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Experiments are reported which utilize third-sound waves on thin helium films to investigate the
propagation of classical waves on substrates which have been patterned with random disorder in
one dimension. The results are compared with predictions due to Condat and Kirkpatrick with the
conclusion that the system demonstrates classical wave localization.

I. INTRODUCTION

Wave propagation in disordered media has been of
considerable interest for many years. Although work has
focused primarily on electron systems,!? there has also
been recent work on the propagation of classical waves in
disordered systems.>”7 The interest in these systems is
easily understood, very few real physical systems approxi-
mate the perfect, ordered solid assumed by Bloch in his
theory of electron states, or by Debye, Brillouin, and oth-
ers in their study of phonons in perfect crystals.?®

In an effort to make progress in the understanding of
wave propagation in disordered media, we have
developed experiments which utilize the propagation of
waves known as third sound®'! in thin films of
superfluid helium adsorbed on substrates which are pat-
terned'>!3 so as to allow scattering of the third-sound
waves by arrays of scatterers. We have initiated our
efforts in the context of one-dimensional scatterers where
the effects of the disorder are strong; it is these one-
dimensional experiments for the case of random arrays
which are the subject of this paper. The basic techniques
of third sound we have employed and the application of
these techniques to periodic and quasiperiodic arrays of
scatterers have been described in a previous paper.!* We
begin in Sec. II with a discussion of waves in disordered
media. After a very brief review of the apparatus and
technique in Sec. ITI, we discuss and interpret the results
for the case of random arrays in Sec. IV.

II. WAVES IN DISORDERED MEDIA

Anderson'> was the first to suggest that deviations
gg

from perfect periodicity in a solid could fundamentally
alter the electron wave function. Prior to Anderson’s
work, it was thought that although electrons would
scatter from impurities in a lattice and thereby lose phase
coherence over length scales comparable to the mean free
path between collisions, they could still be described by
wave functions which extended over the entire sample as
Bloch wave functions do. Anderson showed that if the
disorder were strong enough, an electron wave function,
¥(r), would become “localized;” that is, it would not be
composed of extended states, but would instead have the
form
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where the localization length, &, describes the size of the
region about r, within which the electron is confined.

Anderson’s original model of localization considered a
periodic array of potential wells, with disorder intro-
duced by assigning random depth to the wells (within
some range of possible depths). The model contained one
dimensionless parameter W /I, where W described the
amount of disorder in the well depths, and I was the
overlap integral for neighboring sites. The key question
was whether the overlap of site wave functions was
strong enough to produce a coherent state which extend-
ed over the entire system. Although the model could not
be solved exactly, Anderson’s approach indicated that
there existed a critical value W, /I below which extended
states appeared. Thus, a metal-insulator transition was
predicted. Shortly after Anderson’s original paper, it was
rigorously shown'®17 that in one-dimensional (d =1) sys-
tems, electrons are always localized for any nonzero
amount of disorder, although the localization length
could become very long for weak disorder.'® In three di-
mensions it was confirmed that there did exist a metal-
insulator transition, termed the “mobility edge,” which
was described in terms of electron energy; electrons of en-
ergy less than a critical value were localized in a
sufficiently disordered potential.'®

Although much of the early work on localization was
done on electron systems, the phenomenon of localization
is a more general wave phenomenon, and many of the
fundamental theoretical ideas can be applied to systems
which obey the classical wave equation. This is due to
the similarity between the Schrodinger equation and the
classical wave equation. Classical waves are easier to
study than electrons in lower-dimensional (d =< 2) systems,
where localization effects are strongest, because the clas-
sical wave system can be of macroscopic dimensions. In
order to be an effective one-dimensional system, an elec-
tron system must have two dimensions that are small
compared to the electron wavelength (~1 ym at 100
mK); one-dimensional classical- wave localization has
been studied® in systems as long as 15 m. Furthermore,
electron systems are complicated by electron-electron

|(r)| ~exp , (1)
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and electron-phonon interactions.

One way to understand the phenomenon of classical
wave localization is to picture a pair of two-dimensional
(or three-dimensional) arrays of scattering sites (disks for
d =2 or spheres for d =3), one periodic and one disor-
dered. In the periodic array, a wave propagating from
one side of the array to the other can follow many paths
(scattering from site to site) through the array and arrive
coherently at the other side. In the disordered array, on
the other hand, in general, no two paths across the array
will be of equal length, and no coherent propagation of
the wave is possible. For the disordered array the only
scattering paths which result in phase coherence are

closed paths which start and end at the same location; .

scattering around a closed path in one direction is
coherent with scattering around the same path in the op-
posite direction. This coherence for closed disordered
paths is termed enhanced backscattering; the net effect is
that the wave can be confined to some region of space
which is characterized spatially by £. This enhanced
backscattering has been observed directly?® for photons
incident upon random arrays of polystyrene spheres in
qualitative agreement with a theoretical analysis by
Stephen.?!

In recent years, several significant advances have been
made in the theoretical understanding of classical wave
behavior in disordered systems. John, Sompolinsky, and
Stephen?>23 (JSS) have studied the theory of phonon lo-
calization using a field-theoretic approach first developed
by Wegner?* for electron systems. They concluded that
for systems of dimensionality d <2, all states are local-
ized, with a localization length which increases as the fre-
quency of the phonons decreases. For d >2, they found
that high-frequency phonons were localized, but that
there existed a transition frequency below which the pho-
non states were extended. In all cases, JSS found that
high-frequency phonons are localized more easily than
low-frequency phonons.

Kirkpatrick® used a self-consistent diagrammatic
technique, first developed by Vollhardt and Wolfe?S for
electron systems, to study the propagation of acoustic
waves in two- and three-dimensional random arrays of
hard scatterers. Although a different choice of boundary
conditions at the scatterers was used, Kirkpatrick con-
cluded, as did JSS, that for d =2, acoustic waves will al-
ways be localized, but that the localization length grows
exponentially for both high and low frequencies, with a
minimum value at some intermediate value of frequency
which corresponds approximately to a wavelength equal
to the radius, a of the scatterer (A~a). For d =3, he
found that extended states existed for very low and very
high frequencies, but that there might exist an intermedi-
ate range of frequencies, separated from the low-
frequency and high-frequency extended states by mobility
edges, where states were localized for high-scatter densi-
ties.

Condat and Kirkpatrick (CK) extended the work of
Kirkpatrick by studying the effects of various types of
scatter boundary conditions in one dimension?”?® and in
two and three dimensions.?>® CK find the most interest-
ing scattering behavior for systems with permeable
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scatterers, i.e., scatterers which the wave can penetrate.

In these systems, the scatterer cross section can be more
than five times the geometrical cross section, with peaks
in the cross section at various frequencies caused by reso-
nant scattering.’! In two dimensions, all modes are still
predicted to be localized, but the localization length is ex-
pected to be a complex function of frequency, being shor-
test for frequencies near scatter resonant frequencies. In
three dimensions, both localized and extended states are
predicted. The frequency ranges within which states are
localized are predicted to be complicated functions of
scatterer density and the sound speed in the scatterer rel-
ative to the sound speed in the background medium.>?

CK also predict resonant scattering effects for one-
dimensional permeable-scatterer systems.”® For d =1,
scatterer resonances correspond to an integer number of
half-wavelengths within the scatterer and lead to in-
creased transmission and a divergence in the localization
length at those frequencies. Such a system is shown
schematically in Fig. 1 and can be realized experimental-
ly by either layering slabs of two materials to form a
quasi-one-dimensional system in three dimensions or by
alternating strips on a planar surface to create a quasi-
one-dimensional system in two dimensions. In Fig. 1, C,
is the sound velocity in a scatterer, C; is the sound veloc-
ity in the intervening medium, and W is the width of each
scatterer. The difference in sound velocities is character-
ized by an index of refraction n =C,/C,, with n>1.
The scatterers are placed at random, with an average
spacing 1.

The full expression reported by Condat and Kirkpa-
trick® for the localization length £ in a one-dimensional
index-of-refraction scatter system is

C, C;

FIG. 1. Schematic representation of the substrate geometry
used in the calculations of Condat and Kirkpatrick (Refs. 27
and 28). The third-sound velocities C, and C, are, in general,
unequal.
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and where 7=wW /C, T is the averaging strip spacing, W is the strip width, n=wW /C,, and C is the renormalized

sound speed given by
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At low frequency (oW /C, 2 1), the localization length
can be simplified to

C,
oW

2

Elw)
7

4
[(Cc,/Cy*—17* "

~

(5)

Expression (5) will be relevant to the experimental results
we will describe in Sec. IV.

Thin films of superfluid helium represent a convenient
experimental system with which we may explore some of
the predictions of Condat and Kirkpatrick. Such films
support waves known as third sound* which are analo-
gous to tidal waves on the ocean. For third sound on a
smooth surface, C=(fd{p,)/p)'/* where f is the van
der Waals restoring force, {p,)/p is the effective
superfluid fraction in the film and d is the helium film
thickness. For thin helium films with film thickness
values in the range which will be relevant to our work,
the restoring force may be approximated by f~3ad A
where « is the van der Waals constant which character-
izes the helium-substrate interaction.

Cohen and Machta® considered a two-dimensional
third-sound scattering system consisting of a flat sub-
strate with a random distribution of particles resting on
it. A superfluid “He film coats both the substrate and the
particles. Some excess helium is capillary condensed
around the base of each particle, changing the velocity of
third sound near the particle; the amount of excess fluid
depends upon the film thickness far from the particle.*
Cohen and Machta find that for such a two-dimensional
system, third sound will be localized, with a frequency
dependence for the localization length of the form
&(w) =« exp(wy/w)?, where o, depends upon the strength
and density of scatterers. A preliminary experimental
system of this type was studied in this laboratory;*¢ how-
ever, the data preceded the theory and do not properly
address the subsequent theoretical prediction.

Other experimental systems have previously been used
to explore classical wave localization. Some of the earlier
work is that of Hodges and Woodhouse;® more recent
work is that of He and Maynard? and of Belzons and col-
laborators.*> The former two groups observed localized
modes in systems consisting of a taut steel wire with
masses attached at positions which deviated slightly from
a periodic spacing. Hodges and Woodhouse® placed

.

seven masses on an 80-cm wire which was rigidly
clamped at both ends; He and Maynard3 studied 50
masses on a 15-m length of wire which was driven at one
end and terminated anechoically at the other. Both ex-
periments were able to measure the vibrational amplitude
of the wire at any point along its length by placing the
wire in the gap of a horseshoe-shaped magnet and
measuring the induced voltage in the wire, thus allowing
the eigenstates of the system to be mapped in space. For
a periodic placement of the masses, both experiments
showed extended states grouped by frequency into pass
bands analogous to those seen in periodic electron sys-
tem. For a disordered arrangement of masses, both ex-
periments showed evidence for localized states. In the
case of the work of Belzons et al.** evidence is seen for
the localization of gravity waves in water in a one-
dimensional channel with a random rough bottom.

III. HELIUM FILMS
AND THE EXPERIMENTAL ENVIRONMENT

Capillary condensation of “He film on rough regions of
a substrate results’”*® in a third-sound velocity different
from that seen on a smooth substrate;.thus, a third-sound
substrate with smooth and rough regions constitutes a
system of permeable scatterers for which the index of re-
fraction n =C, /C, can, for appropriately chosen rough
regions, be varied by changing the helium film thickness.
If those scatterers are in the form of strips, as shown in
Fig. 1, a quasi-one dimensional system results which con-
stitutes an appropriate d=1 experimental system to test
the prediction of Eq. (5). We consider the superfluid “He
film to be a particularly good system to use for these
studies for several reasons. First, for temperatures low
enough, dissipation of third sound in the film can be very
low. This is important, because the observation of locali-
zation requires that the inelastic scattering length for the
sound mode be long compared to the localization length.
In the experimental system studied, it was found that for
T=1.35 K, attenuation of third sound was present but
was not large enough to mask localization effects. Silicon
substrates were prepared'* with random patterns ruled
according to a random number generator. To accom-
plish this, the smooth silicon substrate surfaces were in-
terrupted by straight channels scribed into the surface
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TABLE I. Channel-locations—first random array. Below is listing of the channel locations for the
first random array studied, scaled over a range of 0 <x <1, followed by the relative locations of the
bolometer strips. To convert these coordinates to actual positions with the array, multiply by 5 cm.

No. x No. X No. x No. x No. X
1 0.0012 21 0.1812 41 0.4682 61 0.6066 81 0.8367
2 0.0034 22 0.1892 42 0.4741 62 0.6077 82 0.8410
3 0.0039 23 0.2019 43 0.4754 63 0.6243 83 0.8523
4 0.0073 24 0.2096 44 0.4806 64 0.6422 84 0.8794
5 0.0095 25 0.2117 45 0.4807 65 0.6423 85 0.8909
6 0.0104 26 0.2215 46 0.4864 66 0.6612 86 0.8962
7 0.0216 27 0.2235 47 0.4929 67 0.6778 87 0.8966
8 0.0549 28 0.2750 48 0.5076 68 0.6811 88 0.9024
9 0.0558 29 0.2846 49 0.5172 69 0.7078 89 0.9042
10 0.0562 30 0.2921 50 0.5229 70 0.7261 90 0.9052
11 0.0588 31 0.3190 51 0.5332 71 0.7335 91 0.9376
12 0.0735 32 0.3260 52 0.5405 72 0.7455 92 0.9386
13 0.0770 33 0.3415 53 0.5415 73 0.7696 93 0.9527
14 0.1013 34 0.3753 54 0.5567 74 0.7877 94 0.9575
15 0.1082 35 0.4011 55 0.5801 75 0.7938 95 0.9578
16 0.1098 36 0.4016 56 0.5916 76 0.7959 96 0.9663
17 0.1250 37 0.4042 57 0.5930 77 0.7998 97 0.9742
18 0.1421 38 0.4134 58 0.5955 78 0.8079 98 0.9786
19 0.1501 39 0.4198 59 0.5977 79 0.8290 99 0.9833
20 0.1668 40 0.4300 60 0.6008 80 0.8365 100 0.9974
R4 0.2500 R3 0.4500 R2 0.5000 R1 0.9200

with a diamond tool such that 100 channels were distri-
buted over a 5-cm length of the substrate with average
spacing =500 um. The specific locations of the various
scribed channels for the random arrays we have studied

are given in Table I and II. Within the rough channels,
the third-sound velocity C, differs from that on the
smooth surface C,;. To obtain data on the propagation of
third sound in this system, both pulsed- and continuous-

TABLE II. Channel locations—second random array. Below is a listing of the channel locations for
the second array studied, scaled over a range 0 <x < 1, followed by the relative locations of the bolome-
ter strips. To convert these coordinates to actual positions within the array, multiply by 5 cm.

No. x No. X No. X No. x No. x
1 0.0080 21 0.2101 41 0.4158 61 0.5670 81 0.8484
2 0.0118 22 0.2207 42 0.4180 62 0.5701 82 0.8589
3 0.0124 23 0.2222 43 0.4251 63 0.5922 83 0.8640
4 0.0136 24 0.2316 44 0.4324 64 0.6087 84 0.8683
5 0.0328 25 0.2591 45 0.4579 65 0.6090 85 0.8780
6 0.0411 26 0.2604 46 0.4685 66 0.6164 86 0.8789
7 0.0601 27 0.2667 47 0.4699 67 0.6237 87 0.8791
8 0.0727 28 0.2698 48 0.4730 68 0.6421 88 0.8803
9 0.0827 29 0.2908 49 0.4782 69 0.6975 89 0.8897
10 0.1008 30 0.3095 50 0.5136 70 0.7201 90 0.8949
11 0.1010 31 0.3143 51 0.5263 71 0.7208 91 0.9073
12 0.1022 32 0.3162 52 0.5327 72 0.7341 92 0.9374
13 0.1105 33 0.3196 53 0.5360 73 0.7466 93 0.9456
14 0.1278 34 0.3213 54 0.5372 74 0.7550 94 0.9503
15 0.1319 35 0.3226 55 0.5375 75 0.7598 95 0.9506
16 0.1366 36 0.3259 56 0.5475 76 0.7869 96 0.9599
17 0.1536 37 0.3706 57 0.5485 77 0.7872 97 0.9604
18 0.1694 38 0.3748 58 0.5508 78 0.8229 98 0.9648
19 0.1963 39 0.3927 59 0.5512 79 0.8415 99 0.9733
20 0.2084 40 0.4138 60 0.5513 80 0.8473 100 0.9819
R4 0.2500 R3 0.4500 R2 0.5000 R1 0.9200
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wave third-sound techniques were used. Third sound was
generated and detected through the use of Al strips eva-
porated directly on the silicon surface between selected
channels. The notation for designating the drive and
detector will be “ARm-Rn,” where “m” designates the
driver and “n” designates the detector. A more detailed
discussion of the experimental techniques has been
presented previously.!*

IV. RESULTS AND DISCUSSION

The data presented here were taken on a random array
R shown schematically in Fig. 2 by driving with a con-
tinuous sine wave at 723 and detecting with either 722 or
R4 using the electronics described previously.!* The
third-sound elements denoted /21-3R4 are enumerated
from left to right as seen in Fig. 2.

The R3-R2 spacing was 5I, or five times the lattice
spacing, whereas the %23-724 spacing was 20l. The third-
sound amplitude as a function of frequency was measured
by sweeping the drive frequency over a broad range, typi-
cally from ~ 10 Hz to 50 kHz. Because the third-sound
drive is thermal, the third-sound frequency excited is
twice the applied sine-wave frequency. All frequencies
reported in this work are third-sound frequencies. All of
the third-sound amplitudes are in arbitrary units since
the third-sound detector sensitivities could not be well
known for all of the coverages, temperatures, and
changes of substrates encountered in the course of this
work.

Figure 3 shows the received third-sound amplitude at
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FIG. 2. Schematic representation of a random array of
scribed channels in silicon. Each array used in this work con-
tained 100 parallel channels; only 20 are schematically shown
here for clarity. The channels and Al detectors shown orthogo-
nal to the arrays were present to allow measurement of the
third-sound velocity on smooth Si and to measure the reflection
of third sound from a single scratch (Refs. 14 and 42).

JR2, in arbitrary units for each data set, as a function of
third-sound frequency for a drive at 23. The data were
taken at the same 12 values of film thickness® at which a
periodic array was studied.!* The random array frequen-
cy values can be divided by the C; (the third-sound veloc-

CS-417O cm/s 2450 cm/s Cs=1300 cm/s
ds1=4.0 M dsi=6.2 dsi=9.9
Cs=3180 cm/s s=2290 cm/s Cs=1020 cm/s
o dsi=5.1 dsi=6.6 dsi=11.8
= Wi
B _
= =2930 Cm/s Cs=1950 cm/s Cs=820 cm/s
g «=5.4 dsi=7.4 ds=13.6
<
Cs=2560 cm/s Cs=1790 cm/s Cs=650 cm/s
MWLN dsi=6.0 dsi=7.9 dsi=16.0
si—
0 40 80 120 60 10 20 30 40
f (kHz) f (IcHz) f (kHz)

FIG. 3. Received third-sound amplitude (in arbitrary units for each subfigure) as a function of the third-sound frequency for
several values of the helium film thickness. Each value of the film thickness has associated with it a different value of the (smooth sil-
icon) third-sound velocity.
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Amplitude

Amplitude

1 4 I L 1

0 5 10 15 20 25 30

f/Cs (em™')

FIG. 4. Received third-sound signal as a function of wave
number for the case of (a) a random array and (b) a periodic ar-
ray (Ref. 14). In each case shown here, the separation between
the driver and the detector was 5.
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FIG. 5. Detected amplitude (in arbitrary units) at 74 for a
drive at 23 as a function of wave number for four values of the
film thickness. The dashed lines indicate zero-detected ampli-
tude.

ity on the smooth silicon between the channels) to facili-
tate comparison of data taken at different coverages; this
is shown for four coverages in Fig. 4(a). In comparing
Fig. 4(a) to the periodic array data in Fig. 4(b), which was
taken at the same coverages and over the same driver-
detector separation, two differences are clear. First, the
random array data do not show any of the band structure
seen on the periodic array, not surprising in view of the

TABLE III. Parameters relevant to the analysis of third sound on the 7 array. Second column,
third-sound velocity from time-of-flight measurements; third column, distance between driver and
detector in units of / =500 um; fourth column, scaling frequency determined from the fit to I(w); fifth
column, the ratio of @s to @y; sixth column, ¥y =(C,/W®,,)*/m, using C, and &,, from the second and
fourth columns; and in the seventh column, n,=(2y'?+1)'/? calculated from the values of ¥ in the

sixth column.

d, C, By /27
(layers) (cm/sec) () (kHz) @5/ @ 1% n,
6.0 2529 5 13.9 1.9 65 4.1
20 7.4 58 4.0
7.4 1945 5 10.3 1.9 71 4.2
20 5.3 67 4.2
11.8 994 5 5.6 2.1 62 4.1
20 2.7 67 42
16.0 646 5 3.4 1.9 71 4.2
20 1.8 64 4.1
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lack of periodicity. Second, and more significant, is the
fact that although the response of the random system is
comparable to the periodic system at low frequency, the
random system exhibits little or no third-sound propaga-
tion for values of f/C, greater than ~ 10 cm ™!, whereas
third-sound propagates easily to f/C,~25 cm ™2 on the
periodic array.

It is immediately clear that this high-frequency behav-
ior on the random system is at least qualitatively in agree-
ment with localization predictions; the localization length
& is predicted to decrease with increasing frequency as
&« 1/w* For increasing frequency if £ changes from be-
ing longer than the driver-detector separation to being
less than that separation, a significant drop in detected
amplitude will be observed at higher frequencies. We will
return to a more quantitative discussion of this point
shortly.

Figure 5 illustrates the received third-sound amplitude

Amplitude

Amplitude

FIG. 6. Expanded view of the low-frequency data for the
case of (a) #3-R2 and (b) R3-R4 driver-detector pairs. The

dashed baselines are the zero-detected amplitude level.
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at 774 as a function of the third-sound wave vector for a
third-sound drive at 523; the driver-detector separation is
20I. The #3-72 and R3-R4 low-frequency data from
Figs. 4(a) and 5, respectively, are shown in Figs. 6(a) and
6(b). Careful comparison of low-frequency data from the
periodic'* and random systems shows that there are some
modes common both both systems, but that there are also
differences between the data from the two arrays even at
very low frequencies. We believe that these low-
frequency modes have their origin in the geometry of the
substrates; they are drumlike modes of third sound in the
entire substrate.

Because the array has only 100 scatterers, there was
some concern that effects seen on the random array were
particular to that specific arrangement of scatterers and
not general properties of random arrays. Thus, a second
random array was made by generating a second set of
random positions with the constraint that the number of
scatterers between each pair of strips be the same as on
the periodic array. A second periodic array was made at
the same time. Frequency sweeps of 23-72 from this
new periodic array and #23-722 from the new random ar-
ray for T=1.35 K are shown in Fig. 7 for two represen-
tative helium film coverages. Although the specific mode
structure on the second random array is quite different

dsi=5.7
Periodic

Amplitude

Random

dsi=7.3
Periodic

Amplitude

Random

0 5 10 15 20 25 30

£/Cs (em™’)

FIG. 7. Comparison of the detected amplitude (arbitrary
units) for the case of periodic and random arrays for two values
of the film thickness. The driver-detector pairs here were
P3-P2 and R3-R2.
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FIG. 8. Comparison of the detected amplitude (arbitrary
units) for the case of two different driver-detector separations at
two values of the film thickness. For the separation 5 the pairs
were P3-P2 and R3-R2; for 20I the pairs were P3-P4 and
R3-R4.
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from that shown in Fig. 4 for the first random array, as
would be expected for a different random arrangement of
scatterers, the basic behavior is very similar; at higher
coverages, there is anomalously high attenuation of
high-frequency- third sound. The fact that the gaps in
periodic band structure seen on the second periodic array
are larger than those seen on the first periodic array at
comparable film thicknesses is consistent with optical
measurements of the new channels which indicate that
their widths (=~38 pm) are roughly twice the width of the
channels on the first arrays studied.'*

Figure 8 shows the difference in response between the
periodic and random systems for the first set of arrays at
a helium film thickness of 7.4 layers; Fig. 8(a) compares
periodic and random data for a driver-detector separa-
tion of 51, while Fig. 8(b) does the same for a separation
of 20/. A key difference between the periodic and ran-
dom systems for both sets of arrays is the lack of high-
frequency modes seen_on the random array. (As men-
tioned earlier for the 5/ spacing, for example, the periodic
array shows strong transmission for values of f/C; up to
almost 25 cm ™! (for frequencies within bands), whereas
the random array shows almost no transmission for
f/C,=10 cm~!. The theory of classical wave localiza-
tion presented earlier predicts just such an effect; the lo-
calization length £ depends on frequency as £ x w2 [Eq.
(5)], implying that as the frequency is raised in an experi-
ment, a drop in detected amplitude should be seen when
& goes from being longer than the driver-detector spacing
to being shorter than that spacing.)

In order to compare the data from the random array to
the theoretical prediction, Eq. (5), the following analysis
was performed.13 First, we make the assumption that the
third-sound amplitude, a distance ml from the driver,
A, (), scales with a single, m-dependent frequency
o, (d),ie., 4, (0)=g(w/®,,). It then follows that

Im(w)=fo“’Am(w)dmzamG(w/mm) ,

such that I,,(w)/®@,, is a universal function of w /@,,. A
value for @,, can then be extracted from the integrated
data by fitting it to an exponential function, Iz(w). We

m=20 _————== .
st 7 m=s == T m=s 7 m=5 =¥
© /s m=5 P Y S— z 2
sl m=20 m=20 o
Eg 4 #~ m=20 // e 9,_!?
o @
s d=6.0 / d=7.4 / d=11.8 d=16.0
:
o 1 1 1 1 1 1 1 1 1 o
0 20 40 10 20 30 4 10 20 5 10 15
f (kHz) f (kHz) f (kHz) f (kHz)

FIG. 9. Integral of the #3-R2 (m =5) and R3-R4 (m =20) data (in arbitrary but relative units) at several values of the helium
film thickness. The dashed lines are fits to the integrals using the functional form for I given in the text.
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have chosen the convenient form
Iy(0)=B,,[1—explw/®,)],

and obtained @, for m =5 (#23-%22) and m =20 (R3-R4)
at several values of the helium film thickness. If Eq. (5)
holds for this system, then the observed values for @,
should scale as @,, < 1/V'm.

One small correction needed to be applied to each data
set before the above analysis could be carried out. The
exponential function used to fit the integrated data as-
sumes that the detected third-sound amplitude drops to
zero for w large, so that the integral will level off at a
fixed value B,,. In fact, because of small background
noise levels and dc offsets in instrumentation (and in
some cases vapor sound resonances*° at high frequency),
the highest-frequency data do not always have an average
amplitude of zero and the integral asymptotes to a
straight line whose slope is typically not quite zero. To
overcome this, a fit is made to the expression

I,=B,[1—explow/®,)]+C,o

instead of I(w) and the linear term is subtracted from
the integrated data so that the integral does approach a
fixed value of B,, for large w.

Figure 9 shows the resulting integrated data for m =5
and 20 at four values of film thickness along with fits to

Ip(w0)=B,[1—explw/®,)] .

In each of the cases shown the relative amplitudes among
the various figures are arbitrary. Table IIT shows the
values of @,, obtained from these fits. Note that the

1.2 —
1.0
0.8 -
3
}/ 0.6 +
8
0.4 +
0.2 1
OO 1 1 1 1
0 1 2 3 4 5
w/wm

FIG. 10. Data from Fig. 9 which show the universal behavior
of the random system. Amplitudes have been normalized with
the values of B,, obtained from fits to each integral and the fre-
quencies have been scaled by the values of @, obtained from
those same fits.
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values for @,, are consistent with 1/V'm scaling; that is
Bs/B,,~=V'20/5=2. If @, is taken to be the frequency
for which &(&,,)=ml, then Eq. (5) can be used to esti-
mate the value of n at each coverage as follows:

(a)

o
(04]
Q
Q
—~~
Q
L

o o
» )]
.

. .

Transmitted Amplitude
o :

b
e B

o o
> [e)]
T T

Transmitted Amplitude
o

5 10 15 20 25 30
5/Cs (em™7)

FIG. 11. Comparison of (a) detected third-sound amplitude
for the case of m =20 for a film thickness of 7.4 layers and (b) a
simulation of the transmitted amplitude with attenuation and
site disorder taken into account in the calculation. For the
simulation the attenuation was of the form exp % with
8=2.,5X10°/s. The site disorder was of the form n =3.5+ An,
with An picked at random from the range —1=<An =1.

o
o

o
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The parameter y =(C, /®,, W)*/m is given in the sixth
column of Table III for each set of data analyzed, and an
index n,, is calculated using ¥ =(n}, —1)*/4, as shown in
the last column. Values for the index calculated in this
way are slightly higher than those obtained from detailed
studies of the band structure of third sound on substrates
patterned with periodic arrays,'* but not substantially so.
Values for y are slightly lower for d; =6.0 layers than
for the other coverages in Table III, in qualitative agree-
ment with the band-structure results,'* although at 6.0
layers n,~4.0 is significantly higher than the value for
the index determined from the periodic band structure.

The data I,, (o) from Fig. 9 can be scaled by normaliz-
ing the amplitude with the fit values B,, (I, =1,, /B,,), so
that the integrated data all asymptote to 1.0 for high fre-
quencies, and the frequency can be scaled by @,,. Figure
10 shows the data from all eight curves in Fig. 9 with the
scaling; it is clear that I} () is indeed a universal func-
tion of 0 /®,,.

Because both a separate study of smooth silicon
wafers!# and a simulation of the periodic system indicated
that there is some frequency-dependent third-sound at-
tenuation present in these systems, it is important to ad-
dress the issue of whether this attenuation could be re-
sponsible for he general frequency response observed on
the random ar\r/% and, in particular, the observed scaling
of @, as 1/Vm. The first observation which argues
against attenuation being a significant factor in the
analysis is a simple comparison of the data from the ran-
dom and periodic arrays, as shown in Figs. 8(a) and 8(b).
Attenuation effects (and variations in » among the strips)
are common to both the periodic and random systems,
yet many more high-frequency modes extend from driver
to detector on the periodic array than on the random ar-
ray. That is, although there is a decay in amplitude with
increasing frequency in both systems, the characteristic
frequency of that decay in the periodic system is much
higher than that in the random system. The only
difference between those systems is the positional disor-
der in the scatterer locations deliberately introduced on
the random substrate.

A more quantitative argument against attenuation seri-
ously affecting the conclusion that the random system ex-
hibits localization comes from simulations*! of the ran-
dom array. In analysis of periodic array data,'* it was
found that an overall decay in amplitude with increasing
frequency was consistent with a frequency-dependent at-

. ) ..
tenuation of the form exp " for transmission through

an m-channel array. As an example, in Fig. 11 we illus-
trate for the case of a d =7.4 layer helium film a simula-
tion (analogous to simulations carried out earlier'* for
periodic arrays) of a 20-channel random array, using the
same values of attenuation (8,,=2.5X 10°), site disorder
(—1=An =1), average index of refraction (3.5), and C;
(2000 cm/s) as were used in the periodic array analysis'
for the d =7.4 layer case. Data from the random array
for m =20 and C; =~2000 cm/s is also shown (the d =7.4
layer data from Fig. 5); the simulation and data are in
good qualitative agreement.

It should be pointed out that the attenuation used in
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FIG. 12. Simulation of the transmitted amplitude through a
20-element random array of the case of site disorder and strong
attenuation. Attenuation was of the form exp %¢ with
8=3.4X10%s. The site disorder was of the form n =3.5+ An,
with An picked at random from the range —1<An <1.

the simulations cannot, by itself, explain the sharp drop
in the response of the random system at higher frequen-
cies. The characteristic frequencies of the attenuation
(the frequencies at which the amplitude has dropped to
1/e of its dc value) are 200 kHz for m =5 and 40 kHz for
m =20. By comparison, Table II shows that for d =7.4
layers (C;~2000 cm/s), the random array data has
characteristic frequencies of @s;/27=10.3 kHz and
@y0/2m=5.3 kHz. If 5.3 kHz (§=3.3X10%/s) is used as
the characteristic attenuation frequency in a 20-scatterer
random array simulation,*! the result, shown in Fig. 12,
looks nothing like the random array data. Referring
back to the data of Fig. 3, it is seen that the random data
have many sharp, jagged features including minima, even
at low frequency, where the amplitude goes to zero.
These minima are the result of interference from waves
scattered from many sites, and the introduction of at-
tenuation strong enough to account for the @ seen on the
random array completely destroys this “ragged” appear-
ance in simulations. Consequently, although there clear-
ly is attentuation present in this system, it alone cannot
explain our observations, and thus it does not affect the
basic conclusion that this random system does, in fact,
demonstrate classical wave localization.

V. SUMMARY

Third-sound propagation has been studied on disor-
dered substrates in one dimension. Good experimental
agreement is found between the data for substrates ruled
with random disorder and the theory of Condat and
Kirkpatrick for the function form of the localization
length for a one-dimensional system of scatterers. Thus,
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we conclude that classical wave localization is observed
as expected in this system.
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