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We have developed a model for the onset of nonlinear dissipation in thin superfluid helium films
below the static transition temperature (Txt) by extending the linear response theory of Ambegao-
kar, Halperin, Nelson, and Siggia to include flow velocity. Contributions from both vortex pairs
and free vortices are included, the relative contributions of which are controlled by two weakly ccu-
pled adjustable parameters: the vortex diffusivity D and a free vortex creation time 7,. The model
does not predict a critical velocity in the usual sense except at 7' =0; however, we define a charac-
teristic velocity for the onset of nonlinear dissipation to compare with experiments. At T'=0 we
find a critical velocity given by the Feynman criterion, where the frequency-dependent diffusion
length coincides with the zero in the vortex pair energy. Applications of this model to experiments

with ac and dc flows are discussed.

I. INTRODUCTION
A. Static transition

The superfluid transition in thin planar *He films is be-
lieved to be a realization of a two-dimensional
Kosterlitz-Thouless (KT)! transition, indicated by the
loss of topological long-range order above a coverage-
dependent temperature Tx. The transition is marked by
the appearance of topological excitations (free vortices)
which destroy the phase correlation in the local order pa-
rameter. Below T'xp, vortices of opposite vorticity are
associated in pairs which preserve phase correlations.

The existence of the KT transition can be understood
by a simple free-energy argument. The creation energy of
an isolated vortex in a stationary two-dimensional (2D)
superfluid grows as In(R /a), where R is the size of the
system and a is the vortex core diameter (~1 A). Since
R can be macroscopic in size, an isolated vortex is unsta-
ble at low temperatures and is rarely created by thermal
fluctuations. On the other hand, the creation energy of a
vortex pair grows as In(r/a), where r is the separation
distance between the two vortices, and is independent of
the system size. We expect then that the 2D superfluid is
populated with vortex pairs with various separations ac-
cording to a Boltzmann distribution. Since the entropy
of a vortex pair also varies as In(r/a), the free energy,
F =E — TS, will fall negative above some critical temper-
ature Txr, indicating the instability of vortex pairs and
the favoring of isolated (free) vortices. These free vor-
tices destroy the phase correlation needed for
superfluidity, and thus, Tyt defines a transition tempera-
ture at which the pair with the largest separations unbind
and superfluidity is destroyed on this scale. Above the
transition, pairs of smaller separation can exist for a time
limited by their diffusivity, and superfluidity will be ob-
served if the system is probed on the time scale of these
pairs.
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A calculation of the superfluid density in the KT
theory starts with a bare superfluid density o, which al-
ready takes into account the effects of the elementary ex-
citations (phonons, rotons, and ripplons). The effect of
the vortex pairs on o is calculated by introducing a
length-dependent dielectric constant €(r) in the creation
energy of a vortex pair of separation r to account for the
screening by pairs of smaller separation. In this way the
smaller length scales are integrated out, and the partition
function represents successively coarser-grained systems.
For a static superfluid this scheme is continued out to
infinite length scales, and the superfluid density is given

(1)

A depression of the superfluid density near the transition
is due to an abundance of vortex pairs which screen the
interaction of larger pairs thereby lowering their creation
energy. This lower creation energy results in more vortex
pairs being produced by thermal fluctuations. The net
effect is an increase in €( « ) and a corresponding decrease
in o,. However, the dielectric constant remains finite, as
the transition is approached from below and diverges
above the transition, producing a square-root cusp and a
discontinuous jump in o given by
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where m is the mass of a helium atom. This is the
famous universal result, independent of substrate compo-
sition, film thickness, or impurities.> Numerous experi-
ments have shown the validity of Eq. (2) over a wide
range of temperatures and coverages.’
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B. Dissipation in two-dimensional superfluids

The Kosterlitz-Thouless theory in its original form as-
sumes that, except for the vortex flow fields themselves,
the superfluid is at rest. However, for the experiments
that use third sound to probe the film characteristics, the
superfluid velocity is not zero. Ambegaokar, Halperin,
Nelson, and Siggia* (AHNS) and Huberman, Myerson,
and Doniach® (HMD) have extended the static KT
theory to include nonzero superfluid velocities. The
theory of HMD is restricted to dc flow, whereas the more
complete theory of AHNS applies in the frequency
domain and thus subsumes the HMD theory.

In the dynamic theory, when the response of vortex
pairs to the oscillating flow is taken into account, the
finite diffusivity limits the size of those pairs that remain
in dynamic equilibrium with the flow. Small vortex pairs
can quickly respond and orient themselves perpendicular-
ly to the flow much like an electric dipole in an applied
field. These small pairs move along with the superfluid
and do not dissipate energy. On the other hand, very
large pairs do not have enough time to respond during
one oscillation because of their large inertia and finite
diffusivity. The maximum dissipation will come from
those pairs with separation r.(w), which are maximally
(90°) out of phase with the flow, where*

ri(w)=V'14D /o . (3)

The dielectric constant is now a complex function whose
real part accounts for the screening of the pair binding
energy by pairs with separation less than r,, and whose
imaginary part is a measure of the energy dissipation.

The details of the AHNS theory are carried out assum-
ing that there is a linear response of the vortex pair distri-
bution to an applied superflow. This assumption is valid
for low velocities such that r, <<#i/mV, and corresponds
to ~1 cm/sec at 1000 Hz. Under these conditions, the
model is independent of velocity and cannot explain the
observed nonlinear behavior shown in Fig. 1.

HMD and AHNS independently used nucleation
theory® to predict the velocity-dependent dissipation
mechanism. In the presence of the fluid flow, the
creation energy of a vortex pair, as seen in the lab frame,
has a high barrier centered at r,=#/mV_. The activa-
tion of a vortex pair over this barrier results in the break-
up of the pair and an accompanying dissipation. A
steady state is achieved when the activation rate over the
barrier balances the annihilation rate of vortices with
other vortices or with the boundaries.

We find nucleation theory to be inadequate for several
reasons: (1) our closed geometry has no boundaries, (2) at
low temperatures (~0.1 K), the barrier height can be
~30 K, which precludes thermal activation from ever
happening during an experiment, and (3) even under the
condition given in (2) we still observe a strong velocity
dependence to the dissipation.

Other attempts to explain dissipation in 2D helium
films include soliton or shock wave formation’ and vortex
pinning mechanisms.® For very thin films in a closed
geometry, shock waves cannot form and our line-shape
analysis indicates that. we indeed do not have shock
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FIG. 1. Dissipation Q ~! vs ¥V, for a thin helium film on neon.
At low velocities the resonance Q saturates due to processes
other than vortex diffusion. Note the increasing sharpness of
the onset of nonlinear dissipation as the temperature is lowered.
The solid lines are present to aid the eye. (Taken from Ref. 9.)

waves in our third-sound resonators. Although we can-
not conclusively rule out pinning as a possible dissipation
mechanism, we wish to explore in further detail the in-
trinsic properties of the film and invoke pinning only as a
last resort.

In this paper we present a model for the onset of non-
linear dissipation in thin superfluid helium films below
the static transition temperature Txr. Our model is an
extension of the linear response theory of Ambegaokar,
Halperin, Nelson, and Siggia to include flow velocity in
the recursion relations. Section II describes the develop-
ment of the model and the various contributions to the
dissipation. Emphasis is placed on ac flow since we find
the description of this case more illuminating than dc
flow. Section III discusses the use of the model to ana-
lyze experimental data and the results of fits to the data
of Ref. 14. Comparison is also made with the dc flow
measurements of Ref. 13.

II. EXTENSION OF THE LINEAR THEORY

A. Recursion relations

Our approach to this problem is to explicitly include
the flow velocity in the KT recursion relations and, to-
gether with a set of assumptions, carry out the renormal-
ization on a computer in the spirit of AHNS. Our as-
sumptions are (1) vortex pinning is not important for
these thin films and low temperatures, (2) vortex pairs are
long lived compared to the period of a third-sound oscil-
lation in our resonators, (3) dynamic response is dealt
with in the same manner as AHNS, (4) the vortex pair
density is low enough that mean-field theory works, (5)
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thermal activation of vortex pairs over the barrier is not
an important dissipation mechanism under our condi-
tions, and (6) contributions from bound as well as free
vortices must be taken into account even for tempera-
tures below Txy. The vortex diffusivity D and free vor-
tex creation time 7., appear as weakly coupled adjust-
able parameters.

The thermodynamics of 2D vortices is effected by the
presence of a macroscopic superfluid velocity through the
vortex pair energy. In the absence of the vortex pinning,
and if the vortex pairs are sufficiently long lived, the ener-
gy of a vortex pair in a uniform flow can be obtained by a
Galilean transformation to the reference frame of the
moving superfluid. The details of this derivation are
given by Gillis, Volz, and Mochel® and will not be repeat-
ed here.

The interaction energy between two oppositely
“charged” vortices is modified by a macroscopic flow to

2
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where r=r —r_ is the separation vector of the vortices
in the pair, o is the bare superfluid areal mass density,
and e(r) is a dielectric constant which accounts for the
screening effect of smaller pairs. The vortex pair energy
is now dependent on the orientation of the pair with
respect to the superfluid flow. We can see that there will
be asymmetry in the angular distribution of thermally ex-
cited vortex pairs. In fact, the energy can actually fall to
zero in the presence of a superfluid velocity, which means
that the pairs can unbind. It is the unbinding that can
occur at any T < Tgy, due to the macroscopic superfluid
flow, that leads to one form of nonlinear dissipation.

Because of the loss of topological order that occurs
with the presence of unpaired vortices, the macroscopic
flow can actually induce a Kosterlitz-Thouless transition
at any temperature, and allow us to use the recursion re-
lations far below the static transition temperature. Al-
though a macroscopic flow induces a pair breaking tran-
sition, superfluid behavior can be observed if the fluid is
probed on sufficiently small length scales. Driving the
film with an ac flow such as with third-sound resonances
or torsional oscillator techniques, we can probe the film
on a length scale where vortices are bound and superfluid
behavior is still observed.

The details of the derivation of the recursive relation
were presented in Ref. 9 and will not be repeated in detail
here. The important differences between our derivation
and that of others is the inclusion of V| in the vortex pair
energy, and an average over the angular dependence.
The angular average is a statement of our assumption
that the lifetime of a typical vortex pair is much larger
than the period of a third-sound oscillation in our cells,
and during our period the vortex pair will be at various
angles with the flow.

The recursion relations become
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FIG. 2. E 4, E(o=1), and F.; are plotted vs r/a at the
characteristic velocity of 24.5 cm/sec when T/Txy=0.5,
f=2.28 kHz, and D =0.01#i/m. The vertical line is the cutoff
length r, /a.
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These relations are identical to the original ones except
for the Bessel function in Eq. (5a). Note that Eq. (5a) is
simply the probability that the system is in a state con-
taining a vortex pair on a length scale /, i.e., (e “F(V/kT)
Figure 2 shows an example of E (, V) (averaged over 0)
given by —kT In[a*(T'(r)),], and the effective free ener-
gy —kT In[y (1)]? for the case e(r)=1. It is the value of
the free energy at the cutoff length scale / .(w) that deter-
mines the Q of the macroscopic system.

B. Vortex pair contribution

The dynamic response, calculated by AHNS (Ref. 4)
via a Fokker-Planck!? equation, shows that the pairs on a
length scale / <I.(w) can remain in dynamic equilibrium
with an oscillating flow, in which case the drag force and
the Magnus force are exactly balanced, and the rate of
change of the separation vector is given by

dr_|_ 2D
dt kgT

VU +9(1), (6)

where U is the interaction energy given by Eq. (4) and
7(t) is a Gaussian noise term caused by thermal fluctua-
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tions. The effect of this motion will be to orient the pairs
perpendicular to the flow, as well as change the separa-
tion distance. In this sense the angular average may not
be necessary since the pairs will always quickly orient
themselves to minimize the energy. However, the pairs
on a length scale / =1, are unable to maintain this equi-
librium, and it is for these pairs that the angular average
is most important.

In the original calculation of the vortex pair dynamic
response function, AHNS find that their result can be
reasonably described by

14Dr 2
14Dr 2—iw

_ 1
l1—ioT, ’

glr,w)= (7)

where g(r,w)=1 corresponds to local equilibrium for
pairs with separation r. The real part of g(r,w)

represents the in-phase response of the pairs to the oscil-

lating flow and illustrates the low pass behavior of the
vortex pair system: for w7, <<1 the pairs maintain equi-
librium during the oscillations, and for w7, >>1 the pairs
are in a nonequilibrium regime and do not respond. The
imaginary part of g(r,o) shows the out-of-phase
response, which is peaked at r=r,=(14D /o)V? (e.,
o1, =1), and is an indicator of the dissipation in the sys-
tem. This function is then approximated by

Re[g (r,0)]=6(14Dr 2—ow) , (8a)
Im[g (r,0)]=1m8(r —V'14D /o) , (8b)

which retains the essential features of Eq. (7). The physi-
cal significance of (8a) is that the vortex pairs larger than
r, do not participate in the dynamic response and, hence,
do not contribute to the dynamic dielectric constant.
The complex dielectric constant is given by

_ © de
e*(w)=1+ fu g(r,w)g(dr)+efree

T de
=6(rc)+tIrc ar

, +€free ’ ©

where r.(w) is given by Eq. (3) and €, is a purely imagi-
nary contribution from free vortices, which we will dis-
cuss later. The relevant renormalization parameters for
2D superfluid, probed with frequency w, are found at the
length scale /.

Re[e*(0)]=€(l,) , (10a)
mie*(0)]=" [2€ | +Im(e;,)
r dl lc free

=1*K o[y (1) +1Im(€pee) » (10b)

(@)= —2 (100)

IO (@) ©

0-1= Im[e*(w)] , (10d)

Re[e*(w)]
L(0)=In |2 |=11n [ 142 ] : (10¢)
wa
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C. The free vortex contribution

At this point, we must emphasize the conditions under
which the dynamic response function Eq. (7) is calculat-
ed. AHNS assume the superfluid velocity is low enough
that r, <<r,, where ro=%#/mV,. Under these conditions
the effect of ¥ on the vortex pair energy and the vortex
pair distribution are neglected. Their conclusions are
then that the transition temperature Ty from the static
theory remains the pair breaking transition in the dynam-
ic theory, and free vortices are assumed to occur only
above the transition or under conditions of very large
flow velocities (in which case they rely on nucleation
theory to determine the dissipation). Therefore, the con-
tribution from free vortices in Eq. (10) is added only
above Tk in their theory.

We believe that for our experiments the vortex pairs up
to the cutoff length scale /. can remain in thermal equilib-
rium with the fluid (so that their population is described
by a Boltzmann distribution) even under the condition
r. >r,, and the oscillating flow field creates an adiabatic
change to the vortex pair energy given by Eq. (4) for
these pairs. Furthermore, we find that the presence of
the superfluid flow can cause the formation of free vor-
tices even below Tyt whose contribution cannot be ig-
nored.

Recall from the static theory that the transition occurs
when renormalization suppresses the free energy to zero
at infinite separation. A zero in the free energy at a
length scale I, indicate the breakup of vortex pairs on
that scale, and as the temperature is raised / + moves to
smaller and smaller scales. When the superfluid velocity
is induced in the free energy we find that the presence of
any nonzero V; causes the occurrence of such a zero at
all temperatures and necessitates the inclusion of the free
vortex contribution even below T'ky.

The free vortex contribution to.the dielectric constant
is calculated in the Debye-Huckel'! approximation in
which the free vortices diffuse in a macroscopic flow field
given by the average of the superfluid velocity over the
film. The calculation (which will not be presented here) is
easily performed in analogy with a 2D plasma, where we
find a conductivity for the 2D charges given by*

2
D

kyT '’

o=nfq(2) =n,mo (11)

D
kBT

where n, is the free vortex density and g is the charge.
The contribution to the complex dielectric constant is
found to be

2
D

a)kBT ’

ef,ee=37ri0/w=i47rznf —r% (12)

To determine n, notice that its largest possible value is
1/&%, where £ is the separation for the zero in the free en-
ergy. One might expect that, since the free energy is
zero, the system should fill itself with free vortices up to
this maximum density. However, if there is a process
which limits the production of free vortices, then n, can
be much smaller than 1/§2. This is, in fact, what we find
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when we compare the dissipation in our third-sound reso-
nators with the model. We therefore introduce a free
vortex creation time T, which we use as a fitting pa-
rameter to bring the data and the model into agreement.
The motivation for this type of parameter is that if the
characteristic time to create free vortices is longer than
the period of a third-sound oscillation, then n, will be
limited to less than its maximum value. On the other
hand, if the creation time is much shorter than the third-
sound period than n, will presumably reach its maximum
value during the third-sound oscillation. With this in
mind, we assume that the free vortex density is given by

- 1/¢

= (13
T (012 )

We have remarked that vortices are considered free
when the free energy goes to zero. Perhaps a more
rigorous definition comes from the two-point correlation
function for the vortex charge density. In this case we
find that for large separations the correlations die away
exponentially, indicating the presence of isolated vortices
on this scale. The characteristic length for the decay of
these correlations can be taken as the average distance
between free vortices. We argue that the vanishing of the
free energy is responsible for the breakup of vortex pairs
and the loss in correlations. In any event, we have a
working definition of the free vortex separation, which
may differ by a factor of order 1 from the correlation
function definition.

The Kosterlitz-Thouless theory describes a transition
from power law to exponential decay with distance in the
two-point correlation function caused by the appearance
of isolated (or free) vortices for a 2D superfluid. We con-
clude from our analysis of the free vortex contribution to
the dissipation that the presence of a superfluid velocity
itself actually induces a Kosterlitz-Thouless-like transi-
tion in the film, but the diffusion limited processes allow
us to see superfluid behavior when we probe the fluid on
small enough length scales. '

AHNS propose a model based on nucleation theory to
explain the velocity-dependent dissipation due to the for-
mation of free vortices. They expand Eq. (3.11) about the
saddle point r,=h /mV e, and calculate from the activa-
tion model the rate at which pairs separate. The result is
a power-law velocity dependence in the dissipation near
the transition. They assume that dissipation results from
vortices crossing over the potential barrier that is created
by the flow, and this assumption leads to characteristic
velocities which are close to ¥, given in Eq. (5¢) (~ 1500
cm/sec) and much larger than we see experimentally.
However, we calculate the rate of vortex pair activation
over the barrier for typical velocities from our experi-
ments (10-100 cm/sec) and find the rate to be so small
that this process will never happen during an experiment.
This result raises issues about the population of vortex
pairs at large length scales (beyond the barrier at n,) and
how these pairs were created in the first place. These
questions are not new ones, and we will not attempt to
address them here except to say that these pairs were
probably created by the joining of isolated vortices upon
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cooling the helium film through the transition tempera-
ture.

D. Characteristic versus critical velocities

In bulk helium superfluidity will be observed as long as
the flow velocity is smaller than some critical value.
Larger velocities favor the creation of excitations which
dissipate the kinetic energy and destroy superfluidity.
This original idea presented by Landau assumes that
these excitations are the elementary excitations of the
fluid (phonon, rotons, etc.) and predicts a critical velocity
of ~60 m/sec. This theory assumes that there are no
other excitations which can be created with smaller ve-
locities. In practice the critical velocities that are ob-
served in bulk He are 1-1000 cm/sec indicating that oth-
er excitations do indeed exist which have a dispersion
with (E /p), lower than that for rotons.

Feynman'? has shown that, since a boundary in a fluid
acts as an image plane for vortices (because V,-i=0 on
the boundary), vortices can be created at the boundary
when the flow velocity is sufficiently large that the energy
to create a vortex and its image is zero in the reference
frame of the wall. In a capillary the excitation is a vortex
ring with radius R equal to the radius of the tube. The
energy of this ring is dependent on R, and we see that
there are instances where a unique critical velocity can-
not be defined in terms of intrinsic fluid parameters only.
Nevertheless, it seems clear that for a given system of
superfluid and its boundaries, well-defined critical veloci-
ties do exist in bulk superfluids.

In thin superfluid films, persistent current experiments
show that superfluid flow is unstable against decay even
when the velocity is very small. We will return to this
subject of persistent currents in the section of dc flow, but
for now it suffices to say that critical velocities (as seen in
bulk helium) have not been observed in thin helium films.

In the ac theory presented here, the concept of critical
velocities seems to have no meaning except at 7 =0, as
we shall see. The increase in the dissipation is a continu-
ous function of the superfluid velocity, up to the point
where the resonance Q has dropped to 1, at which point
the resonance is unobservable anyway. To characterize
the onset of nonlinear dissipation we define a characteris-
tic velocity V. as that velocity which drives the reso-
nance Q down to some specific value, Q, from its V=0
limit Q,. This somewhat arbitrary, yet well-defined cri-
terion allows us to compare our theory to experiments in
a precise way. The characteristic velocity as we have
defined it is merely useful as a shortcut for analyzing the
third-sound data. Alternatively, we could use a nonlinear
least-squares analysis to fit every point of the data, but
such a time consuming method would scarcely yield any
additional information. Our use of characteristic veloci-
ties is a convenient way of characterizing a film for easy
comparison. In the T'=0 limit our characteristic veloci-
ty has the added advantage of going smoothly over to a
critical velocity as will be discussed below.

The characteristic velocity for a given coverage of
superfluid helium is dependent on the vortex diffusivity,
the frequency of the film oscillations, the temperature,
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and Q.. These dependences are understood by noting the
relative position of r.(w) and £, where the zero in the free
energy occurs. Decreasing r, means probing the system
on smaller length scales where the vortex density is lower
(higher free energy) and, thus, so is the dissipation. In-
creasing the velocity will bring & closer to r, thereby in-
creasing the vortex density and bring the dissipation back
to the level Q.

For T =0 we find a Q-independent characteristic ve-
locity below which there is no dissipation and above
which the Q is driven down below 1. An expression for
this critical velocity is similar to a Feynman criterion
when the cutoff length coincides with the zero in the free
energy of a vortex pair

EC

#
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and represents the limiting value of ¥V (Q,w,T) as T —0.
This zero-temperature critical velocity is dependent on
the vortex diffusivity and the oscillation frequency
through the cutoff length r,.

E. Application to dc flow and persistent current decay

The model which we have presented thus far describes
the effect of ac flow on the superfluid density, and the dis-
sipation that is produced from the movement of vortices.
For a given set of film parameters, a film which is oscillat-
ing at a fixed frequency o is being probed on a single
length scale /,(w) as far as the bound pairs are concerned.
Resonance experiments, such as the ones performed in
this lab, are ideal for achieving this. The frequency
dependence of the dissipation, etc., can be studied by ob-
serving the harmonics.

Some of the first experiments on thin films observed the
decay of persistent currents. For example, Eckholm and
Hallock!® established a dc flow in an annular ring and
measured the flow velocity with time. For their thinnest
films (approximately six layers), they observed a dramatic
initial drop in the flow velocity followed by a gradual de-
crease with time (similar to a decaying exponential). For
thicker films the velocity would remain fairly constant for
a short time and then slowly decay over long periods of
time.

We believe that the model presented here to describe
ac flow can also be used to describe the effects of dc flow
to the extent that the assumptions given at the beginning
of this paper are valid. The response time of a vortex
pair in the film is limited by its diffusivity and size, as be-
fore, which means that small pairs will respond soonest
followed in time by consecutively larger pairs. In short,
the cutoff length scale /, will move to longer length scales
as time proceeds. This behavior is accomplished by re-
placing » with 1/¢ in Egs. (10e) (12), and (13). Equation
(10e) can now be written as
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where t,=a?/14D ~10~'* sec. The renormalization for
dc flow begins at an initial time ¢ =t;, which is the time
for a vortex pair to diffuse a distance equal to the core di-
ameter a, and velocity V(t,). At a subsequent time ¢, the
renormalization equations are integrated out to the
length scale I (z) and the dissipation is evaluated. From
the dissipation, a new velocity V(¢) is determined and
the procedure starts again for a new time ¢’. Since the
film’s initial conditions (namely, the flow velocity and the
vortex pair distribution) are changing with time, the
effective screening is time dependent, and for this reason
the renormalization integrals are recalculated, starting at
the smallest length scales, for each time z. In this way we
obtain a series of snap shots which together represent the
time evolution of the persistent current.

III. RESULTS

A. Characteristic velocities and dissipation in ac flow

Solutions to the model are obtained by numerical in-
tegration of the recursion relation given by Eq. (5). The
resulting parameters are the dielectric constant, the
superfluid density, and Q, ! given by Eq. (10). The input
parameters are the transition temperature Ty, the
strength of the square-root cusp b (fixed at 5.5 for this
study, see Ref. 3), the oscillator frequency f . =fres/2
on resonance, the temperature 7, the superfluid velocity
V,, the vortex diffusivity D, and the free vortex creatioon
time 74,... The vortex core diameter a is held fixed at 1 A.
The procedure is (1) neglecting the free vortex contribu-
tion, choose a temperature and enter the measured
characteristic velocity V,.(Q.,w,T) for V. Then, adjust
the diffusivity D so that Q,, calculated by the program
using Eq. (10d), is reduced to the appropriate value Q..
Note that the program does not account for the back-
ground Q,, which is presumed to be limited by effects not
related to vortex dynamics or the Kosterlitz-Thouless
theory, (2) add the free vortex contribution and adjust
Tiee SO that the total dissipation

Q '=0,'+Q, 1+0;! (16)

best fits the measured curve of Q ~! versus V,. Q, ! and
Qf“' are the bound and free vortex contributions to the
dissipation, respectively. Both D and 7. are found to be
only weakly coupled parameters and are assumed to be
independent of V;, (3) at the high temperatures, where
the free vortex contribution is largest, Q f—l may be com-
parable in size to Q, ! and steps (1) and (2) should be re-
peated while including the free vortex contribution to en-
sure self-consistency.

Figure 1 shows a plot of Q ~! versus V,, measured in
our lab by Volz!* on neon. Note that at the lowest tem-
peratures, the free vortex contribution is small, indicating
that the thermal energy is not readily available for the
production of free vortices. This is reflected in the long
creation times 7., needed to fit the data. At the highest
temperatures, the free vortex contribution is as large as
or greater than the bound pair contribution because the
thermal energy is available at these temperatures to pro-
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duce a significant free vortex density. The creation times
are, appropriately, much shorter at these higher tempera-
tures. At a given temperature the free vortex contribu-
tion has an approximate power-law dependence V¥ with
a between 4 and 6 in our temperature range. A plot of
Ties versus T is shown in Fig. 3, where we see that the
temperature dependence is ~ T2 for a neon substrate
and ~ T'!3 for an argon substrate.

The bound vortex contribution always appears as a
very strong function of ¥, going like (V, /V,, ) with S be-
tween 6 and 10 in our temperature range, and it appears
that 3 diverges as 7—0 indicating V(T =0) as the criti-
cal velocity. Figure 4 shows the temperature dependence
of the characteristic velocity for various films on argon.
Volz’s data is limited to well below T'x because the flow
velocity becomes difficult to measure in the pressure of a
vapor phase and the dissipation becomes too large as the
transition is approached.

Volz finds the diffusivity to have both a temperature
and film thickness dependence consistent with measure-
ments on similar films by other labs. Specifically, Fig. 5
shows an increasing diffusivity with temperature chang-
ing by as much as 2 orders of magnitude between 0.2 and
0.6 K. With increasing film thickness, the diffusivity
drops by as much as three orders of magnitude between
0.3 and 2.75 superfluid layers. There is also evidence of a
substrate dependence for the diffusivity in the thinnest
heliums. Another interesting feature is that the
diffusivity appears to be finite at 7" =0, that is unless its
temperature dependence drastically changes below 0.1 K.
We will return to this point later.

Recently, Adams and Glaberson!® have measured the
vortex diffusivity of helium films using a torsional oscilla-
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FIG. 3. 74\ vs T for helium on argon (open symbols) and
neon (solid symbols). © =0.33 superfluid layers, Txr=0.7 K;
A =0.27 superfluid layers, Txr=0.55 K; w=0.95 superfluid
layers, Txr=1.8 K; BM=1.6 superfluid layers, Tx;t=1.3 K.
(Taken from Ref. 14.)
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tor similar to that of Bishop and Reppy.® They compare
the dissipation when the cell is at rest to that when the
cell is rotating at frequency €, the difference being due to
an excess number of free vortices no=mQ/7# intro-
duced by the rotation. From this comparison they can
extract the vortex diffusivity as a function of film thick-
ness and temperature. Since they know the number of
free vortices contributing to their dissipation, they do not
need to use the parameter 74... The torsional oscillator
method is extremely sensitive and allows them to mea-
sure dissipation at temperatures within a few mK of the
dynamic transition temperature 7,. They find that be-
tween Tyt and T, (a distance of only about 10-20 mK,
usually) the diffusivity increases sharply and apparently
diverges as T—T,. For their two thinnest films d =1.8
and 3.2 superfluid layers, they find diffusivities away from
Tk of about 0.1-0.5%4/m, which is consistent with Volz.

B. Discussion of diffusivities

The data of Volz together with that of Adams et al.
provides the most convincing evidence thus far of the
correctness of the model presented here. The utility of
the model will be in determining the diffusivity using
third-sound resonance in the low-temperature limit away
from Txy. The diffusivity appears to depend on tempera-
ture as well as film thickness. A dependence on tempera-
ture is expected due to the disappearing thermal excita-
tions, but the exponential dependence of D seems too
strong to be caused by this effect. Furthermore, D ap-
pears to have a nonzero value at T =0, if we extrapolate
below 0.1 K. This indicates that new processes (other
than scattering of thermal excitations) must be involved,
which lead to suppressed diffusivities at low 7T and
nonzero diffusivities at T =0. Two possible processes are
quantum diffusion and interaction with a disordered or
rough substrate.

AHNS (Ref. 4) derive the vortex diffusivity from a
Langevin equation!® [Eq. (6)] which describes how the
dissipative effects (from the drag Fj, on a vortex core)
must be balanced by thermal fluctuations in order for our
description to be consistent with thermal equilibrium. In
this way, they define a diffusivity from a velocity-velocity
correlation function

(™ (mP(t")) =4D 5 g8t —1') . (17)

From the above considerations and the requirement
that the average motion be determined by setting
F, +F,=0, the diffusivity D and the convection
coefficient C are related to the phenomenological drag
coefficients B and B’ by

B
[2m7(#/m)o,—B')*+B? "’

D=k,T (18a)

C—1— [2m7(#/m)oy—B'2wo(#/m) (18b)
[27(#i/m)o,—B']*+B*

If the drag on vortex core is due only to the interaction
with the thermal excitations, then as T—0 we expect B
and B'—0 which forces D,C—0. This limit describes a
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convective motion where the vortices move at the local
superfluid velocity. The diffusive motion of a vortex,
when it occurs, is perpendicular to the local superfluid ve-
locity and is thus a diffusion away from convective
motion. This description is evident from Eq. (6) in which
the diffusive motion is written in terms of the separation
vector of a vortex pair and not the position vector. In the
opposite limit, where B and B’ are large, again D —0
but C—1, and the vortices are pinned to the substrate.
Figure 6 shows contours of constant C and
[Doy(#i/m)]/kgT in terms of B and B’. Since Volz mea-
sured only D and not C we cannot uniquely determine B
and B’. However the shaded region in Fig. 6 indicates
the values of B and B’ that are consistent with Volz’s
data and the model presented here. Furthermore these
values are not very different from their bulk counter-
parts.!” Our choice of the region near C =0 is based on
the assumption that vortex pinning is neglected. The pin-
ning limit is described by C=1 and D =0 and requires
values of B that are 100 times larger than our chosen
range to describe Volz’s thickest coverage on Ar.
Assuming the B and B’ have similar origins as their
bulk counterparts, B arises at least in part by the scatter-
ing of elementary excitations (phonons and rotons) from
the vortex care, whereas B’ arises from an asymmetry in
the roton scattering.!” Volz’s data indicate that drag in
the thick film is due mainly to phonon scattering,
whereas the rotons become increasingly important as the
film gets thinner. This result is understandable since
there is evidence that the roton gap gets smaller as the
film is thinned below three layers.!® We envision the phe-
nomenological drag coefficient B to have at least two con-
tributions: B, due to the scattering of thermal excita-
tions, and B, due to interactions with the substrate. We
write each coefficient as M /7;, where M is some

B (units of oy h/m)

B (units of o h/m)

FIG. 6. Contours of constant F =(Do#i/m)/kgT and C are
plotted here as functions of the drag coefficients B and B’. The
shaded region represents the values of B and B’ from our
analysis of data from Ref. 14.
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effective mass and 7; is an interaction scattering time.
For a given film thickness, the temperature dependence is
determined, in part, by 1/7, the scattering rate from
thermal excitations, which increases with temperature
and also by a possible (yet unknown) temperature depen-
dence in 1/7y,.

The strong film thickness dependence of D probably
reflects the relative importance of the substrate interac-
tion and the scattering of thermal excitations. We expect
that in the thicker films, D is dominated by intrinsic
effects (thermal excitations), whereas substrate effects be-
come important in thin films. If this is true, then we may
find that D becomes independent of film thickness in the
limit of very thin films and very low temperatures.

Comparing the diffusivities found on argon and neon,
Volz finds that, of his two films on neon, the thickest film
falls in line with the argon films. This finding supports a
dependence of D on superfluid film thickness and not on
the strength of the van der Waals force. The thinner film
on neon, however, shows an anomalously high and al-
most T-independent diffusivity of ~ 3%/m.

Theoretical work needs to be done concerning the
propagation of third sound on disordered or rough sub-
strates taking into account the vortex dynamics. The
scattering of vortices off substrate inhomogeneities. may
quite possibly contribute to the vortex diffusivity even at
T =0.

C. Discussion of free vortex creation times

The similarity of the temperature dependences of the
free vortex creation time 7g. on neon and the thermal
response time of the substrate 7y, =C,,, /K may reflect
the interaction (between the substrate and the superfluid)
which is involved in the creation of vortices. (C,, is the
heat capacity of the substrate, which is probably ~ T,
and K is the thermal boundary conductance between the
substrate and the helium film ~ 7%3*')) McMillan'® has
proposed a model to calculate Kz which couples sub-
strate phonons with the 2D phonons in the helium film.
He finds that, neglecting two-phonon processes because
they cannot conserve momentum, the three-phonon con-
tribution goes as (kp T /#AS,),* where Sy, is the sub-
strate sound velocity. The discrepancy between the
theory and experiment can be due to several possible
sources which cannot be described here. Note that, since
McMillan’s theory underestimates the conductivity, an
additional channel may need to be included. Perhaps the
interaction between substrate phonons and vortices may
be this needed channel.

The long times obtained for 7., at low temperatures
mean that it may be possible to observe the buildup of
free vortices in the film. In principle, the film would have
to be allowed to come to rest by waiting at least
At =10Q /w, and then driving the film at the resonant
frequency while watching the thermometer signal. The
idea is that the initial free vortex density will be zero and
the dissipation will be due to the background only (as-
suming the velocity is not too high). As the resonance
builds up, it does so with a time constant 7,=Q /w. If 7,
is very different from 7. then two distinguishable cases
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emerge: (1) 79> 7. In this case we would see a change
in the rate of build up as the free vortex density estab-
lishes itself. (2) 7y <Tg,.. In this case it may actually be
possible for the resonance to build up before n, is estab-
lished, and for the resonance amplitude to overshoot the
steady-state value. To actually observe this may be very
difficult because it requires that Q! be smaller than Q ;1
by enough to make the amplitude difference observable,
while at the same time keeping 7o < 7ge.. For example,
suppose that we require 7, to be at least five times smaller
than 7. to ensure good resolution, and we require Qf‘l
to be at least ten times larger than Q, '. These two con-
ditions can be restated concisely as

1

———<Qi <Lt (19
Swaree QO 10/ )

Below 0.3 K the free vortex contribution is too small to
make any significant change in the resonance line shape,
and above 0.4 K the creation time is becoming too small
(typically, Q,~ 10%). Increasing the frequency helps to
reduce the lower bound, but the upper bound is reduced
by more because Q; ' goes as @ . Most of the time the

two requirements are mutually exclusive.

D. dc flow: The decay of persistent currents

We will discuss some measurements of persistent
current decay presented several years ago by Eckholm
and Hallock!® and explain to what extent our model can
describe their results. The experiment consists of estab-
lishing a dc fluid flow in an annular ring and then using
doppler shifted third sound to measure the flow velocity
as a function of time. Their results are shown in Fig. 7.
These measurements were done at the same temperature
1.45 K for various films thicknesses between 6.5 and 9.6
layers. For the thinnest films, —dV, /d (logt) is largest
immediately after the flow is established and then dimin-
ishes at longer times. For the thickest films,
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FIG. 7. Persistent current decay for various film thicknesses,
T=1.45 K and V;,=25 cm/sec from Ref. 13. Note the change
in behavior of the decay in the thinnest films.
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FIG. 8. Computer generated persistent current decay for
various temperatures. The dotted line is the decay omitting the
free vortex contribution for T'=0.9 K.

—dV, /d (logt) is near zero at first and then gradually in-
creases to a value that is constant for more than two de-
cades in time.

This experiment is quite complicated, not only because
it is done in the time domain, but because of the high
temperature and large film thicknesses. We originally
hoped that, by extending our model to include these
effects, (i.e., Landau excitations) we would be able to de-
scribe Eckholm and Hallock’s data over the entire range
of film thicknesses. Unfortunately, we found this not to
be the case. We find that at best our model can describe
the behavior of the thinnest film of 6.5 layers.

Figure 8 shows the result of our computer model using
the method described. We see that the flow velocity does
not change until some characteristic time, after which the
velocity drops in a fashion similar to Eckholm and
Hallock’s thinnest film. The physics of the behavior
is governed by the time-dependent length scale
[(t)=1In(t/ty) on which the film is being probed. At
short times, the film is being probed on length scales
where there are very few pairs, and the dissipation is
negligible. At some characteristic time (determined by
the flow velocity V,, and the temperature) the film is be-
ing probed on a length scale that contains enough pairs to
produce some dissipation and a subsequent decrease in
V,. From then on, the probe length scale and the zero in
the free energy chase each other, toward larger length
scales, producing the rather uniform decay rates. Final-
ly, the zero in the free energy wins out causing a reduc-
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tion in the dissipation and the decay rate.

The parameters D and 7., are obtained from the ac re-
sults for a film with a similar Tr. The dashed line in
Fig. 8 shows the effect of leaving out the free vortex con-
tribution.

Yu?® has analyzed Eckholm and Hallock’s data for the
thicker films and concludes that the wide range of behav-
ior is due to the competition of three effects. For the
thickest films, the decay is dominated by nucleation of
free vortices at the boundaries of the annulus, and the in-
termediate films are governed by pinning effects. Only in
the thinnest film is the decay dominated by intrinsic pro-
cesses. This explanation is consistent with our findings,
since our model neglects the extrinsic processes which
dominate the thick films.

IV. CONCLUSION

Our model of nonlinear dissipation in thin He films not
only allows us to interpret our third-sound resonance ex-
periments and extract such phenomenological parameters
as the vortex diffusivity and the free vortex creation time,
but also provides us with some unique insight into nature
of the superfluid transition in the presence of superfluid
flow. The most important of these insights are the pres-
ence of isolated vortices below the static transition tem-
perature Ty and the prediction of a critical velocity
only at T=0. For the experimentalist, we stress that ac
experiments are far easier to interpret than dc (persistent
currents) because the diffusion limited vortex motion en-
sures that ac flows will be probing the system on only one
length scale.

Future work is needed on a microscopic theory of the
drag coefficients and their relationship to the elementary
excitations of the film as well as the effect of substrate in-
homogeneities. These theories are necessary for the in-
terpretation of the experimental measurements of the
diffusivity and its dependence on temperature and film
thickness.
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