axial states, which
have been proposed as candidates for the ground state in
various heavy-fermion superconductors, have gaps which

vanish along lines or at points in k space. In conse-
quence, the single-particle excitations are always present
at finite temperature or frequency. These excitations al-
ways couple to the collective modes, producing a sizable
width to the modes in these phases. Nevertheless, the
collective modes have been clearly observed in He-A,
which is the prototype axial state, and there is no reason
to believe that quasiparticle broadening will destroy the
collective-mode structure in the EM absorption spectrum
at least in a pure sample of a heavy-fermion superconduc-
tor with an axial- or polar-like gap. Finally, the existence
of collective-mode peaks in the electromagnetic absorp-
tion with frequencies well below the gap edge of 2A may
look qualitatively similar to the bound-state peak at
A & 6 that results in the strong-impurity-scattering limit.

VI. CONCLUSIONS

We consider the measurement of low-temperature mi-
crowave absorption in heavy-fermion superconductors
extremely important from a number of points of view.
First, such experiments provide a direct measurement of
the energy gap, although this gap need not be identical to
that deduced from tunneling measurements. Second, it
will be useful to test the consistency of the anisotropic
pairing hypothesis, coupled with the assumption of near-
resonant scattering, which together have been qualita-
tively successful in explaining various transport measure-
ments in the superconducting state. ' ' Finally, elec-
tromagnetic absorption is the only probe suitable for ex-
citing collective oscillations of the order parameter mag-
nitude at frequencies of order Ao, possible for certain un-

conventional superconducting states. Although coupling
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to collective modes has been discussed theoretically in the
context of sound absorption, ' ' ' it is unlikely that
sound experiments will be able to access the regime
Q~,d, &&1, Q-b. , and q &&go ', where such eFects are
important, in the near future.

We note that, in order to account for experimentally
observed pair breaking effects on T, and superconducting
transport properties, values of (rT, )

' from 10 to 10
have been deduced in nominally pure samples. ' ' On
the other hand, normal-state resistivity measurements in-
dicate a considerably higher scattering rate. This may be
a consequence of two facts: (1) Part of the normal-state
scattering is inelastic, and would be expected to disappear
for T « T, and (2) the elastic part of the scattering may
be very anisotropic, such that it is less efFective in des-
troying the anisotropic superconducting coherence. For
example, in a polar state, if the scattering is confined to
the equator, the mean free path obtained from a resistivi-
ty measurement may be quite small, whereas the efFect of
the scattering on the polar gap will be minimal. Since the
scattering probability must have the symmetry of the
crystal lattice, this model with a single line of nodes is
only possible in hexagonal or tetragonal symmetry. For
example, in the hexagonal superconductor UPt3 the gap
deduced from comparison with transport properties, '

and from a recent model of the pairing interaction has
such a line of nodes in the basal plane.

We note that in either case (1) or (2) the collective
mode width 1/r mode discussed is determined by the
longer of the two relaxation times. Thus small estimates
for z obtained from resistivity measurements need not
preclude the observation of the collective mode.

Our calculations of o.
,"(Q) show that for model aniso-

tropic states with lines or points of nodes on the Fermi
surface, electromagnetic radiation is always absorbed for
energies down to Q=O. If scattering phase shifts are
small, power laws in frequency may be deduced for the ei-
genvalues of 0(Q)/o~(Q) in the collisionless limit. For
the largest of these we find Q in a polar and 0 for an
axial state, while the smaller eigenvalue is reduced by 0
in both cases. Thus one should, under this assumption,
observe enormous anisotropy in a(Q) at the lowest fre-
quencies in a single crystal; in a polycrystalline sample we
expect the power laws quoted to dominate. In the reso-
nant scattering limit of large phase shifts, on the other
hand, the absorption at very low frequencies is gapless,
reAecting similar behavior in the density of states. The
large absorption feature caused by scattering of quasipar-
ticles to or from the resonance near the Fermi surface is
peaked around A=ho, but in the highly anisotropic
states considered here dominates the intermediate-
frequency region as well due to smearing caused by the
gap nodes. In this case distinguishing between states
with lines and points of nodes may prove quite difticult.

In addition, identification of such a feature at 0, =50
will be complicated by the possibility that a collective
mode may be excited near the same frequency. In such a
case, measurements of doping dependence would be
necessary to resolve the two effects. This is not the case
for ordinary superconductors with Kondo impurities,
where none of the collective modes couple to mi-

In this section we calculate the impurity vertex correc-
tions to Eq. (5), assuming the scattering takes place en-
tirely in the s-wave channel. Collective excitations are
neglected. It is convenient to first examine Eq. (4) more
closely. As the matrix spectral function at q=0 is given
by

a(k, co) =g(k, co+iO) g(k, co i—O), —
we may, assuming a spherical Fermi surface, write

Io —= g k;k Tr[a(k, co)a(k, co')]
k

Here,

I. p(co, co', k)

(A 1)

~N f ~a~P+kAP+~k
(~'. k'. ~r. )—l(~ p)' 0p ~r. —j—(A2)

and the indices a, f3=+, —indicate that the renormal-
ized frequencies are to be evaluated at ~+i 0. The quanti-
ties g =g+X3(co+i—Osgna) are single-particle energies
renormalized by ~ components of the impurity t matrix,
as discussed in Ref. 18. These corrections are neglected
in the text, but we include them here for completeness.

The expression (A2) gives a logarithmic divergence in
Eq. (4), but it is easy to check that all divergences cancel
in (Al), which may be rewritten as a sum of explicitly
convergent terms,

2~No
k, k, 'y(aP)I oop (A3)0 p 1 J

k

with (aP) = sgna sgnP and

I 00

fdic.

~ ~p+(~ p)'+jap (gp)'—
(@' k' ~t)l (@p)'—(kp)' -~a 'j—

(A4)

crowaves. Measurement of cr(Q) in such a system would
be an interesting test of some of the ideas discussed
above.

Note added in proof. After submission of this
manuscript we received a preprint from R. A. Klemm
et al. which presents results for the surface impedance of
amsotropic superconductors. During revisions, this work
was published as Ref. 40.
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APPENDIX A:
VERTEX CORRECTIONS TO o ( 0 )
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Note that the analogous procedure for the heat current
correlation function (bare vertex cow ) leads to
L ++ ——L =0 (1S), but that retarded-retarded and
advanced-advanced terms both contribute in the present
case. As discussed in the text, the integrals (A4) may
now be performed analytically, leading to the result (5)

when X3——0.
The RPA expressions for the general impurity-dressed

two-particle retarded-advanced function and the associat-
ed vertex function have been given in Ref. 18. It is now
straightforward to write down the appropriate generali-
zation applicable to the conductivity. We find

k X
1m[So'~(0, 0)]= f den

'

& (aP)X'~&(co) [tanh( —,'Pcs) —tanh( —,'Pc@')],
a, P

where

X'J,=&k, k, L:;&+ y &k, LO.", &Ag&k, L.g & .
n =1,2

Here we have introduced the generalized response functions

I gL
& (co, co', k) = T—r(~'~ rjr")fd(Tr[r'g (k, co)]Tr[~~g &(k, co')],

(A5)

(A6)

(A7)

where

g (k, co) —=
a r'+g r'+b. „r'

r) —g —b.„—2 2 2

Note that only the functions

(AS)

special symmetry directions for uniaxial p-wave gaps. In
particular, it was shown in Ref. 18 that the largest eigen-
value of E; is unrenormalized; thus the evaluations of
Eq. (5) plotted in Figs. 4—7 require no vertex correction.

The function Ag„ introduced in (A6) is the full s-wave
impurity vertex function obeying

and

10=L p

c7) +co p

(~' —g' —&k )[(~p)' (g g)' Ag—]—
(A9a)

A /'=I ~+I / &L "J'&-A'P
ij ij ii ap k j 'j (A 10)

where I, ~is the bare i"rreducible vertex ,'Tr(w'T &~TP—).

Under the assumption of no gap renormalization the T
matrix is T = T0 ~ + T3 ~, with

ir
dg

(
—2 —g2 g2 )[(

—~ )2 (g~ )2 g2]

(A9b)

T3+ = =(T3 )*
Go

and T3+ =20+/I =(To )* as given in the text.
Equation (A10) may now be solved for A, yielding

(A 1 1)

couple to the p-wave current vertex k, and then only un-

der the assumption that the gap itself has p-wave symme-
try. Furthermore, the second couples only through the
intrinsic particle-hole asymmetry X3&0 neglected in the
text. It vanishes for c ~~1 or c &&1. A/l vertex correc-
tions in Eq. (A6) are seen to vanish identically if
(k, b, k ) =0, e.g. , for all even-parity gaps and for certain

A22 ——[(1—I„(L") )I„—I,2 (L") ]/R, (A12c)

where

A„~ =[(1—I„(L"))I„—I'„(L")]/R, (A12a)

A)2 ———A2) ——[I,2+(I,2+I„)(L' )]/R, (A12b)

R —= (1 I„(L )+I, (—L' ))(1 I„(L")+I,(—L' ))+(I„(L' )+I, (L ))(I, (L")+I„(L' ) ), (A13)

and I, and L'~ in (A12) "and (A13) are understood to carry indices aP.
This completes the formal solution of the vertex problem and determines the response (A5) completely. In practical

terms, we expect these corrections to play an important role in measurable quantities only to the extent that one is in-
terested in anisotropy, e.g. , o.~~/o. ~ for p-wave states at low frequencies. Then one can show that the correction term in

(A6) is formally of the same order as the bare bubble, and must be included. If the current Joq is taken to liow at an ar-
bitrary angle with respect to the gap nodes n, these corrections are of order

~
q)& n

~

. One interesting sidelight is that,
as in the case of the thermal conductivity, ' ' the response need not be diagonal for axial-type states. This is seen im-
mediately from (A6).

APPENDIX B: SHORT-WAVELENGTH ELECTROMAGNETIC RESPONSE

In this section we discuss the Pippard, or short-wavelength limit of the response function K. Following the same pro-
cedure as in Sec. II for spectral representation of the propagators and desingularization of the resulting expressions, we



ELECTROMAGNETIC ABSORPTION IN ANISOTROPIC. . . 6709

arrive at the following result for the imaginary part of the transverse response valid for arbitrary q:

e k~ 1 1 —x
Im[Ki(q, Q)]= z f dco f dx g (ap)I &(k, co, co', q)[tanh( —,'pto) —tanh( —,'pro')],

4m'c 4~ 2
(81)

+Re Re
(o

where x =cos8, (ctP) =sgnct sgnP, and

z, z z z

~.~ p+(~ it)'+4+4
(82)

~k],
Here k+ ——k+q/2, and gk+ =-gk+ —,

' vzqx + 6(q /m). . For the isotropic state alone, b k
——6 is independent of x, and one

may see that in the Pippard limit v~q && T, the integrand in (82) is dominated by values of x T, / v~q. We then may
neglect x in the numerator of (81), and use the trick of Abrikosov et al. ' to transform from variables (x, g) to
(g+, g ). Since small values of x dominate, the limits of integration may be extended to infinity and the integrals per-
formed directly. We then recover the MB-like result:

2

Im[K&( q, 0 ) ]~ f d co[ tanh( —,
' pco ) —tanh( —,

' pco') ] Re — Re (83)
mc 4U+q o ko

where the notation is that of Sec. II. Note in this limit that the anomalous terms D (to)D (co ) occur despite the odd par-
ity of the order parameter. As T—+T, the penetration depth A diverges and the short-wavelength result is no longer
appropriate.

If I t3 depends on angles through b, k as well as through gk+, the above transformation may not be carried through
and no simple form results. For T, « V~q &&+T,TF, one may neglect the q term in (k+ and perform the g integra-
tion as in Sec. II. While the resulting expression may easily be evaluated numerically, we have been unable to cast it in
a simple MB form.
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