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A Landau theory for wetting on spherical and cylindrical substrates is studied. The substrate pa-
rameters are the radius rl, the surface field h &, and the surface-coupling enhancement g. The adsor-
bate is characterized by correlation length g and critical temperature T, The. global phase dia-
grams reveal important features which were omitted in previous works. For T (T„the phase dia-
grams are obtained numerically and with use of analytic approximations. For T T„ they are ob-
tained exactly. For T (T„ there are two distinct regimes of adsorption phase transitions: The re-
gime g & ri & oo where the curvature of the substrate is small and the adsorbate is away from criti-
cality, and the regime 0& r, g where the curvature is high and the adsorbate is near-critical. In
the former regime, the phase transitions are referred to as "surface" transitions, and in the latter re-
gime as "point" transitions (for spheres) and "line" transitions (for cylinders). The two regimes
merge at a critical double point in the phase diagram. Beyond this point adsorption phase transi-
tions can occur for arbitrary curvature and for all temperatures, including T, . The wetting layer
thicknesses behave as gin(r, /g) for r, ))g and as f for r, «g'. The finite-size rounding of the
phase transitions is discussed, and the experimental relevance of our findings is outlined.

I. INTRODUCTION
AND GLOBAL PHASE DIAGRAMS

The wetting transition on planar substrates is now well
understood. ' However, considerably less attention has
been paid to less obvious substrate geometries. Our aim
in this paper is to consider wetting on (the outside of)
spherical and cyliridrical substrates. We shall show
that several novel features appear, and we present the
global surface phase diagrams within Landau theory. We
will not consider the complementary subject of wetting
inside spherical cavities or cylindrical pores, which in-
volves capillary condensation.

An interface bound to a spherical or cylindrical sub-
strate cannot unbind to infinity because the increase in its
area leads to an unbounded positive contribution to the
free energy of the system. Hence any phase transition
must be between a thin and a thick wetting layer. This is
analogous to wetting in Hat geometries in the presence of
a symmetry-breaking bulk field (prewetting), ' or in the
presence of a long-range surface field which favors drying
(competing forces). ' '" Since true wetting cannot occur
on spheres or cylinders we will refer to possible phase
transitions as adsorption phase transitions. This terminol-
ogy will turn out to be useful below, at, and above the
bulk critical temperature T, of the adsorbate. (Note that
inside spheres and cylinders true wetting cannot occur ei-
ther, because the phenomenon is overpowered by capil-
lary condensation. )

In our study we employ the Landau theory with the
standard quartic polynomial for the bulk free energy.
For T T„we obtain the exact critical line bounding the

region of first-order adsorption phase transitions for both
spherical and cylindrical substrates. For T(T, the criti-
cal line is obtained numerically and then checked using
exact inequalities as well as an analytic expansion valid
for weakly varying order-parameter profiles. The natural
variables in our problem are a temperature" or
"inverse-curvature" variable ri lg, with r i the substrate
radius and g the bulk correlation length of the adsorbate,
and a "surface-coupling enhancement" variable G.

Our results are best summarized by Figs. 1, 2, and 3,
which present the global phase diagrams for the spheri-
cal, cylindrical, and planar substrates, respectively. We
denote the bulk correlation length by g or g+, for
T(T, or T & T„respectively. For dehanced surface
couplings (6&0) on spheres or cylinders adsorption
phase transitions can only occur when T is su%ciently
below T, . By contrast, on planar substrates wetting
phase transitions can occur for all T( T„as first-order
phase transitions for T suKciently below T„and as
second-order ones for T closer to T, . The region of criti-
cal wetting (Fig. 3) is absent for spheres and cylinders,
and wetting tricriticality on planes becomes adsorption
criticality on the curved substrates. For enhanced surface
couplings (G &0) on spheres or cylinders, the phase dia-
grams feature a critical double point, where the tangent to
the critical line is vertical. When 6 is greater than its
value at the critical double point, adsorption phase tran-
sitions can occur for arbitrary temperatures (below, at,
and above T, ), and for arbitrary curvatures.

For g&r, «n the substrate curvature is effectively
small and we refer to adsorption phase transitions in this
regime as surface transitions On the othe. r hand, for
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FIG. 1. Global phase diagram for wetting on spherical sub-
strates in the plane of inverse curvature r, /g' and substrate cou-
pling enhancement G. For T & T„f is denoted by g, and for
T & T„by g+. The two-phase regions of adsorption phase tran-
sitions are bounded by critical lines which meet at T= T, and
6 =1. Note, for T & T„ the presence of a critical double point
where the tangent to the critical line is vertical. There, the re-
gions of "surface" transitions (g& r, & ~) and "point" transi-
tions (0&r, & g') separate as G is decreased.
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FIG. 2. Global phase diagram for wetting on cylindrical sub-
strates in the plane of inverse curvature r, /g and substrate cou-
pling enhancement G. The critical lines meet with horizontal
tangents at T = T, and G =0. Note, for T & T„ the presence of
a critical double point where the regions of "surface" transitions
(g'&r, & ao ) and "line" transitions (0&r& &g') separate as G is
decreased.

0 & r, & g, that is the high-curvature regime (or,
equivalently, close to T, ), we refer to them as point transi
tions (spheres) and line transitions (cylinders). This
nomenclature is inspired by the fact that, for r

&
~ 00 (pla-

nar limit), the transitions correspond to singularities in a
surface free energy, whereas, for fixed r &, they correspond
to singularities in a point or line free energy (within Lan-
dau theory). Furthermore, in the regime r& «g, the wet-
ting layer thickness (of order g') can become arbitrarily
large with respect to the substrate radius. This is qualita-
tively different from the planar limit where the layer
thickness is controlled by the substrate radius.

Note that in a restricted range of positive values of G,
the regions of surface and point (or line) transitions are
separated by a one-phase region (which terminates at the
critical double point). When the curvature is increased
from a sufBciently low value, the phase transition ter-
minates at a critical point, but the phase transition reap-
pears when the curvature is increased further, via a
second critical point.

The global phase diagrams for spheres and cylinders
present new and unexpected topologies, the more so be-
cause previous studies produced an incomplete phase dia-
grarn topology by applying the double-parabola approxi-
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FIG. 3. Global phase diagram for wetting on planar sub-
strates. This phase diagram results from the phase diagrams for
spherical or cylindrical substrates in the limit r&~00. For
T & T„a region of erst-order wetting transitions meets a region
of critical (second-order) wetting transitions, at a line of tricriti-
cal wetting transitions. For T& T„a two-phase region of
"pure" surface transitions is bounded by a critical line. At T„
we distinguish the ordinary transition 0 (g & 0), the extraordi-
nary transition E (g &0), and the special transition S (g =0).
Note how this rich phase diagram with simple geometry is
modified for curved substrates (Figs. 1 and 2).
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mation in the Landau theory. In contrast, the early
work by Levinson et al. consisted of an accurate numeri-
cal approach to the Landau theory. However, in that
study attention was restricted to the special case G =0.

The plan of the paper is as follows. In Sec. II the Lan-
dau surface free-energy functional is defined and the
differential equations and associated boundary conditions
describing wetting on spherical and cylindrical substrates
are derived, for T & T, . Section III describes numerical
results for T & T„and Sec. IV discusses an analytic ap-
proximation and exact inequalities for T & T, . In Sec. V
exact results are obtained for T & T„and in Sec. VI the
case T= T, is treated exactly with the use of inequalities.
The behavior of the surface field h, along the critical line
of the adsorption transitions, in the vicinity of T„ is ex-
amined in Sec. VII by means of analytic approximations.
The phenomena which occur when the adsorbate is taken
off bulk coexistence because of the presence of a bulk field
h, are studied in Sec. VIII, which deals with prewetting.
Section IX focusses on the wetting layer thicknesses,
which behave as gin(ri/g) for r, ))g, and as g for
r, ((g. In Sec. X the issue of the finite-size rounding of
the adsorption phase transition is addressed, and Sec. XI
closes the paper with a discussion and outlook.

A preliminary account of our main results for wetting
on cylinders has been published.

I [x]—:r, y[m]/(cmb)
P

dpp — +—(x —1)
1 dx 0
2 dp 4

X 1—H x —61 1

(2.5)

(2.6)

=—D [x]+I,(x, ), (2.7)

where

and

Hi rib i l(cmb ) G =rig /c (2.8)

Q=4rimb lc =(ri/g) (2.9)

x+2—=Qx(x —1),X

p
(2.10)

where x —=dx /d p, etc. , or, equivalently,

introducing the bulk correlation length g=c'~ /(2mb),
or, more generally, g =c '~ /(2

~
T T, ~

'~ ). —
Extremization of (2.6) leads to the Euler-Lagrange

equation

II. DERIVATION
OF THE DIFFERENTIAL EQUATIONS FOR T(T,

y = — —Qx(x —1),2y

p

(2.11a)

(2.11b)

%'e shall illustrate the derivation of the differential
equation that describes the order parameter profile for
the case of spheres. Consider a sphere of radius r1 im-
mersed in a Quid at two-phase coexistence. The usual
Landau surface free-energy functional is

together with the boundary condition at the substrate,

y1=H1+GX1 . (2.12)

Finally, as p~ 00, the system is assumed to be in the bulk
vapor phase,

2 x~ — 1 (2.13)

y[m]= f dr r — +f(m(r)) +y, (mi),
r1 "i 2 dr

(2.1)

The equations for a cylindrical substrate can be derived
in an exactly analogous way. Minimization of a surface
free-energy functional

where m (r) is the order-parameter profile for r ~ ri, and
m i

=m ( r i ). The bulk free-energy density is given as usu-
al by

2

y[m]= I dr r — +f(m(r)) +y, (mi)
1 c dm

r

(2.14)
f(m(r))=ao+azm +a4m (2.2) gives the differential equation

Vl 1

y, (m, )= —h, m, —g (2.3)

where h, is a surface field and g a surface-coupling
enhancement.

It is convenient to use scaled variables

and we take a~=1, a2=2(T —T, ), and ao such that
min[ f ( m ) )=0. The bulk order-parameter values, +m b,
at coexistence ( T (T, ) are then given by mb =T, —T.
For the substrate-adsorbate energy the standard choice is

x+ —=Qx(x —1),
P

(2.15)

which is solved subject to the same boundary conditions
(2.12) and (2.13).

Note that in a mechanical analogy of our problem (po-
sition x, time p), Eqs. (2.10) and (2.15) represent the equa-
tion of motion under a nonlinear force and time-
dependent friction. At time infinity the particle is re-
quired to come to a stop on the summit of a potential hill.

III. NUMERICAL RESULTS FOR T(T,
p =r lr, x =x(p) =m(r)/mb

in terms of which the free-energy functional becomes

(2.4)
Our aim is to search for first-order adsorption phase

transitions in the space (rilg, G,H, ). Because of an
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equal-areas rule such transitions can be predicted from a
knowledge of the geometry of y, (x, ), the curve of al-
lowed initial conditions which is determined for a spheri-
cal substrate by

spherical substrate and then an analogous derivation is
outlined for a cylindrical substrate.

We first write (2.10) in the form

2» 0 2 2 ~y=—(x i
—1) +2 —dx,

2 4 —1 p
(3.1)

x+2——2Q(x +1)+P=0,
p

where

(4.1)

as follows from (2.11b).
Numerically the curve of initial conditions can be ob-

tained for a given Q by iterating (2.11). yi(xi ) are then
the values which give the correct boundary condition,
(2.13), as p~ ~.

The equal-areas rule follows from considering the free-
energy functional I [x] for profiles satisfying (2.10) and
(2.13) as a function of x, , say I'(x, )=D(x, )+I,(x, ) [cf.
(2.7)]. Extremization of I now yields that dD(x, )Idx,
and y i (x i ) are identical functions of x i, which implies

I

I (x', )—I (x, )=f [y, (x) H, —G—x]dx (3.2}
1

for [x i,x ',
I solutions of (2.12).

As a consequence of the equal-areas rule, if the curve
y, (xi ) and (2.12) can intersect three times for a given G
[slope of (2.12)], there will be a phase transition for some
H, for which the enclosed areas become equal, whereas if
there is only one intersection, the transition does not ex-
ist. Hence the condition for a first-order transition is that
G exceeds the slope of yi(xi ) at its point of minimum

slope, that is, its point of inAection.
Numerically determining the minimum slope of y i (x i )

for chosen values of 0 enables us to plot Fig. 1, the phase
diagram in the ( G, r, Ig) plane. The critical line
separates a one-phase region from a two-phase region of
adsorption phase transitions. Note that for 1 ~ G ~ 1.17
the surface transitions (ri g) and the point transitions
(r i

~
g ) are separated by a one-phase region, whereas they

are joined for G & 1.17. In the limit r i I/~0 the critical
value of G approaches 1.

Analogous results for cylinders are shown in Fig. 2.
Surface and line transitions are separate for 0& G ~0.33
and are joined for G &0.33. For r, I/~0, the critical
value of G approaches 0.

For comparison, Fig. 3 displays the corresponding
phase diagram for planar substrates, known since the glo-
bal analysis of Nakanishi and Fisher. Note the region of
critical wetting (second-order phase transitions) which is
absent for the curved substrates that we study. Also note-

that, as we move away from the origin along the critical
lines in Figs. 1 and 2, we must recover, for r, —+ ~, the
slopes of the straight critical lines of Fig. 3. For T) T„
this trend is clearly visible in the figures, but for T & T„
the approach is much slower.

P=Q(x+1) [3—(x+1)]
is considered to be a small perturbation. Defining

u =(2Q)', t =up, w(t)=x(p)+1,
Eq. (4.1) becomes

(4.2)

(4.3)

w'+2 ——w+ —w (3—w)=0,w E

t 2
(4.4)

where e is introduced to order the terms in the perturba-
tion expansion and is put to 1 at the end of the calcula-
tion.

Assuming a solution of the form

w(t) =wo(t)+ew, (t)+
leads to a zeroth-order differential equation

(4.5)

WGw+2 —w =00 t 0

and a first-order [O(e)] equation

(4.6}

Wi+2 Wi = 2WO(3 Wo), (4 7)

which must be solved according to the boundary condi-
tions

wo(t =u)=1+xi,
w~(t =u )=0, .j& 1,
lim wj(t)=0, j&0 .t~ oo

From (4.6) and (4.8) the zeroth-order solution is

e(u —t)
wo(t)=u(1+x )1

(4.8a)

(4.8b)

(4.8c)

(4.9)

w, (t) =a(t)u, (t)+b(t)v2(t),

where

(4.10)

v i(t) =e 'It, u2(t) =e'It
are the solutions of the homogeneous equation, and

(4.11)

The 6rst-order solution can be found using the method of
variation of parameters

IV. ANALYTIC RESULTS FOR T(T, a(t)= f dt' u2(t')wo(t')[3 —wo(t')]+a(u),
Q

(4.12)

We now show that for weakly varying projiles (small
x + 1) it is possible to obtain an analytic approximation
to the critical line. Note that all profiles are monotonic
for 1~p& ac, and consequently the profiles are weakly
varying provided x

&
= —1. Results are first derived for a

b(t)= f dt' v, (t') (wt'o)[3 —wo(t')], (4.13)

where a(u) is determined by the boundary conditions
(4.8b).
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where

+ —,
' u e "E2(4u )(1+xi ) (4.14)

E„(x)=I ds .s"
Function (4.14) has a point of inflection at

x, = —1+e "E,(3u )/E, (4u ), (4.15)

From (2.11a), (4.3), (4.5), and (4.9)—(4.13) the curve of
initial values is given to first order by

yi(xi)=(1+u)(1+xi) ——', u e "Ei(3u)(1+xi)

(lnu) '(xi+1) be small. One can thus expect better ac-
curacy in this limit. However, the inAection point coor-
dinate xi lies at (lnu ) '(x i+1)=1, so that for u ~0 we
should not expect (4.19) to yield the exact location of the
critical line. Indeed, G, as given by (4.21), becomes in-
creasingly accurate as u ~0, but y& approaches a con-
stant which difFers = 10% from the correct one. We shall
see later that the values of H, along the critical line are
also given quite accurately by (4.21), as u ~0 (see Sec.
VII).

Next we would like to present exact inequalities which
provide a useful bound for the location of the critical line.
From (3.1) follows the trivial bound

which immediately gives the first-order approximation to
the critical line

2 0
2 4

)—(x —1) (4.23)

G=l+u —
—,'u e "Ei(3u)/Ez(4u) .

For small u this reduces to

(4.16)

G —1+u —
—,'u [yE+In(3u )] (4.17)

where yE is Euler's constant.
Equation (4.16) agrees with the numerical results for

the critical line to better than l%%uj for r i /g (0. 1. The po-
sition of the point of inAection x& is, however, given less
accurately (an error of =10% at ri//=0. 1). This has
little effect on the critical value of G because y, (xi ) be-
comes a straight line (y i =x i + 1) as r, /$~0.

A similar calculation can be used to obtain the critical
line for cylinders. Writing (2.15) as

x+ ——2Q(x + I )+P =0
P

(4.18)

—
—,'[A3(u )/Ko(u)](x, +1)

+ —,'[A4(u)/Ko(u)](x, +1) (4.19)

where Ko and L, are modified Bessel functions and

A„(u)= I xEO(x)dx . (4.20)
Q

Hence, to first order

G =uKi(u)/Ko(u) ,'A3(u)—/[—A~(u)KO(u)] . (4.21)

For small u this reduces to

and calculating to first order in the nonlinear perturba-
tion P, we obtain

y, (x, ) =u [E,(u)/Ko(u)](x, +1)

G )uK, (u)/ICo(u),

which reduces to

(4.24)

G ) —[ye+in(u /2)] (4.25)

for u ~0. This provides an analytic argument for the ex-
istence of the line transitions (r i 5 g) for all G )0.

Note that a similar argument holds in the case of the
spherical substrates. For spheres, the phase transition
must occur for

G ~1+u . (4.26)

Finally we would like to draw attention to another use-
ful analytic approxim. ation, which is an expansion in 0,
thus valid for T close to T, or, equivalently, large curva-
ture. Such an expansion, however, amounts to singular
perturbation theory, ' because already in zeroth order
(for the cylinders) and in first order (for the spheres) it is
not possible to satisfy the boundary condition (2.13). The
expansion is only useful for sufficiently small
t =(20)'~ p. For large t, on the other hand, one can suc-
cessfully use the zeroth-order result (4.9) of the expansion
in x+1. The two expansions can be matched at arbi-
trary t =1. In the Appendix we give the expansions in 0
to (and including) first order.

since y(x) 0 for xi) —1 and y(x)~0 for x, (—l.
Furthermore, yi(xi) is concave in x, = —1 because of
(4.19). Consequently, the slope of y, (x, ) is not minimal
in xi = —1 and we obtain a sufhcient condition for the
existence of a first-order phase transition by requiring
that G exceed the slope of yi(xi ) in x, = —1. Thus, the
phase transition must occur for

G = —[y~+In(u /2)] (4.22)

Equation (4.21) agrees with the numerical results for
the critical line to better than 10% for r, /g(0. 01. For
the ordinate P', of the inflection point we find numerical-
ly, for T~T„y, =0.622, whereas the first-order approx-
imation (4.19) gives y, =0.557[ =A3(0)/A4(0)].

Note that (4.19) may be expected to be an accurate ap-
proximation as long as the magnitude of consecutive
terms decreases rapidly enough. Generally, xi+1 must
be small for this, but for u —+0 it suffices that

V. EXACT RESULTS FQR T& T,

For temperatures above the bulk critical temperature
the symmetry of the problem requires that the point of
inflection of the curve of initial conditions y, (x, ) is at
xi =0. Hence it is sufficient to linearize the equation of
motion in x, to obtain the slope at the origin, and hence
the critical G as a function of r, /g. Furthermore, the
phase transitions occur for h

&
=0 by symmetry.

For T) T, the bulk free-energy density (2.2) is
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f(m(r))=cm /(2g )+m~, (5.1) G =1 for spheres, as expected from the results for tem-
peratures above and below T, .

p=rlri x =x(p)=m(r)2$/c'/

becomes
'2

(5.2)

I [x]=J dpp
1 2 dp

H ix—i
—Gx 1 /2,

+—(2x +x )
0

(5.3)

where Hi =rih12('/c /, 6=rigjc, and Q=(ri/g) .
This leads to an Euler-Lagrange equation

and hence the free-energy functional for a spherical sub-
strate (2.1) written in the reduced units A. Spheres

For spheres at T, the equation of motion becomes

x +2 =deox
x
P

(6.1)

CO 4X 1
=2 dX

4 o P

where x =x(p)=m(r) and co=4ri /c. The nonlinear
force x prevents an expansion in x. Integrating (6.1)
subject to the boundary conditions (5.5) gives

2

(6.2)
2

x+2—=Qx(x +1) .
P

(5.4)
1. Upper bound

y, ——a, +Gx, ,

lim x(p)=0
p~ oo

[cf. (2.12}and (2.13)]gives

(5.5a)

(5.5b)

y = —dx ldp=Q'/ x,exp[Q'/ (1—p)]/p

+x iexp[Q' (1—p)]/p +O(x 1 ) . (5.6)

Linearizing (5.4) about x =0 and solving it subject to the
boundary conditions

~ ~ x2+2—=0 .
P

(6.3)

This should be compared to (6.1). It includes friction but
no force term. The solution to (6.3) which obeys the ini-
tial conditions X

&
=x

&
and y, =y, is

7=y 1 /p (6.4a)

We consider a particle satisfying the equation of
motion

Hence the critical line is given by

G =dyi /dx 1 l„o=1+Q', H, =0 .
I

(5.7)

X =Xi yi +y 1 /P .

Note that, for all p ~ 1,

(6.4b)

This result is shown in Fig. 1 (bottom part). It is exact
for all T)T, because the point of inflection of yi(xi ) is
at x& =0. The result provided a useful check of the nu-
merical algorithms used to obtain the critical line for
T&T .

Results for cylinders for T & T, are obtained in an en-
tirely analogous manner. The equation of motion

ls(p }I
—ly(p }I, (6.5)

Consequently,

which follows directly from (6.1), (6.3), and yi =yi.
Then, clearly,

(6.6)

x+—=Qx(x +1)
P

is linearized and solved to give

p(x) (p(x) .
(5.8)

Using these inequalities and (6.4) in (6.2) gives

(6.7)

(6.8)

y = —dx ldp=Q'/ X,E,(Q'/ p)I%0(Q'/ )+O(x, ) .
(5.9}

Hence

G =dy /dx
l

—Ql/2' (Qi/2)/It (Ql/2) H =0
1

(5.10)

defines the critical line. This is shown in Fig. 2 (bottom
part).

VI. EXACT RESULTS FGR T =T,

We nopv discuss, by obtaining bounds on the behavior
of y, (x, ) at the origin, the adsorption phase transitions
at T, . We find a critical value 6 =0 for cylinders and

2. Lower bound

Note that in (6.4b} x(p= ~ ) =xi —yi. Since we have
(6.6) we must have

(6.9)

From (6.8) and (6.9) it follows that the slope of yi(xi)
must be 1 for x& ~0, and hence that the critical point for
the phase transitions is at G = 1.

B. Cylinders

For cylinders at T„the equation of motion becomes

xx +——cox
P

(6.10)
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Integrating this subject to the boundary conditions (5.5)
gives

2
4 "&yx)= dx

2 4 0 p
(6.1 1)

l. Upper bound

Proceeding as for spheres we solve the problem
without force term

II, =[uK, (u)+ —,'A3(u)/A„(u)]/Ko(u)

—
—,'[A3(u)/A4(u)]/Ko(u), (7.3)

for u ~0, for cylinders.
The agreement of these asymptotic results with the nu-

merical computations is excellent. We therefore propose
that the following mean-field critical exponents describe
the surface field along the critical line, as T~T,
(r, /$~0, with r, fixed):

xx+ —=0,
P

(6.12)
h~ ~(T, —T) for spheres,

h
&
~ —(T, —T)' /ln(T, —T) for cylinders .

(7.4)

(7.5)

subject to the initial conditions x& =x„and y& =y„ to
give

This is to be compared with the corresponding behavior
for the planar substrate,

y=y&/P

x =x& —y&lnp .

(6.13a)

(6.13b)

hi ~T, —T

along the tricritical line.

(7.6)

Using the inequalities (6.6) and (6.7), which are equally
valid here, and (6.13) in (6.11) gives

y' & -'cox4e
2x /y

1 —
2 1 (6.14)

2. I.ower bound

A lower bound

+ —Nx (6.15)

y, (x, )= —x, /ln~x, ~, x, ~0, (6.16)

follows immediately from noting that the right-hand side
of (6.11) must be non-negative. Now (6.14) and (6.15) im-

ply that the slope of y, (x, } tends to zero as x, ~0 and
hence that the critical point for the phase transitions is at
6 =0.

Numerical computations indicate that y, (x, } is well
approximated by

VIII. PREWE j.-j.ING

The phenomenon of prewetting in a Oat geometry is
well understood theoretically, ' ' but has eluded experi-
mental detection so far. ' ' The prewetting phase transi-
tion is the extension of a first-order wetting phase transi-
tion into the bulk one-phase region (off coexistence). For
example, when a Qat substrate preferentially adsorbs the
liquid phase (h& )0) and the adsorbate is in the vapor
phase because of the presence of a bulk field h & 0, there
can be a prewetting transition between a thin and a thick
wetting layer. Clearly, the wetting layer cannot be ma-
croscopically thick because the liquid is not stable in
bulk. Thus we see that the bulk field imposes a finite lay-
er thickness. We have already seen that curvature also
imposes a finite layer thickness, even at bulk coexistence.
In this section we are dealing with adsorption phase tran-
sitions in the presence of both curvature and a bulk field.

In the presence of a bulk field h, the bulk free-energy
density takes the form [cf. (2.2)]

a result which satisfies the bounds (6.14) and (6.15).
f(m)=ao —hm+2(T T, )m +m— (8.1)

VII. SURFACE FIELD
ALONG THE CRITICAL LINK NEAR T,

H] =y) —Gx) .

We obtain

(7.1)

M, =1+u+ —,'u e "E,(3u)/E2(4u)

—
—,'u e "E,(3u)/E2(4u),

for u =(2Q)'~ ~0, for spheres and

(7.2)

In this section we examine how the surface field h,
varies as a function of r, /g for r, /$~0 along the critical
line. For T~ T, we trivially have h, =0 at the phase
transitions. For T & T„we first use the analytic approxi-
mations (4.14) and (4.19) for y, (x, ). Let x, and y,
denote the coordinates of the infiection point of y, (x, ).
The surface field at the critical transition is then given by
the intercept of the tangent at (x „y, ), or

where ao is such that min[f(m)]=0. Prewetting and
prewetting criticality have been studied systematically in
a Oat geometry. We restrict ourselves to mentioning one
particular result in the limit h ~0, at fixed temperature
T & T, . For a flat substrate, the curve of initial condi-
tions y, (x, ) satisfies, with mb = T, —T= mb (h =0),

2

2
-(x& —1) mb/c —h(x&+1)mb '/c+O(h ), (8.2)

where a surface free-energy functional analogous to (2.1)
is assumed for a profile x (z) =m (z)/mb, for 1 &z ( ca

and y(z)= —dx(z)/dz. The reason for mentioning (8.2)
will become clear when we discuss (Sec. XI) the curve
y, (x, ) for curved substrates in the limit of small curva-
ture.

For spherical and cylindrical substrates, the introduc-
tion of a bulk Geld h leads to the differential equation for
the profile x(p),



WETTING ON SPHERICAL AND CYLINDRICAL. . . 673

x+p —=Ox(x +1) H- ,
P

(8.3) X
G = 1+a~—

z a+e *Ei (3a~)/E2(4a~),
(3x +1)

x (p) =m (r)/mb,

H =2/(h =0)r,h Ic
=r, h l(cmb ), for T & T, .

(8.4)

(8.5)

(8.6)

where, from here on, p =1 for cylinders and p =2 for
spheres. The + sign refers to T) T, and the —sign to
T( T„and, with mb =mb (h =0),

3

+
2 a+e Ei(—3a+)/E2(4a+) .

(3x +1) (8.14)

(8.13)
3 2X ~CLy

H = —(1+a+)x — e *E (3a )/E (4a )1 (3x +1)

x'„+x„—2h g'/c'" =0 . (8.7)

The definition of Q, and the boundary conditions are the
same as before, except that now lim „x(p)=x „,where
x solves

For cyhnders,

G =a+Xi(a~)/ICo(a~)
23x

2A3(a+)/[A4(ag)Ko(ap)],
(3x +1) (8.15)

(8.8b)

In the following we derive analytic approximations to
the critical surfaces which bound the two-phase regions
of adsorption phase transitions. These critical surfaces
are the extensions of the critical lines (see Figs. 1 and 2)
into the bulk one-phase region (h %0).

Let w(r) =x(p}—x and a=a~, where

a+ = [(3x +1)Q]'

The difFerential equations then become

(8.9)

w'+p ——w=(3x„w +w )/(3x „+1).
'T

(8.10)

Clearly, for T & T, ( —sign) that solution must be con-
sidered which approaches —1 as h —+0 at fixed T. For
small hg, we obtain

—1+hg Ic i, T&T, (8.8a)

2hg Ic, T) T, .

Hi = —a+Xi (ay )x /Kp(ag )

X
A3(ag )/[A4(a~)ICo(a+ )]

(3x „+1)
33X
QQ 2+ 2 A3(a+ ) I[A4(a+)Kp(a+ )] . (8.16)

(3x „+1)
Note that (8.13) reduces to (4.16) and (5.7), (8.14) reduces
to (7.2), (8.15) reduces to (4.21) and (5.10), and (8.16)
reduces to (7.3), for h ~0.

Furthermore, we can obtain exact inequalities for the
occurrence of adsorption phase transitions. The second
derivative ofy, (x, ) at xi =x is proportional to x [see
(8.11) and (8.12)]. Consequently, the inflection point of
yi(x, } is not at x„, unless T) T, and h =0. Thus we
obtain the following lower bounds on 6 for the oc-
currence of the phase transitions. For spheres,

Performing a perturbation expansion as in Sec. IV, we
obtain an expansion of the initial condition curve y&(x& )

in powers of x, —x . We find, for spheres,

6 ~1++~,
and, for cylinders,

G )a~Z, (a~)/Ko(a~) .

(8.17)

(8.18)
yi(x i ) =(1+a+)(x i

—x )

+ a+e *E,(3a+)(x, —x „)
(3x +1)

2
4a~ 3+ e E~(4a+)(x, —x „)

(3x „+1)
and, for cylinders,

(8.11)

yi(x, ) =a+[A, (a+)/Kp(a+)](xi —x )

3x ~ 3 2+ [A3(a+)/Kp(a+)](x, —x „}
(3x +1)

+ [A4(a+)/Ko(a+)](x i
—x )

(3x +1)

(8.12)

From this we calculate the following approximations to
the critical values of 6 and H&. For spheres,

For h ~0, (8.17) reduces to (4.26) for T (T, and to the
exact result (5.7) for T) T„and (8.18) reduces to (4.24)
for T& T, and to the exact result (5.10) for T) T, .

IX. WETTING LAYER THICKNESSES

In this section we study the wetting layer thicknesses
in two different limits: the planar limit (r, ~ oo, g fixed)
and the limit of high curvature or criticality (ri/$~0).
In the planar limit the wetting layer is physically well
identifiable. We argue that its thickness R is proportion-
al to gin(r, /g), a result which, for spherical substrates,
was already obtained in earlier work where use was made
of the double-parabola approximation. In the opposite
limit of high curvature, the concept of a wetting layer is
much less clear. It is more appropriate to speak of an
order™parameter profile which varies significantly over a
"thickness" R before reaching its limiting value in bulk.
We argue that R ~ g. Qur results are based on approxi-
mate analytical arguments.

In the planar limit a typical wetting layer profile is
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shown in Fig. 4 (r i /g= 10 ). We have g « r, & ao. The
profile consists of a rapid initial decay towards the bulk
"liquid" density, followed by a region of nearly constant
density, the wetting layer. Finally, the profile decays via
a liquid-vapor interfacial structure into the bulk vapor
phase.

Define x(r)=m(r)lm&, and x =dx Idr. The thickness
l of the region of rapid initial decay is well approximated
by

r, +I x,
I = f dr= —f (1/x)dx, (9.1)

where xi =x(r, ) and x is a suitable value slightly greater
than 1 (for example, x =1.1). We then have by virtue of
an inequality similar to (4.23)

I & (g/2'/ )lnI(x, —1)(x,+1)/[(x, + 1)(x,—1)]I .

(9.2)

2'

E

20

r& lg =10'

I I

10 12
(r-r& ) / g

x+p —=g x(x —1) .
r

We perform an expansion in 1 lr, . This leads to

(9.3)

This signifies that / is of order g. The same conclusion
applies to the thickness of the liquid-vapor interfacial
structure which bounds the wetting layer on the other
side.

To study the profile after the initial decay, we start
from the differential equation

FIG. 4. Profiles of reduced order parameter m(r)/mb vs re-
duced radial distance from the cylindrical substrate (r r, )//. —
Two cases are shown. For r, //=10" the substrate curvature is

small and the adsorbate is away from criticality. The profile has
a pronounced "shoulder" corresponding to the wetting layer
with thickness of order gin(r, /g). For r, //=10 ' the sub-

strate is strongly curved and the adsorbate is close to criticality.
The profile decays in a featureless fashion over a distance of or-
der g. In both cases the boundary conditions are chosen to be
m(r] )/m$ =1.2 and m( ~ )/mb = —1.

x(r) =x(o)(r)+x("(r)/r, +
x (0) —

g
—2x (0)(x (0) 1 )

x "'+ x ' )=g (3x' ' —l)x"'
The initial conditions are

(9.4)

(9.5)

(9.6)
exact in the planar limit.

The solution to (9.5}is given by

x' '(r) =coth(az/2+/), (9.10)

x' '(r, +I)=x, x'"(r, +1)=0.
Since x & 1, we have

(9.7)

(9.8)

For x =1 we have x' '(r)=1 for r, +I &r & 0(), so that
(9.6}can be approximated by

x'"+ x' '=2/ 'x'" (9.9)

Note that (9.9) would also result from linearizing (9.3} in
x —1, before expanding in 1/ri. However, (9.5) would
then be affected as well. In the present scheme, (9.5) is

I

with z =r r t
—l, a—=2' lg, and P =coth '(x ). The

solution to (9.9) is given by

(2a/p)x'"(r)=e '(A —f e 'x ' '(z')dz')
0

+e '( —A+ f e 'x ' '(z')dz') .
0

(9.1 1)

The constant of integration A can be determined, in prin-
ciple, by constructing a complementary approximation
for —1 (x & 1 and matching the two approximations.

The integrals in (9.11)are worked out to give

(a/p)x'"(r)= A sinhaz+x sinhaz+coshaz —1 —2 cosh(az+2$)ln[(e '+ ~ —1)/(e ~—1)]+e '+ ~az . (9.12)

For large az this leads to, using (9.4),

x(r)-x' '(r) —B(A,x)(pglrt )exp[2' (r rt —1)/g] . —

I

profile closely follows x' '(r) until the correction term be-
comes of order 1. This takes place for

(9.13) r r, —l ~gin—(r, /pg) . (9.14)

Now the use of the expansion is clear. The zeroth-order
profile satisfies x(o)(r)—+I, for r~oo. The first-order

This signifies that the wetting layer terminates when
(9.14) is satisfied. Note that the amplitude B is not ex-
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plicitly calculated. %'e expect B to be finite for x, & 1,
that is, as long as the wetting layer is clearly identifiable.

We conclude that, for both spheres and cylinders, the
wetting layer thickness for ri »g is given by (9.14).
Note that the layer thickness grows extremely slowly
with increasing r&. For example, in this Landau theory
with short-range substrate-adsorbate forces, the thickness
of the wetting layer on a sphere with the radius of the
earth is only = 100 correlation lengths.

Numerical computations appear to support (9.14). For
example, for cylinders, we obtain for ri /g~ ~,

r r, =0—.69/ ln(r i /g'), (9.15)

where r is defined by x(r ) =0, and we have taken the ini-
tial condition x (r i )= 1.1, and, of course, x( ~ )= —1.

In the opposite limit, ri &&g& ao, a typical profile is
displayed in Fig. 4 (r, //=10 '). The thickness R of the
adsorbed layer can be defined as the radial distance
beyond which the deviations of the order parameter from
its asymptotic bulk value are exponentially small. We
readily find R by inspection of the expansions in ri /g (see
the appendix).

For spheres, it follows immediately that R cc g, because
the solution for small r, (A3) —(A4), can be matched to the
solution for large r, precisely when r//=1. Further-
more, (AS) implies that the profile has only exponentially
small deviations from its bulk value —1 as soon as r & g.

For cylinders, the matching needs to be done for r
slightly smaller than g, because of the presence of the log-
arithmic corrections in (A16). From (A17) it is clear that
exponentially sma11 deviations from the bulk order pa-
rameter again require r & g.

We conclude that R ~ g for both spheres and cylinders,
in the regime r, «g. Consequently, the wetting-layer
thickness can be arbitrarily large relative to the substrate
radius.

X. FINITE-SIZE ROUNDING
OF FIRST-ORDER PHASE TRANSITIONS

The substrate-adsorbate systems we are studying are
three dimensional (d =3). In the thermodynamic limit
the substrates remain finite in two (cylinders) or three
(spheres) dimensions of space. Due to finite-size effects
the adsorption phase transitions will be rounded, they
will not be sharp first-order phase transitions as they are
for a (fiat) two-dimensional substrate. Gelfand and
Lipowsky already made this point in the context of wet-
ting on cylinders and spheres, and gave both qualitative
and quantitative estimates of the importance of these
effects in the regime ri »g. We discuss also the regiine
r, & g. Furthermore, we consider not only T & T„but
T & T, and T= T, as well.

Finite-size rounding of first-order phase transitions has
been studied in great detail and in a rather general con-
text by Privman and Fisher. ' We attempt to apply their
formalism and basic results to our case. Basically, they
have considered bulk phase transitions inside a finite
volume, whereas we consider surface phase transitions on
the outside of a finite volume.

k~T
b,y =y(5h, , T; r, )—y(0, T; oo ) =

cor
(10.1)

where 5h, is the surface field h i minus its value at the
phase transition for r, = ~. The "correlation area" A„,
is a measure of the substrate area occupied by a single
domain of either of the two surface phases. Clearly,
A„,~00 for r, ~~, rejecting the emergence of macro-
scopic surface phases with long-range order in this limit.
In the following, r, is assumed to be much larger than
microscopic lengths such as the molecular size.

A. Spherical substrates

The area available for domains is necessarily bounded
by the area of the sphere, so that

(10.2)

Consequently, the finite-size rounding is "algebraically
small" in the substrate radius. The bulk correlation

For a subset of adsorption phase transitions, namely
the prewetting transitions (off coexistence, hAO) and the
pure surface transitions (T & T„g&0, h =0), there is a
clear universality-class argument which explains why
these transitions are sharp for Aat substrates, but rounded
for cylinders and spheres. Nakanishi and Fisher showed
that the prewetting transitions are smoothly connected to
the pure surface transitions, in the phase diagram topolo-
gy. Therefore, both types of phenomena are essentially
the same. In particular, prewetting criticality and pure
surface criticality are expected to be in the same univer-
sality class, namely, in our case, that of the Ising model
with the dimensionality of the substrate, d, . For a fiat
substrate, d, =2, so that the phase transition can occur
for T&0. For cylinders (d, =l) and spheres (d, =O),
sharp phase transitions cannot occur for T&0. The
phase transitions must be rounded.

In our opinion, one cannot apply the same
universality-class argument for the first-order vetting
transitions (T & T„ Ii =0), because wetting criticality
and prewetting criticality are in di6'erent universahty
classes. Moreover, genuine wetting phase transitions (al-
beit continuous ones) can take place on substrates with
d, =1, for T)0. ' We prefer to argue that the wetting
transitions on cylinders and spheres must be rounded, not
because of the reduced dimensionality of the substrate,
but on the basis of the geometry of the substrate-
adsorbate system. Firstly, the finite thickness of the wet-
ting layer is clearly the result of the geometry of the em-
erging liquid-vapor interface. Secondly, because of the
finite layer thickness on a cylinder, for example, there is
the possibility of introducing kinklike fluctuations of the
surface order parameter, along the cylinder axis. Such
kink costs a finite energy but yields an entropy which
diverges as the logarithm of the cylinder length. Thus,
kinks are favorable and 1ong-range surface order is des-
troyed for T &0.

Following Privman and Fisher' we will proceed to
make our considerations more quantitative. In general
the rounding of the surface free energy y is described by
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B. Cylindrical substrates

The area occupied by a domain can be arbitrarily large,
in principle. The typical distance between domain walls
which wind around the cylinder (and which are assumed
responsible for breaking up long-range order) is the longi-
tudinal correlation length g((. Therefore,

k~TAy=, r, ~00 . (10.3)

length g does not play a significant role. Indeed, Eq.
(10.2) holds for TNT, and T=T, . In the latter case,
(10.2) describes the rounding of the extraordinary transi
tion E (g & 0, see Fig. 3).

The surface correlation length g", however, plays an
important role. For r, = ~, g" diverges when the sur-
face phase transition becomes critical. This is the case at
wetting criticality (T & T, ), the special transition S
(T = T, ), and pure surface criticality (T) T, ), all shown
in Fig. 3. Clearly, the phase transitions will be wiped out
by fiuctuations in the regime g" & r, .

Secondly, consider the pure surface transitions. We
have T & T„g"finite, and r) ~ ~. Then X is expected
to approach a finite limit because the kinklike fluctuation
penetrates only a distance of order g into the single-phase
bulk. In other words, the order parameter profile m(r)
approaches the bulk order-parameter value exponentially
fast over a length scale g. Thus, the rounding is exponen-
tially small in r) /g".

Thirdly, consider the extraordinary transition E. We
have T = T, (f= oo ), g" finite (g & 0), and r, ~ oo. In
this case it is not obvious whether X approaches a finite
value or diverges. It is even possible that X is infinite for
finite r&. The latter possibility exists in view of the fact
that the kinklike fluctuation decays algebraically into the
critical bulk, instead of exponentially. This in turn is due
to the algebraic decay of the order parameter profile
m(r), which obeys (6.10).' In any case, the rounding
will be exponentially small in r)/g" (finite X), or even
smaller (divergent X).

In summary, for cylinders

b y =ks T/[r, exp(r, /g")], r, ~ oo, (10.8)
In other words,

g~~
represents the mean separation (along

the cylinder axis) between the kinklike fiuctuations of the
surface order parameter.

g)~
depends on three other

lengths,

(10.4)

In general, g~(
can be related to a domain-wall free energy

X (per unit length of circumference) for which finite-size
scaling predicts

or possibly smaller.
Note that we emphasize the role of the surface correla-

tion length g". Equations (10.2) and (10.8) imply that we
can, in practice, neglect the finite-size rounding, regard
less of the magnitude of the bulk correlation length g, pro-
vided r, /g" is sufficiently large.

y(r g g(s)) —g(s) —1X(r Ig(s) g/g(s)) (10.5) XI. DISCUSSION AND OUTLOOK

The function
g~~

is well approximated by

g~~--r)D(fir), g"Ir) )exp[r)X(r(/g'', g/g")/g"],
(10.6)

where D is a slowly varying function (e.g. , algebraic) of its
arguments (see, for example, Ref. 16).

In view of (10.5), the domain-wall free energy X van-
ishes as g" ' for g"—& Oo. We will see that the finite-size
rounding is always "exponentially small" in r, /g". This
means that if we are su%ciently far from the critical lines
in the phase diagram for r) = ~ (inside the two-phase re-
gions, Fig. 3), so that g" is small, the rounding will be
negligible for large r]. Let us now see this in more detail.

Consider first the wetting transitions. We have T & T„
g(') finite, and r, ~ ao. Then we expect the scaling func-
tion X to diverge with r „because the wetting layer thick-
ness diverges according to (9.14), and X approaches the
product of the bulk interfacial tension cr (of a liquid-
vapor interface) and the layer thickness. Explicitly, for

«r) aild g « r),

X=o gin(r) /g), r, ~ oo . (10.7)

In other words, the kinklike fluctuation consists, for
r

&

—+ ~, of a bulk interface standing perpendicular to the
cylinder (on the outside). Therefore, the rounding is ex-
ponentially small in r, /g", in view of Eqs. (10.5)—(10.7).

We have presented the global phase diagrams for wet-
ting on spheres and cylinders in Landau theory. In our
study, we examined the Landau theory with the standard
quartic polynomial (2.2) by numerical methods, comple-
mented with numerous analytical approximations and a
fair amount of exact results. Our study was inspired by
the numerical analysis of Levinson et al. for the case
g =0. In later work Cxelfand and Lipowsky examined
the case g&0. They explored the regime of small curva-
ture, r, ))g. Furthermore, within this regime, they em-
ployed the double-parabola approximation to the Landau
free energy. This approximation cannot be used near T,
and breaks down for

~
g) g/c )V2 (for r, = ~ ).

Our findings do not support the previously reached
conclusion that the effects of curvature may be subsumed
into an effective bulk field. Curvature and bulk field are
similar in that both induce a finite wetting-layer thick-
ness. However, the important difference is that when the
strength of the bulk field is increased the prewetting tran-
sitions terminate at a critical point, whereas when the
curvature is increased the adsorption phase transitions
can behave in several different ways, depending on 6 (see
Figs. 1 and 2 ). Even in the limit r, )&g, we have not
found a precise similarity between the roles of curvature
and bulk field. The closest analogy to (8.2) is the follow-
ing approximate result in the limit r, lg~ ~:
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2
=(xi —1) mb/c

+p(2&2/3)(r, /g) '(mb /c )

X [~xi —l~(x, —1}(x,+2)+4],

(11.3)

On the basis of (11.3), (11.1) is derived in the process of
constructing successive approximations to y i (x, ) for
large Q. In the first iteration (replacing yi by its limit for
0» ~ in the integrand) one obtains (11.1).

The next topic of our discussion is the occurrence of
critical double points in the phase diagrams (Figs. 1 and
2). At these points the regions of surface transitions and
line (or point) transitions merge. Critical double points
are well known in the context of bulk phase transitions.
One example is the coincidence of the upper and lower
consolute points in binary mixtures when pressure p and
temperature T are varied. The usual topology in such
case consists of a critical line, projected in the (p, T)
plane, which encloses a two-phase region. In our case the
topology is inverted since the critical line encloses a one-
phase region. An experimental example of this in bulk
phase transition phenomena is found in the work of Trap-
peniers and Schouten ' on mixtures of Neon and Kryp-
ton. From the point of view of critical phenomena, criti-
cal double points give rise to exponent doubling.

As far as the experimental relevance of our results is
concerned, we would like to make the following corn-

with p =1 (cylinders) or p =2 (spheres). This result can
be derived on the basis of (3.1} and with the use of an
upper bound' for ~y, (x i ) ~, as we shall outline below. In
(11.1) we have defined x (r) =m(r)/m& and

y (r) = dx—(r)/dr instead of the usual definitions in terms
of p= r /r„ in order to allow a direct comparison with
(8.2).

In our study of the adsorption phase transitions we
have emphasized that the knowledge of the curve of ini-
tial conditions y, (x, ) is essential. Often y, (x, } is known
only approximately. In such case, it is very useful to ob-
tain lower and upper bounds for ~y i(x i }~. For our prob-
lem the lower bound (4.23) is found immediately by not-
ing that, in the mechanical analogy, energy is dissipated
due to the presence of friction. Far less trivial is obtain-
ing an upper bound. Consider, in the mechanical analo-

gy, a particle with initial position x, and final position
x ( 00 )= —1. Then the velocity y (x) at x (with
—1 &x &xi or xi &x & —1) is less in magnitude than the
initial velocity yi(x) which the particle would have for
initial position x and the same final position —1. This
can be written compactly as

(11.2}

This inequality can be shown analytically for small x +1,
but we have only numerical evidence for the more general
case. Using (11.2) and the fact that p~ 1, in a relation-
ship of the form (3.1), which describes the dissipation of
mechanical energy, leads to

2

2

ments. The phase diagrams we presented are essential to
experiments which deal with wetting on cylindrical wires
or fibers, and on spherical objects. The continuum
mean-field theory is expected to be primarily applicable
to systems where both r, and g are appreciably larger
than the molecular size. This size is represented in the
Landau theory by the constant &c, where c is the
coefficient of the gradient term in (2.1). Consequently,
there are no restrictions on the ratio r, /g, and the phase
diagrams can be used to explain or predict adsorption
phase transitions when the temperature is varied.

For a given choice of substrate ri, h „and g are fixed.
Without loss of generality we assume h, &0 and the va-
por phase for the adsorbate in bulk. When the tempera-
ture is raised from a suNkciently low value towards T„we
will encounter a phase transition provided G )6, where
6 is the value of 6 at the critical double point. For
0&6 &6, a phase transition will occur on the way to
T, unless h& falls within a certain range. A phase dia-
gram in the (H „ri /g ) plane which describes this regime
is shown in our earlier paper. ' For 6 &0, a phase transi-
tion will take place unless h, is below a certain threshold
value. These results can be stated in a different way.
When T, is approached at constant r „h&, and g, a phase
transition may but need not occur. Thus, the analog of
critical point w-etting' ' on planar substrates (i.e., the
necessity of a phase transition to complete wetting while
T, is approached from below) takes place only if G & G '.
Otherwise, h &, for example, can be taken such that no
phase transition occurs as T is raised towards T, . (For
h

&
& 0 the same discussion applies, replacing bulk vapor

by bulk liquid and "wetting" by "drying").
Fluctuation effects will modify the phase diagrams.

We have obviously neglected transverse fluctuations of
the order parameter m(r) by restricting its variation to
the radial direction along r. We have also neglected local
fiuctuations of average size g, which are already present
in the bulk phases at r = (x). It remains to be investigated
which topology the phase diagrams display beyond
mean-field theory.

Concerning the finite-size rounding, we expect, on the
basis of the arguments given in Sec. X, that this effect is
not a limiting factor for experimental detection of the
phase transitions, provided the radius r& is large com-
pared to molecular sizes.

Inspired by this study of wetting on spheres and
cylinders, we have begun to devote attention to other,
more complicated substrate geometries. Examples are
tori, paraboloids, and hyperboloids. Also gratings of
parallel cylinders are being considered. The physical
questions we address are the nature of the connectivity
phase transition in which the emerging interface changes
from singly to multiply connected (for example, on a
torus, and between parallel cylinders), and the possibility
of a true wetting transition on infinite rather than finite
curved substrates (for example, on paraboloids). A tech-
nical problem in the treatment of the Landau theory for
these geometries is the lack of a mechanical analogy (the
"time" variable becomes two-dimensional), and, of
course, the partial differential equations are harder to
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deal with than the ordinary ones discussed here.
Another interesting problem which can be handled

with the present methods is that of wetting at a planar
wall, in the presence of a long-range substrate-adsorbate
field h (z), in Landau theory. In the mechanical anal-

ogy the particle then moves under a time-dependent
external force.

Finally, we would like to mention the widely relevant
problem of wetting near grain boundaries and defect
planes, for which the Landau theory allows an exact solu-
tion. Also, concerning the widely applicable use of
equal-areas rules, such as (3.2), in mathematical physics,
we mention a recent review of generalized equal-areas
rules for spatially extended systems.
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APPENDIX: ANALYTIC APPROXIMATIONS
FOR HIGH SUBSTRATE CURVATURE

A. Spheres

We perform a perturbative expansion of (2.10) in
powers of Q. If we consider

x(p) =x' '(p)+Qx'"(p)+

with boundary conditions

x' '(1)=x x'"'(1)=0, n ~ 1,

(A 1)

(A2a)

—dx' '/dp~ i=yi, dx'"'/dp~ i=0, n ~ 1, (A2b)

then we find

able discussions and, in particular, for pointing out Ref.
21. He thanks the Belgian National Fund for Scientific
Research for financial support.

x"'(p) =xi —yi+yi/p
2 ) 1(p} ( x i y i + x lyi

—lxiy i
—

—,'xi+-,'yi + —(-,'x i
—

6 y 1 + 2x lyi +xly i 3xi 6yi }

(A3)

—y, lnp/p+ (3x,y, —3y, }lnp+ —,'p(3y, +3x iy, —6x,y i
—y, )

+ —,
' p~(x 3 —y, +3x,y i

—3x 2y, —x, +y, ) . (A4)

From this first-order result one can construct a useful ap-
proximation to yi(xi ) as follows. First note that the ex-
pansion breaks down as p ~~, because, in first order, the
boundary condition x = —1 cannot be satisfied. How-
ever, the expansion is useful provided

Qp (1. (AS)

Since p ~ 1, the expansion will a fortiori be useful only for
Q(1. From (A3) and (A4) we obtain y(p)= —dx/dp,
and by substituting yi =Hi+Gxi in both x(p) and y(p)
one is led to the following third-degree polynomials:

3
x' '(p)+Qx'"(p)= g a„(p,Q, H, , G}x", ,

n=0

3

g a„(p=u ', Q, H, , G)x",

3= —1+ g b„(p=u ', Q, H, , G)x", .
2u 0

(A10)

For fixed Q, H, , and G, Eq. (A10) can admit either one or
three solutions for x &, thus allowing an approximate loca-
tion of the phase transition.

This suggests that one matches (A9) ("outer" solution' )

with Eqs. (A3)-(A7) ("inner" solution), at up=1 (or a
suitable number of order 1). This leads to the following
constraint,

3
y' '(p)+Qy'"(p)= g b„(p, Q, H, , G)x", . (A7) B. Cylinders

x(p)- —1+ e "t', as p~~,
P

(A8)

where u =(2Q)'~ . A can be eliminated by expressing
x(p) in terms ofy(p), which leads to

On the other hand the asymptotic solution for p —+ 00 is
found by linearizing (2.10) about x = —1 as in (4.1) for
P =0. In this limit we have

We expand (2.1S) in powers of Q. Consider

x(p) =x'"(p)+Qx"'(p)+

subject to the boundary conditions

x' '(1)=xi,x'"'(1)=0, n ~ 1,
—dxio'/dplp=i=y, ,dx'"'/dp~, =i=0, n ~1 .

We find

(Al 1)

(A12)

(A13)

x(p)- —1+py(p)/(up+1), as p —moo . (A9) x"'(p) =x, —y, lnp, (A14)
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x ' "(p)= —,'(x, +y, —x, —3x,y, ——,'x,y, —3y, }+—,'lnp(2x i +y, —2x, —3x iy, —3x,y, —
—,'y i )

+ —,'p2( —x, —y, +x 3 + 3y 3 +3x fy, +—', x,y f ) +—,'p lnp(y, ——', y, —3x iy, —6x,y, )

+ —,'p (lnp) (3y, +3x,yi)+ —,'p (lnp) (
—y, ) . (A15)

On the basis of this first-order result one can construct a
useful approximation to y, (xi ) as follows.

First note that the expansion is useless for p —+ ao. Al-
ready in zeroth order the boundary condition x = —1

cannot be satisfied for yi&0. The expansion is useful
provided

Qp (lnp) &1, (A16)

x(p)- —1+ AKo(up) as p~ ao, (A17}

From (A14) and (A15) we obtain y(p)= —dx/dp, and
then substitute Hi+Gx& for yi in both x(p) and y(p).
This leads to third-degree polynomials of the form (A6)
and (A7).

On the other hand, for p —+ ~, we must have x —+ —1,
so that an expansion in x +1 as in (4.18) is the appropri-
ate tool. We find

where u =(2Q)' . The coefficient A can be eliminated
by expressing x(p) in terms ofy(p):

x(p)- —1+Ko(up)y(p)/[uK, (up)], p~ Do . (A18)

Together with the foregoing results, this suggests a
matching of the two expansions at u p = 1 [ignoring the
logarithmic correction factor in (A16)]. This results in
the following constraint on the initial condition x, :

3

g a„(p=u ', Q, H, , G)x",
n=0

Ko(1)= —1+ g b„(p=u ', Q, Hi, G)xi,
uKi 1

(A19)
with the desired one or three solutions x

&
for fixed 0, H„

and G.
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