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Positive curvature of H, 2 in layered superconductors
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We present a phenomenological calculation of the equilibrium upper critical field H, 2 in layered
superconductors. We find that H, 2(T) has positive curvature near T„but becomes linear further
away. , as a result of a proximity effect between neighboring superconducting and nonsuperconduct-
ing layers, for low-T, and high -T, superconductors alike.

I. INTRODUCTION

The upper critical field H, 2 of the high-T, layered su-
perconductors has attracted a lot of attention recently. '

Early resistance measurements showed that H, 2( T) had
positive curvature near T, for all field orientations.
These measurements proved unreliable, though, because
they were masked by irreversible effects, such as Aux
creep, and the values of H, z extracted from them should
rather be interpreted as a determination of an irreversibil-
ity line. Since thermally activated Aux creep affects the
resistive measurements enormously, reversible measure-
ments would be needed for determining the true thermo-
dynamic H, 2. Such measurements were recently under-
taken. dc-magnetization measurements on single crys-
tals of YBa2Cu3G7 & revealed a well-defined onset of di-
amagnetism, allowing a unique magnetic determination
of the true upper critical field. At the magnetically deter-
mined nucleation temperatures no distinct features were
found in resistive transition curves. H, z(T) had, once
again, positive curvature near T„but at lower tempera-
tures it became a straight line that intercepted the T axis
at around 91.5 K, about 1 K below T, . The angular
dependence of the upper critical field was also measured
with dc magnetization, the results being describable with
a three-dimensional anisotropic Ginzburg-Landau (GL)
theory in the region of linear H, 2.

It seems certain then that the H, 2 of high-T, supercon-
ductors has positive curvature near T„ for any field
orientation. Such curvatures have also been observed in
low-T, layered superconductors, such as intercalated
TAS2 and MoSz, where the Aux creep effects are negligi-
ble. For the field direction parallel to the layers, the pos-
itive curvature is attributed to a kind of dimensional
crossover predicted by the Lawrence Doniach model of
identical Josephson coupled superconducting layers (for7

various extensions of the model, and for reviews, see Ref.
8). In fact, H,"2 may diverge at low temperatures in this
model, if the cores of the vortices fit between the layers.
The generic curvature for the field direction parallel to
the c axis is still not well understood, however. The GL

theory predicts a linear temperature dependence of H, 2
near T„but positive curvature is universal in the natural-
ly occurring superconducting layered compounds. For a
review of the various theoretical efforts and experimental
results, see Ref. 9.

In this paper we extend the simple physical picture
proposed earlier' in order to account for the positive
curvature of H, z in layered superconductors, low and
high T, alike. We make use of the fact that most of the
naturally occurring layered corr.-pounds contain not only
superconducting (SC) layers, but also nonsuperconduct-
ing (NSC) ones. Normally, the order parameter is zero
on the NSC layers. The Josephson coupling between
neighboring SC and NSC layers, though, makes the order
parameter nonzero on the NSC layers as well, through a
proximity effect. Thus we have differing order parame-
ters on different layers. The spatial variation of the order
parameter from layer to layer in materials where NSC
layers are in the proximity of SC layers gives rise to the
observed positive curvature.

In particular, we predict that the upper critical field
H, 2(T) in the direction of the c axis has positive curva-
ture near T„but becomes a straight line further away,
that intercepts the T axis below T, . The linear region of
H, 2( T) is precisely the region where the order parameter
on the NSC layers has become negligible, since the prox-
imity effect does not exist there any more. We further
predict that the intercept of this straight line with the T
axis is independent of the field direction, and that the an-
gle dependence of H, 2 in the linear region is precisely
that of the anisotropic GL theory.

The inclusion of the NSC layers is crucial for this prox-
imity effect. The reason Klemm et aI. get a linear
H~2(T) near T, is that they use only identical SC layers.
It is the presence of inequivalent layers that creates the
curvature. Experimental indications for the presence of
this proximity effect in the Bi 2:2:1:2high-T, supercon-
ductors have been reported recently by Briceno and
Zettl. "

A macroscopic version of this effect exists in supercon-
ducting multilayers. ' Theoretical considerations'
have shown that the temperature dependence of the field
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H, 2 perpendicular to the layers could exhibit anomalous
upward curvature under appropriate conditions. When
the coherence length is long, near T„ the order parame-
ter is continuously coupled through the multilayer, but
when it becomes small enough compared with the layer
thickness, the order parameter decreases exponentially in
the NSC layers, producing thus a decoupling of the SC
layers. Thus the observed H, 2 at lower temperatures is
that of the SC layers, and consequently very high.

In Sec. II we present the free energy adopted. In Secs.
III and IV, we calculate H, 2 for YBazCu307 & and
La2 Ba„Cu04, respectively. Our conclusions are
presented in Sec. V.

II. FREE ENERGY

differing order parameters on different interacting sub-
units was introduced first in Ref. 14, where it was real-
ized in the context of a hypothetical layered structure
with alternating sheets having different types of conduc-
tivity. Attention was drawn to the fact that the proper-
ties of low-T, superconductors differ radically from those
of purely two-dimensional systems, due to the role of the
interacting subunits, of which these superconductors con-
sist. ' Recently this idea has been explored systematical-
ly in the context of high-T, superconductivity, ' ' where
free energies of the form of Eq. (2) have been used.

We shall assume that H„=H ( cos8z+ sinoy ), i.e.,
A„=xH(cosoy —sin8z). Then the free energy is mini-
mized if g„ is a function of x only, in which case it takes
the form

+ ln, n+ 1lfn 1+
—f„exp( 2ied„„+,A,„Itic )I

—] . (2)

This generalizes the free energy used to describe a stack
of equidistant superconducting layers by introducing ine-
quivalent layers. The fact that we may be integrating
over unequal distances is incorporated into the constants
a„,m,*,g, „+&, the use of whi&h makes manifest the in-
troduction of inequivalent layers. The concept of

We shall consider a series of superconducting and non-
superconducting layers. Let g„and A„be the order pa-
rameter and vector potential on the nth layer. We shall
define the discretized magnetic field H„on each layer as

H„=z(a A,„I» —a A,„/ay )+x(a A,„/ay —DA,„)
+y (D A „—8 A,„/Bz ) .

Here z is the direction of the c axis and Df„ is the discre-
tized derivative across the layers, Df„=(f„+& f„)I—
d, „+„where d„„+&

is the distance between the nth and
(n + 1)th layers. H„ is invariant under the discrete gauge
transformation A„~ A„+V~~y„+zDy„, where y„(x,y)
is an arbitrary function of x and y, and Tll is the gradient
along the layers. We also have g„~g„exp( 2iey„/A—'c )

under the gauge transformation. Near H, 2, we may
neglect the influence of g„on A„, since f„ is very small,
and we may also neglect quartic terms and pure gauge
terms. Then the gauge invariant Gibbs free energy
describing layered superconductors, where the Cooper
pairs consist of holes, is

fdxdyy[~. (~)lg, l
+I i~VIe& +2 Aliq /cl /2m„*

f dx g [~„(~)I @.I'+&'( I~&. /» I'

+y cos Ol@„l )/2m„*

+ 9n, n + f I g. + )
—p„exp(id„„+&y sin9)

I
2], (3)

wltll g —2exH /Ac.
Let us deal explicitly with two examples:

La2 „Ba Cu04 „and YBA2Cu307 &, two high- T, su-
perconductors. La2 Ba Cu04 consists of supercon-
ducting Cu02 and nonsuperconducting La(Ba)O layers,
in the order Cu02-LaO-LaO-Cu02-LaO-LaO-. . . , etc.
The distance d 2 between neighboring LaO layers is
2. 3629 A, while the distance d, between neighboring
LaO and Cu02 layers is 2. 1307 A. ' YBa2Cu307 &, on
the other hand, consists of Y-Cu(2)-BaO-Cu(1)-BaO-
Cu(2)- Y-. . . layers, where only the Cu(2) layers are super-
conducting. ' The distance d, between the Cu(1)
"chains" and the Cu(2) planes is 4. 1252 A, while the dis-
tance d2 between neighboring Cu(2) planes is 3.3830 A. '

We shall neglect in this paper the role of th'e BaO and Y
layers in the YBa2Cu307 & superconductors, for simpli-
city, assuming that their effect may be approximately in-
corporate' into the Josephson couplings.

Note that in both of these materials we have a single
layer of one kind 2, followed by a pair of layers of anoth-
er kind B. In La2 „Ba~Cu04—y A is Cu02 and B is
LaO. In YBa2Cu307 s, A is Cu(l) and B is Cu(2). Let
the order parameter of the nth layer of kind A be P„. Let
the order parameters of kind B that surround it on either
side be P„and g„. If we denote the constants associated
with kinds 3 and B by the subscripts 1 and 2, respective-
ly, we get the free energy

f dx y [a,(r)ly„l'+a2(r)(ly'„I'+ I@'„I')+X'(lay„/» I'+y'cos Olp„l )/2m*,

+A' (I8@„/» I
+ IB@„/» I +y cos HI1t„l +y cos Olg„l )/2m*

IqR y
' ~ ' I2+ ly yL

' & ' I2+ IqL yR
' 2& '

I2] (4)

This complicated free energy describes both La2 Ba„Cu04 and YBa2Cu307 & near T, . Here g &
and d

&
are the

Josephson coupling and the distance between neighboring layers of type 2 and B, awhile gz and d2 are the same quanti-
ties between neighboring type B layers.
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We sum the equations that minimize this free energy over all n, defining P=g„P„/&X, QL =g„f„/v'Ã, and

fz =g„g„/&X, where X is the number of layers considered. The symmetries of these equations allow P to be real and

PL
=fz. We obtain thus

A' (i} Q/Bx )/2m*, =[a,(T)+A y cos 8/2m*, +2zl, )p z},—(/Le ' +c.c. ),
iri (i} gi. /Bx )/2mz =[az(T)+iri y cos 8/2mz +z},+z)z]QL —i1,pe ' —z)zgLe

These equations are also the equations that minimize the effective functional

Jdx[a&(T)P +2az(T)~P +By cos 8$ /2mi +Ay cos 8~$~ /mz

+2il, ~p
—@exp(id, y sin8)~ +i)z~f —/*exp(idzy sin8)~ +A' (Bp/Bx) /2m

&
+Pi ~BQIBX~ /mz ],

where for convenience we have dropped the subscript L of g. This functional contains all of the physical information,
and it will be used extensively in what follows.

III. YBa2CU3O7

Let us begin the calculation of H, z by examining YBazCu307 s. Here the superconducting Cu(2) layers are the ones
associated with the subscript 2, the nonsuperconducting ones are associated with the subscript 1. We assume
az(T) =az(T T~)IT—, and a, (T)=a„where T~ is some phenomenological temperature, and a„az are positive con-
stants. Thus temperature dependence appears explicitly only in the coefficients associated with the Cu(2) layers. We
can rewrite the effective functional of Eq. (7) in terms of A. , =2il, /a z(a, +2i), ), A z

= i}zla z, as well as
l

&

=A &fi /m i (a&+Zz)&), lz =R /2mzaz and T„by using the rescaled order parameters P'=Pi)&/Ai and P'=azg, and
noting that Tr, /T, = 1+(z), /az ) —A, Then our effective functional becomes

Gdr= Jdx[2(TIT, —
1)~t'ai~ +2k, , ~Q /exp(—id, y sin8)~ +Az~g —g'exp(idzy sin8)~

+l, (y cos 8$ +(ay/ax) }+2l (y cos 8)@( + ~a&/&XI )],

where h„=2eHl„/A'c (n =1,2). These last two equations
have nonzero solutions only when

where we dropped the primes, for brevity. This is our
basic expression for the free energy of YBa2Cu307 &, and
all our subsequent work will be based on this. Note that
there appear only four parameters here: A, , [the Joseph-
son coupling between Cu(1) and Cu(2) layers], Az [the
Josephson coupling between neighboring Cu(2) layers],
and l, and lz [the phenomenological lengths associated
with the Cu(1) and Cu(2) layers]. These are parameters
that will be determined by fitting our H, 2 predictions to
the experimental data. The old parameters that had been
used before, such as m„*, are not physical observables, in
the sense that only their combinations that make up these
four new parameters can be determined from experiments
conducted in the Ginzburg-Landau regime. In the
remainder of this section we shall use the functional of
Eq. (8) in order to determine the upper critical field of
+BapCU307 Q using the techniques of Ref. 10.

Let us begin with finding the upper critical field H, 2

parallel to the c axis (8=0). In that case both g and P
may be taken to be real. So we get the equations of
motion

(13)1 —TIT, =hz+A, ,h, /(2ki+h, ) .

This is our exact result for H, 2. We note that in this ex-
pression T~ ~, if h, approaches —2k, from above.
Therefore H, z(T) has a horizontal asymptote at some
negative value of H, but it becomes a straight line with
negative slope as H ~ ~ ~ It must then have positive cur-
vature in between these two limits.

As H ~ ~, we see that this equation becomes

(14)1 T/Tc ~]+~

Therefore at large fields our H, z becomes a straight line
that intercepts the T axis at T=(1—

A, , }T,. This is pre-
cisely the behavior of H, z in the experiment of Ref. 4 (see
their Fig. 4). In fact, their H, z for H 0.5 Tesla is given
by' H, 2=173.1689—1.8919T, and the T, is 92.4375 K.
We can identify therefore l2 =13.725 A and k& =0.0098.
Our Fig. 1 shows the agreement between our fit and the
experimental data.

We can now proceed with finding H, 2 for an arbitrary
field orientation. We shall make use of the fact that the
functional of Eq. (8) should be zero at the transition from
the superconducting to the normal state. Indeed, we can
easily verify that the equations that minimize it make it

1 d QIBx =A. , (g P)+lb g+(T/'—1,—1)g, (9)

(TIT, —1+A, , +hz)40 ~140 &

(ui+h i )yo=2ziyo

l, B Q/Bx =2k, (P —P)+l,y P . (10)

The obvious solutions are g(x ) = /~exp( ex H/Ac ) and—
P(x ) = /~exp( ex H /Ac ), with—
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zero. The upper critical field can be obtained then by ex-
tremizing G,ff and setting its extremum equal to zero.
We use this result in a perturbative calculation that will
give us some intuition about H, 2.

If we set A
&

=A2=0 G ff is extremized when
g(x ) =foexp( —ex H cos8/iric ) and /=0. The upper
critical field is given then by 1 —T/T, =h2cos0. So, if we
assume that A,

&
and A,2 are small, we can get the correc-

tion to the H, 2 by evaluating G,ff for the above unper-
turbed functional forms of P and f, and setting the result
equal to 0.

We insert /=0 and 1l(x)=goexp( ex H—cos8/A'c)
into Eq. (8), and we set the resulting G,s equal to 0, ob-
taining thus

1 —T /Tc h 2cos0+ ~i +~2

—
A&exp[

—h2(d2/2l2) sin 8/cos8] .

(15)

A similar expression has been obtained in Ref. 20, in a
similar problem with only one order parameter. Clearly,
if we set H =0 in Eq. (15) we get TNT, . So the above re-
sult cannot be valid too close to T, . Indeed, setting 0=0
gives us Eq. (14), the large Hlimit of H-, 2. So Eq. (15)
should be valid for H )0.5 tesla.

Furthermore, it cannot be relied upon for angles very
close to 90', since the unperturbed P(x ) would be a con-
stant in that case. In fact, we know that for 0=90' the
solutions in similar problems are oscillatory Mathieu
functions, and therefore the transition from a confined
order parameter, such as the unperturbed choice above,
to one of infinite extent proceeds rapidly. Such a rapid
evolution would be rejected in a similarly rapid change
in H, z. Since an order parameter of increasing spatial ex-
tent implies one of decreasing energy, the approach of
0=90' would lead to a sharp increase in H, z,peaking at
0=90'. Symmetry about 0=90 then implies a cusp in
H, 2 at 0=90. The point where this cusp would become
noticeable can be ascertained from the exponent in Eq.
(15). It is zero at 9=0, and infinite at 8=90'. However,
the angular resolution in the experiment of Welp et al. is
about one degree. Thus, even for their highest field (5
Tesla), and 8=89', the exponent would be of the order of
0.025, very far from the 0=90 value of ~. In fact, this
exponent becomes 1 at 5 tesla only for 0=89.97. Such
fine experimental resolution is impossible. Clearly then,
the case 0=90' cannot be seen experimentally in
YBa2Cu3O7 & for fields as low as 5 tesla. Therefore all
angles are qualitatively similar to 0=0, since the ex-
ponent is so small. Thus, Eq. (15) is reliable for fields)0.5 tesla and practically for all angles, as long as A, , and
A, 2 are small.

We can obtain a better approximation to H, 2 variation-
ally. The perturbative argument above demonstrates that
the order parameters are not oscillatory for basically all
0. We shall then adopt the ansatz

y(x)=e i'" ~2 y(x)=be

where y and b are variational parameters. We calculate

6 ff using this ansatz. Setting the result equal to 0 will
give T, (H) as a function of b and y. Maximization of
T, (H) with respect to b and y will give the final varia-
tional approximation to T, (H) (or, equivalently, H, 2).

The evaluation of G,ff and the maximization with
respect to b can be performed analytically, giving T, (H)
as a function of y,

T/T, —1 = —
A. &+ A2(e / —1)—2gl z

+A e ' '/(A +gl ) (17)

where

g=y/4+e H cos 0/A e y (18)

T/T, —1=—
A, , +A,2(e I—1)—2gl~ . (20)

We now note that if Xi=f2=0, i.e., y=2eH cos8/iric,
then the exponent f appearing in Eq. (17) is really the
same as the exponent in Eq. (15), and therefore about
0.025 or less, for the range of fields in Refs. 4 and 5. We
expect thus the exponents in Eq. (17) to be small. So the
expression of Eq. (20) may be expanded to first order in f,
and then maximized. We obtain

and

y = (2eH /Ac )(cos 8+Azd z sin 8/2l2 )
'~

1 —T/T, =h2(cos 9+A,2d2sin 8/2l22)'~~+X& . (22)

This has the usual 0 dependence of the GL anisotropic
theory, and it is precisely of the form found experirnen-
tally in Ref. 5. Note that for 0=0 this reduces to Eq.
(14), which was found to be very reliable for H ~0.5 tes-
la, as emphasized earlier.

Equations (13) and (22) are the basic results of this pa-
per. It is these that we use to fit the data. It must be em-
phasized that, according to Eq. (22), at fields larger than
0.5 tesla, H, 2 is a straight line that intercepts the T axis at

f=d2sin 8e H /fi c y .

Maximization of the right-hand size (rhs) of Eq. (17) with
respect to y will yield the final result. When H =0, then
y=f =g =0 and T=T„as it should. When 9=0, then
Eq. (17) is maximized for y=2eH/Ac=2g. In that case
we obtain the exact result of Eq. (13). Therefore our vari-
ational result is very good for small angles. Since the per-
turbative arguments indicated that the case 0=89' is not
really that much different from the case 0=0, we expect
it to be equally reliable at all angles.

In the general case we have to maximize the expression
in Eq. (17) numerically, thus obtaining results that can be
compared with experiment. Given though the small
value of k, found earlier, we shall neglect the last term of
Eq. (17), which is of order A,f. We cannot do that very
near T„because there g=0, and that term becomes of
order k&. But we can do it when gl& ))I,&, i.e., at
sufticiently high fields. We shall show later that this
means H )0.5 tesla.

So, for sufficiently high fields



POSITIVE CURVATURE OF H IF H, q IN LAYERED SUPERCONNDUCTORS 6663

(1 —A, , )T„ for any 8. This a rees w'
~

g

y seen experim t lly i

In deta'detai1, the experimental data fora ata or the field direct~on
t 'g 'eayers can be fitted to

in teslas and temp t
1T, where the fiel d is measured

mperature in Kelvins.'m. Comparison with
gives k& =0.0096 i g

13 725 A Th 1e last unknown ara
db th"u' 'tu"""'T

1 da fo., =POP98, ~ =107 I =
a a, for the choice

2i =400 A
ere is very good a re

~ ~

h
' lfi dh de ata points. For

or =0.5 tesla, l
e

1

ee g, &&A,„ for fie
tesla, and thus the

r elds greater than 0.5

(22) were justified.
us e approximations mmade in obtaining Eq.

We have thus shown that the inclusi
th f d

the features of th
y pro uced predictio

e experimental data.
p

'
tions that explain all

percon ucting order a

0=
p

(12). Th i h hw y t e curvature dies
The region of linear H

'
s away so quickly.

perconducting order
ear, z is also the re igion of zero nonsu-

a y ic results of this section.

I I I II I

)
I I I II I I

i
I I I I

0.8—
NSC

V/////////8
SC

0.6 SC
l

~04

0.2

0 O. I 0.4 0.50.2 0.5

FIG. 2. Ratio of the nonsupercond ti
ucting order parameter f

uc ing to the supercon-
e er or small fields ar

h ~
re a-

SC layer and the d
ing or er parameter on th

e or er parameter induc
e

effect on the NSC layer.
in uced by the proximity

IV. La& „Ba CuOx u 4 —y

In thi s section we
La~ Ba CuO

calculate H, 2( T) in
a u 4 . No dc-ma net'gne ization measurem tements

6

e have been performed
h hll b

e on single cr stals

values of the paramet
no e able to determinine the numerical

me ers o our model.
n Laz „Ba CuO4 the4 ~, e superconductin
are those associated

g CuOz lay-

n d t' LO1
e wit the subscri

'
g a ayers are

e c ose this convention h
use in ec. III, becau

s ercond tin L 0 1

d Co 1

a ayers are follow

YB C 0
u z ayer. In the re

3 7 $ wo superconductin Cu 2
lowed by one nonsu

g u( ) layers are fol-

la
layer In thise nonsuperconducting Cu(1

u script 2 had been a
ayers, while here it w'

'
g ayers.

We assume therefore that a ( T =a

a &, az are positive constants. N
ot 1 t th L 0 1e a ayers here, since th
hey, will be responsible for an

' '
ah nsi e or any positive curvature that

We can rewrite the effective functional o . (7

—g2 8 I2 — 2

th 1 d dor er parameters '=a
a 0 T, =1+(221 /a )—

effective functional ba ecomes

0
88 89 90 9 I

T (K)

FIG. 1. Fitit of our model to the data o
A, = 1 07 l =400 A l = 13 725 A

G, —"dx I ( T/T —1)P +2k. i2

+x ~@
—@' ' """

~'

+1f [y cos 0$ +(BPIBx)

+2I', (y'cos'&[P['+ [~@/~x I' (23)

where we dropped the rie primes, for brevity Th'is is oui



6664 STAVROS THEODORAKIS AND ZLATKO TESANOVIC

1 T/T A
&
+2k) (25)

Therefore we predict that at large fields H, z becomes a
straight line that intercepts the T axis at ( 1 —2A, )T„
while it has positive curvature near T, . Furthermore, the
linear regime of H, z is precisely the regime where g/P
has become 0, i.e., the region where the proximity effect
we advocate has vanished, the order parameter on the
NSC layers having become zero.

We now proceed to examine the case of a general field
direction. A perturbative treatment similar to that of
Sec. III yields, for small A, , and A,

1 —T/T, = 2A, i+ h i cosO . (26)

This is obviously valid only at large fields, in which case
it agrees with the approximate limit for 0=0 [see Eq.
(25)].

We shall evaluate H, 2 more generally by using a varia-
tional method once again. We adopt the ansatz

2 x /2g(x) =be ~, P(x ) =e ~ ~ . This will be good only
if the order parameter remains confined. Therefore it will
not be good right at 0=90, but we hope that the region
where it breaks down is within at most one degree from
9=90. We evaluate the G,& of Eq. (23), using this an-
satz, and set G,s.=0. This equation gives T, (H), after
maximization with respect to b and y.

The evaluation of 6,& and the maximization with
respect to b can be performed analytically, giving T, (H)
as a function of y,
1 T/Tc 2A i+2gl

&

—2A e ' '/(A +k~+2gl —
A e )

where g and f are defined exactly as in Eqs. (18) and (19).
Minimization of the right-hand side with respect to y

basic expression for the free energy of La& Ba Cu04 y,
and all our subsequent work will be based on it.
Remember that P and P are the order parameters for the
NSC and SC layers, respectively. There appear again
four parameters only: A, , (the Josephson coupling be-
tween neighboring LaO and Cu02 layers), A, 2 (the Joseph-
son coupling between neighboring LaO layers), ii and l2
(the phenomenological lengths associated with the CuOz
and LaO layers). These are parameters that will be deter-
mined by fitting our H, 2 predictions to the experimental
data.

Let us begin by finding the upper critical field H, z
parallel to the c axis (9=0), in which case both g and P
are real. Using the techniques of Sec. III, we get the fol-
lowing exact result for H, z.

1 —T/T, =h, +2k. ,h2/(k, +h2),
where again h„=2eHl„/Pic (n =1,2). Note that T~ ao

as h2 approaches —
A, , from above. Thus H, 2(T) has a

horizontal asymptote at some negative H, and it becomes
a straight line with negative slope as H~~. Conse-
quently it must have positive curvature between these
two limits. Note that as H —+ ~, this equation becomes

yields the final answer. This can be done numerically.
We can, however, obtain analytic results in some limits.

For H =0, g =0, y =0, f=0, and T= T„as expected.
In La2= Ba,CuO~ ~, just as in YBa2Cu30, s, f is very
small (at most 0.012), and if A, , is as small as it seems to
be in the case of YBa2Cu307 &, then we may neglect the
last term of Eq. (27), at least for sufficiently high fields
(such that 2gl 2 ))k, ).

Then the maximization of the rhs of Eq. (27) leads
trivially to our final result,

1 —T/T, =2k, , +h, cosO . (28)

V. CONCLUSION

We have presented a physical picture based on a prox-
imity effect that gives rise to the generic positive curva-
ture observed in layered superconductors. Due to their
proximity with superconducting layers, nonsupercon-
ducting layers acquire a nonzero order parameter near
T„and a positive curvature appears. The curvature van-
ishes further away from T„when the order parameter on
the nonsuperconducting layers has become effectively
zero. In that regime of sufficiently high fields, H, 2( T) is a
straight line intersecting the T axis at the same point
below T, for all orientations of the field. We have been
mostly concerned with high-T, copper oxide supercon-
ductors and have found our predictions to be in very
good agreement with the experimental results of Ref. 4.
We find that the angular dependence of the linear part of
H, ~ is given by the CxL anisotropic form (cos 0
+csin 8)'~, where 8 is the angle between H and the c
axis. The anisotropy factor is almost zero for
La2 Ba Cu04 y

while it is 0.0325 for YBazCu307
We should note that a really thorough treatment of

YBa2CU307 Q
should have included the Ba0 and Y lay-

ers. However, we have obtained agreement with the data
even in the context of our "truncated" plane-chain mod-
el. Thus most of the curvature is presumably due to the
inclusion of the Cu(1) chains in the free energy, the other

This is precisely the same result as the one obtained per-
turbatively in Eq. (26).

We conclude then that H, ~(T) has positive curvature
in La2 Ba Cu04 y

as we11, but it becomes a straight
line at sufficiently high fields, intersecting the T axis
below T, . This intercept is the same for all field orienta-
tions. The angular dependence of the linear part of H, 2 is
once again of the GL form (cos 0+csin 0)', but the
anisotropy factor e here is of order X&, compared with an
anisotropy factor of 0.0325 in YBazCu307 &. Therefore
La2 Ba Cu04 y may be more anisotropic than
YBa2Cu307 &, if its A, , is comparable to the A,

&
of

YBa2Cu 307
If no other layers but CuOz layers contribute to the

conductivity, there will be no dynamicaly independent
order parameters on NSC layers. Even in this case, there
could be a small positive curvature in H, z due to some
slight inequivalence of the two Cu02 layers in the unit
cell (see Schneider, Ref. 15).
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NSC layers being less important. Of course, in
La2 „Ba Cu04 ~ the LaO layers are all important, since
there is no curvature if they are neglected. Our mecha-
nism is universal to all layered superconducting systems
that have NSC layers in the proximity of SC layers, and
is thus applicable to the low-T, layered superconductors.

An alternative mechanism has been proposed recent-
ly

' for the positive curvature in YBa2Cu307 &, in which
the curvature of H, 2( T) can be interpreted as evidence
for d-wave pairing or for a mixture of s and d wave pair-
ing. This work uses six fitting parameters, compared to
our four parameters, and it is applicable to high-T, su-
perconductors only, while our mechanism is generic to
all layered superconductors. The case of arbitrary field
orientation is not examined in Ref. 21. It would be in-
teresting to see if their interpretation agrees with the ex-
perimental results of Ref. 5. It would be also very in-
teresting if dc-magnetization measurements were per-
formed on La2 Ba Cu04 to determine the existence

of positive curvature there. If the LaO layers are
insignificant, then there will be none. Otherwise, H, 2 will
be again a straight line at sufFiciently high fields, that in-
tersects the T axis at about 0.98T„ for aO field orienta-
tions, assuming A, , -0.01.
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