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The local, direction resolved density of states in the vortex state of clean type-II superconductors
is calculated for arbitrary energies and inductions. It is obtained by solving numerically the quasi-
classical equations of superconductivity, using parameters corresponding to Nb or V. The excita-
tion spectrum is discussed for arbitrary inductions and, for the special case of large vortex distance,
compared with previous theories. Tunneling states of quasiparticles are calculated explicitly for the
first time and a shift of continuum states to energies higher than discs is found. Some conclusions
specific to the important materials Nb and V are drawn. The energy dependence of the local density
of states near the vortex axis is found to be in qualitative agreement with recent scanning-
tunneling-microscope measurements.

I. INTRODUCTION

Up to now the electronic density of states of a clean
type-II superconductor in the mixed state has been calcu-
lated only in a few limiting cases. These include the limit
of large flux-line distance (isolated flux line) where two
different energy ranges have been investigated. First, the
range of energies' much smaller than the Meissner-
state order parameter, E ((

~ gi,cs ~, and, second, the
range of the continuum states, E ) ~QBcs~. In all these
papers' either independent or nearly independent Aux

lines have been considered. Interacting Aux lines have
only been treated ' for applied fields close to the upper
critical field H, 2. We should also mention that the use of
not self-consistently determined "potentials" (order pa-
rameter and vector potential is a common feature of all
previous theories.

The previously mentioned work led to considerable
theoretical insight in several important limiting cases
(some comments on the experimental situation will be
given at the end of this paper). Nevertheless, a theoreti-
cal description of the density of states of the vortex state
of clean type-II superconductors for the most part is still
missing. In particular, one of the yet unanswered ques-
tions is to what extent results of independent Aux-line
theories may be applied to the low-field region of actually
existing clean type-II superconductors like Nb and V. In
these low-~ materials, as is well known, the maximal
Aux-line distance is limited by vortex attraction. The
phenomenon of vortex attraction" has recently been
reconsidered in a number of experimental' ' and
theoretical papers. '

In the present paper some results of a self-consistent
calculation of the density of states for arbitrary energy
and Aux-line distance are reported. More precisely, we
address ourselves to the quantity N (E,k, r) which is the
local, direction-dependent tunneling density of states for
quasiparticle excitations of energy E and direction k (k is
a unit vector) at point r. For simplicity, we will frequent-
ly refer to this quantity as "density of states" in what fol-
lows. From N(E, k, r) one can obtain the local density of

states N (E,r ) and the total density of states N ( E) by
averaging with respect to all directions k and space
points r. However, in this work we restrict ourselves al-
most exclusively to a discussion of the basic quantity
N(E, k, r).

A measurable quantity is the direction-dependent tun-
neling conductance cr( V, k, r) which is defined as the con-
volution of N(E, k, r) and the derivative of the Fermi dis-
tribution function. Recently, a weighted average (with
respect to k) of o(V, k, r) has been observed in a
scanning-tunneling-microscope experiment. ' Such mea-
surements yield, for the first time, information on the lo-
cal density of states of a superconductor in the mixed
state.

The density of states will be calculated by means of the
Green's-function formalism, which is equivalent to the
Bogoliubov method in the clean limit. In Sec. II we re-
call the quasiclassical, or Eilenberger equations' and dis-
cuss the numerical methods used to obtain a vortex lat-
tice solution of these equations. Readers only interested
in results may skip this section except for the parts of it
referring to the notation.

Section III contains a discussion of the numerical re-
sults. We first consider the case of an isolated Aux line
where the present data may be compared with previous
theoretical results. ' A detailed comparison to the ap-
proximate Green's-function solution of Kramer and
Pesch for the low-lying energy levels is reported in the
Appendix. For fini'te Aux-line distance the sharp energy
levels (bound states) found for the isolated vortex become
energy bands of finite width, and the wave functions of
the excitations in neighboring Wigner-Seitz (WS) cells be-
gin to overlap. The latter effect implies tunneling of
quasiparticles through the vortex lattice. ' In addition,
we find situations where no scattering states exist in a
finite-energy interval above ~QBcs~. In all calculations
Ginzburg-Landau (GL) parameters tr corresponding to
clean Nb or V have been chosen. This allows us to
answer the previously raised question concerning these
materials. On the other hand, the general features of the
computed energy spectrum will not depend on this par-
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In Ref. 14 the quasiclassical equations of superconduc-
tivity have been solved, without approximations, on
a hexagonal vortex lattice. The quasiclassical equations
or Eilenberger equations consist of the transportlike
differential equations

[ iz+—k[V —ia(r)]]f (z, k, r) =P(r)g (z, k, r),
[ iz —k[—V+ia(r)][f+(z, k, r)=g*(r)g(z, k, r),
2kVg (z, k, r) =g*(r)f (z, k, r) —P(r)f +(z, k, r),
g = ( 1 ff +

) '~,—Imz Reg & 0,

(2)

(4)

for the Green's functions f,f+,g and the self-consistency
conditions (see, e.g. , Ref. 14) for the potentials. The no-
tation and system of units of Ref. 14 is used throughout
the present paper.

We want to calculate the local, k-dependent density of
states, defined by

N(E, k, r) =Reg (z, k, r), z =E+i5 .

Here, 5 is a positive infinitesimal quantity. Therefore, in
contrast to previous work, ' where the quasiclassical
equations have been solved for purely imaginary values of
z, z =ice& (co& Matsubara frequencies) the present task re-
quires a solution of Eqs. (1)—(4) for real values of z.
There are two possible ways of proceeding. N could be
obtained either by analytical continuation of the Green's
functions results found in Ref. 14 or by using only the
previously obtained potentials g, a and solving Eqs.
(1)—(4) for imaginary z. The latter strategy employed
previously by Watts-Tobin et al. in their dirty limit cal-
culations was also chosen in the present work and
turned out to be successful.

The density of states defined earlier in terms of a
quasiclassical Green's function may be obtained from the
spectral weight function of Gorkov's theory ' by integrat-
ing the latter with respect to /=A'vF(k —kF). For the
homogeneous superconducting state one obtains from
Eqs. (1)—(4) the well-known result

««' —
I @BCSI )' E +

I OBCSI
N(E, k, r)= '0 (5)

In the next section the drastic deviations from Eq. (5)
caused by the presence of Aux lines will be discussed.

In this paper as well as in Ref. 14 the symmetry rela-
tions of the quasiclassical variables are extensively used
in order to simplify calculations and save computer time.
As can easily be shown, the relations found in Ref. 14 for
real iz ( —iz =c—oi in Ref. 14) remain valid for arbitrary
complex-valued —iz if in all complex conjugate variables
the argument iz is replac—ed by (

—iz)*.

ticular choice of ~.
In the final section, Sec. IV, the results are summarized

and some brief comments on the experimental situation
are given. The recent scanning-tunneling-microscope
measurements' of the local density of states near an iso-
lated Aux line are discussed in the light of the present nu-
merical data.

II. METHOD OF SOLUTION

The symmetry relations may be used to reveal some
general features of the expected results. We introduce
the spatial variables r~~ and r~ frequently used in vortex
problems. These are the coordinates' of a point mea-
sured with respect to unit vectors parallel and perpendic-
ular to the considered direction k. The quasiparticle
direction k will be denoted by k=(cosO, k), where
m/2 —0 is the angle between k and the magnetic field
B=8 (x,y)e„and the unit vector k is parallel to the pro-
jection of k onto the xy plane.

First we note that the general result that a finite den-
sity of states implies a discontinuity of Reg(E+i5) at
5=0, is, in the present context, a consequence of the sym-
metry properties' of the Green's function g. Considera-
tion of the transport equations shows that essentially two
different possibilities exist for the behavior of f,f+,g at
5=0: (i) f,f+,g are continuous at 5=0. This implies
Reg =0 and f =f+* and (ii) f,f +,g have a discontinui-
ty of the kind g(0+)= —g(0 ) at 5=0. This implies
Img =0 and f = f+*. —

Depending on the possibility chosen, the normal
Green's function g is either given by g =(1—

~f~ )'
~ f~ ) 1 [in case (i)], or by g =(1+

~f ~

)' [in case (ii)]. If
we assume f and g to be continuous functions of the vari-
able r~~, there can be no "mixing" of possibilities (i) and
(ii) for a fixed value of ri. The numerical results for small
6 show in fact, that, for each particular value of r~, either
Reg =0, Img&0, or Reg&0, Img =0.

Consideration of the well-known local solutions of the
transport equations gives some further information on
the results for small cosO. We introduce the minimal and
maximal values of the order parameter modulus,

~qmm( )~ q( 0)~

and

"
r~ =max r~, r~~

for a given value of ri (and k). Then, for small cos0,
one expects Reg (E, r~~, ri ) =0 for all ri fulfilling

(scattering solutions). These features are again in agree-
ment with the numerical results. On the other hand, for

11'-'"(r, )I &E & y '"(r, )~

the local solutions become meaningless, since they imply
a mixing of possibilities (i) and (ii). Finally, combining
the above "nonmixing condition" with symmetry proper-
ties one concludes that Reg&0 for E =0, ri =0 and arbi-
trary values of k. Thus, at E =0 single-particle excita-
tions of any direction exist at the vortex center. This
completes our listing of general features of the expected
results.

Two different methods of solving Eqs. (1)—(4) for imag-
inary z have been used alternatively in Ref. 14, the "ex-
plosion method, " and the "symmetry method. " It turns
out that both of these methods may still be applied, after
appropriate modifications, to the present problem. This
is to be expected for the symmetry method which rests
entirely on properties independent of z but is not so clear
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for the explosion method.
The characteristic length for the spatial variation of

the Careen's functions is the coherence length, or explo-
sion length gG defined in Ref. 14. If z changes from
imaginary to real values, gG becomes a complex-valued
quantity and the following two modifications in the be-
havior of the Green's functions occur: First, the explo-
sion becomes "slower, " i.e., the actual explosion length
increases. Second, the numerical solutions show rather
strong spatial oscillations in addition to the exponentially
increasing behavior which is the dominating one for
imaginary z. Nevertheless the explosion method may still
be used successfully. However, the range of parameters
k, E, where it can be applied, becomes strongly reduced
and the oscillating behavior of the Green's functions
leads to additional complications in the numerical calcu-
lations. Solving the transport equations for real energies
requires, generally, a much larger numerical eA'ort as
compared to the previous case of imaginary energies.
This is due to the sharp structures which occur in the
density of states (see the next section), in particular in the
low-energy range. In this paper we restrict ourselves to a
discussion of the local, k-dependent density of states. A
calculation of densities of states averaged with respect to
r and k will be a subject of future research.

III. RESULTS AND DISCUSSION

The following notation will be used in this'section. For
the greater part of the discussion following it will be con-
venient to represent the density of states in terms of the
spatial variables (Ref. 14) r~~ and ri. For computational
reasons only "rational" values of k, defined by

k„=(nr, +mr2)/~nr, +m r2~

will be used (n, m are integers, r, and r2 are the elementa-
ry translations of the hexagonal vortex lattice' ). Thus
the density of states will be written as

X(E,k, r)=N(E, cos&,k„,r) .

In addition to these parameters, it depends on reduced
temperature t = T/T„Ginzburg-Landau parameter of
the clean material ~, and equilibrium Aux-line distance d
[or macroscopic induction B =4~/(d &3)]. The latter
set of parameters enters the transport equations implicit-
ly via the self-consistent potentials itj, a, which were com-
puted in a previous work. '

The parameters and potentials used in this paper corre-
spond to actually existing clean type-II superconductors
like Nb (v=0. 72) and V (I~=0.8). In the following dis-
cussion emphasis is placed on the region of large (or in-
termediate) fiux-line distance and low energy where the
density of states shows its most abrupt spatial variations.

Let us first consider the bound states occurring in the
energy range E (~QBcs~. A typical numerical result is
shown in Fig. 1. (In all figures showing the spatial varia-
tion of N only one Wigner-Seitz cell is displayed. To
make the latter visible it has been elevated relative to the
physically meaningless region outside it. The zero point
of N is where the perpendicular axis cuts the plane of the
WS cell. ) One finds that X considered as a function of
x,y vanishes everywhere except on a straight line
y =const=. y (E). This straight line, being parallel to the
projection of the specified direction k onto the x,y plane,
may be considered as the projected spatial region accessi-
ble to a quasiparticle of energy E (measured with respect
to the Fermi energy) and momentum iiikFk. It will fre-
quently be referred to as "quasiparticle path" in what fol-
lows. The bounded motion of the quasiparticles may be
considered as a consequence of Andreev reflection at the
order-parameter potential wall. Along the line y =y (E),
N has a single maximum at x =0 and vanishes for
x =+~. The shortest distance y (E) of the quasiparticle
path from the vortex axis is a monotonically increasing
function of E (see following). For E =0 the line position
is given by y =0; i.e., the lowest excitations cut the vortex
center. With decreasing angle ~/2 —0 between k and e,
the region of nonzero N, centered around x =0, becomes
smaller and the maximal value of N strongly increases.
For E =0 and cos0=1 the region of nonzero N defines
something like a "range of the gapless regime, " which is
of the order of a few coherence lengths gBcs. Only one
bound state has been found for fixed values of k and r
(however, the smallest 8 used in the calculations was
given by cos8 =0.36).

For a really isolated Aux line the density of states is a
discontinuous function" of y with a singularity at
y =y(E). Of course, in actual numerical calculations a
finite Aux-line distance must be used yielding quasiparti-
cle paths of finite width Ay and a finite magnitude of N.
The properties discussed earlier may, however, easily be
derived from the asymptotic behavior of the numerical
results.

These results qualitatively agree with the low-lying ex-

~jA)34& i i I ()

A. Large Aux-line distance

In the limit of large Aux-line distance, d ~ (x), the den-
sity of states becomes invariant under simultaneous rota-
tions of r and k. To distinguish this situation from that
of finite d the k-dependent coordinates r

~~,
r ~ wi11 be

denoted by x,y in this section.

FIG. 1. Spatial variation of the density of states
N {E,cosO, k, r) for E =0, cos0=0. 36, k=k3& in a WS cell. X is
only different from zero on the line r~ =0; its maximal value is
2.5X10 . Further parameters used in this plot are K=0.72,
T/T, =0.6, and d =7.5(Bcs.
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citations of an isolated vortex first found by Caroli et al. '

for x ))1 and subsequently studied for arbitrary values of
K by Bardeen et ah. These authors did not employ the
quasiclassical approximation and used a set of quantum
numbers different from the present one. The results of
Caroli et al. ' for E (( ~11jiics~ may be compared with the
present ones by identifying their quantum number p with
the z component of the classical angular momentum of
the quasiparticle, i.e., replacing Ap by Ayk„cosO. In the
framework of the quasiclassical Green's function method
the low-lying states were studied by Kramer and P h. 'an esc
n the Appendix we review the relevant parts of their

theory and calculate an analytical expression [Eq. (A12)]
for y (E) which agrees fairly well with the present numer-
ical results.

For small cosO the low-lying energy levels are, accord-
ing to the numerical data, given by

E (y) =sgn(y)
~
itj(O, y) (6)

An interesting result of the numerical work is that Eq. (6)
presents a fairly good approximation of the data for arbi-
trary values of cosO. The maximal deviation f E .

'
n rom q.

Thu
—or cosO=1 —is lower than 10% as shown F' 2.wn in ig.
us the main contribution to E(y) stems from the

minimum value of the self-consistently determined order
parameter on the considered path y =const. This result
is in contrast to Ref. 3, where it was claimed that for
~=1 the energy levels are given by two contributions of
comparable magnitude, one stemming from the order pa-
rameter and one from the magnetic field.

Equation (6) agrees exactly with the corresponding re-
sult of the Kramer-Pesch approximation reported in the
Appendix. As is further discussed in the Appendix E(y)
is, for arbitrary cosO, determined by the values of order
parameter, superAuid velocity, and the derivatives of
these quantities at x =0. It turns out that the singular
part of the superAuid velocity is canceled by the first
derivative of the order parameter (see the Appendix) and

FIG. 3. Spatial variation of the density of states
N(E, cos9, k, r) for E =2gscs, cos0=0.97, and k=k» in a WS
cell. The maximal value of N is 2.15. Further parameters used
in this plot are ~=0.72, T/T, =0.6, and d =7.5(scs.

all other correction terms due to the finite cosO have a
relatively small inAuence on the final result.

An "excitation threshold" as given by Eq. (6) has been
predicted by de Gennes considering a situation where
magnetic field effects can be neglected. Our results show
that the low-lying energy levels of a dilute vortex lattice
are approximately given by this threshold value. For
hig er values of ~ than the present ones one expects even
smaller deviations from Eq. (6).

At higher energies E/PBcs= 1, scatter—ing states appear
at the boundary of the WS cell and the line structure
starts to break down. At still higher energies
E/QBcs ) 1.5) these scattering states extend in a more omore or
ess isotropic manner over the whole space. The density

of states plotted in Fig. 3 is mainly isotropic. In addition,
it shows some vestiges of a k-dependent behavior of X.
The latter is a consequence of flux-line interactions.

B. Intermediate flux-line distance

In this section we consider a range of low but finite in-
ductions, to be realized in the vicinity of the lower criti-
cal field H, &, and discuss how the excitations of the isolat-

Ci
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FIG. 2. Comparison of the minimum value of the order pa-
rameter modulus ~g(0, y)~ (solid line) with th I

y or cosa=0. 36 (dotted line) and for cos0=0.97 (dashed
line). Parameters used in this plot are ~=0.72, T/T, =0.6, an

e result for cosL9=0. 97 has been corrected for
(small) eff'ects of finite d.

FIG. 4.
N E

Spatial variation of the density of t ts a es(,cosO, k, r) for E =0, cos0=0.97, and k=k, o in a WS cell.
The vector k defines the preferred direction (parallel to the r~~

axis) in this diagram. The maximal value of N is 4.8. Further
parameters used in this plot are sc =0.72, T/T, =0.6, and
d =7.&pcs.
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ed vortex are modified by (small) flux-line interactions.
Essentially two things happen: First, the sharp lines of
the isolated vortex at low energy split into a double-peak
structure of finite width b, r~(d), as shown in Fig. 4. In
the Appendix an estimate for b, r~(d) and the correspond-
ing width of the energy levels b.E(d) is given which
agrees fairly well with the present results. For the low in-
ductions considered here the relation hr~(d) &&d still
holds, so the line shaped structure of the excitations is
preserved.

The second modification brought about by the finite
flux-line distance (also shown in Fig. 4) is an increased ex-
tension of the wave functions in r~~ direction, i.e., an in-
crease of what has been called earlier the range of the
gapless regime. If the wave function is nonzero at the
boundary of the WS cell, the former bound state of the
isolated vortex has changed into a tunneling state. The
latter represents a single-particle excitation which ex-
tends over the whole Aux-line lattice. These effects lie
outside the range of validity of the Kramer-Pesch ap-
proximation where wave functions describing indepen-
dent Aux lines are used. Tunneling states of quasiparti-
cles in a periodic vortex lattice have however been pre-
dicted by Canel. ' He showed that these excitations
should behave like Bloch electrons in a magnetic field,
without evaluating their wave functions explicitly.

A quasiparticle trajectory of direction k„connecting
a starting point r~ with its translational-equivalent end
point rz (rE=T„r„, the operator T„ is defined in
Ref. 14) consists of several segments corresponding to the
different WS cells on this path. Translational invariance
implies that the behavior of the density of states in all
these segments is reproduced in the original WS cell ~

Therefore, for small E, one expects N (E,k, r ) to be
different from zero on several straight lines which are all
equivalent in the sense that each one passes through a
flux-line center (at E =0). The present results for a hex-
agonal vortex lattice show indeed the expected structure
(see Figs. 4 and 5 —7).

In actually existing clean type-II superconductors like
Nb or V the maximal Aux-line distance is limited by flux-

jIIIIj7/jjjjjjj

""E

FIG. 6. Spatial variation of the density of states
A A

N(E, cosO, k, r) for E =0, cos9=0.97, and k=k» in a WS cell.
The vector k defines the preferred direction (parallel to the rI~

axis) in this diagram. The maximal value of N is 2.7. Further
parameters used in this plot are ~=0.8, T/T, =0.5, and
d =3 44cs.

line attraction. "' A lower bound for the inAuence of
tunneling on the mixed state of these materials may be
obtained by considering an induction B & Bo, where Bo is
the discontinuous jump of the induction at the lower crit-
ical field H, &. Figures 4 and 7 show our results for such a
situation. The parameters used in Figs. 4 and 7 are
E =0, cos8—= 1 (maximal tunneling), and k, o, k» (the two
simplest directions). Already at these low inductions,
corresponding to a flux-line distance of about 8gacs a
considerable overlap of wave functions in neighboring
WS cells occurs. Considering the totality of possible
quasiparticle directions, one is led to the conclusion that
the mixed state of pure Nb and V is gapless everywhere.
This result holds for arbitrary B and T with the possible
exception of a small region near T, where no Aux-line at-
traction exists and d may become arbitrarily large. Of
course, near T, the order-parameter itself is strongly
suppressed. Clearly, in the mixed state the tunneling
character of the quasiparticle motion becomes even
stronger. Figures 5 and 6 refer to a situation near H„
and a "less rational" direction k3, . Comparison of Figs. 5

FIG. 5. Spatial variation of the density of states
A A

N(E, cosg, k, r) for E =0.15$acs, cosg=0. 75, and k=k3, in a
WS cell. The vector k defines the preferred direction (parallel
to the r~~ axis) in this diagram. The maximal value of N is 8.7.
Further parameters used in this plot are ~=0.8, T/T, =0.5,
and d =5.3('acs.

FIG. 7. Spatial variation of the density of states
A A

X(E,cosO, k, r) for E =0, cos0=0.97, and k=k» in a WS cell.
The vector k defines the preferred direction (parallel to the r~~

axis) in this diagram. The maximal value of X is 10.2. Further
parameters used in this plot are ~=0.72, T/T, =0.6, and

7' 54Bcs'
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DENSITY OF STATES AT FLUX-LINE CENTER
I

and 6 illustrates the decrease in tunnel 'th '
ne ing wit increasing

d and decreasing angle between k and the vortex axis
Of course, each individual quasiparticle state of

momentum k at a particular point r may have one or

chosen values ofes of r and k. We restrict ourselves to a dis-
cussion of the local energy spectrum at the flux-1
center w

'
a e ux- ine

N
, w ich is of particular interest. Fi 8 higure s ows

(E,k, r) at r=O for coso=—1 and k=k Hio. ere again
parameters corresponding to B (8 h b
(for the same

ave een chosen
or t e same reasons as discussed in the cont t f F
an ). Besides the line splitting and broadening of the

single-particle excitations at low energy which was dis-
cussed earlier, one notices in Fig 8

' 'fi
I

'g. a significant reduction
of the scattering states at E/g ~ 1 ThBcs . ese two ea'ects
are related to each other by the sum rule

f dE[X(E,k, r) 1]=0,—

which requires a reduction of the h' h-e ig -energy states as a
consequence of the increased wei ht t 1'g a ow energies. For
an isolated flux-line scattering t ts a es appear for

itBcs) 1 with a divergent behavior of the density of

tera
the reduction of states brought about b the
eraction takes place in such a way that part of the s ec-

trum near E =~~It i=~IBcs is eliminated and consecutively the
a part o t e spec-

band edge is shifted to higher energies and smeared out.

k=(0.97 k
A second example for X(E,k, O) is plotted in Fi . 9 h

3, ) and parameters corresponding to a situa-
ion near H, &

have been chosen. For this less rational
irection and relatively high induction a broad tunneling

state appears leading to two gaps at the vortex center.

emp asis is p aced upon general properties of the energy
spectrum than upon quantitative details. In particular,
no attempt has been made to resolve the details of the

merical effort. Similar remarks apply to the graphs show-
ing t e space dependence of the density of states. Use of

DENSITY OF STATES AT FLUX-LINE CENTER
l

3. 5—

Q. 5

0
I I

0 0. 5 1 1. 5 2

ENERGY/(BGS ORDER PARAMETER)

FIG. 9. Ener de~ . gy ependence of the density of states
N(E, cosO, k, r) for cos0=0.97 and k=k h
r=0. F

31 at t e Aux-line center
r= . Further parameters used in this fi u
T/T =0.5 and d =3 4c .

~ an Bcs

enlarged computer capacities may lead to small devia-
tions from the present results with t hou c anging the quali-
tative conclusions drawn in this pis paper.

Obviously, the deficit of states near E =near Bcs s 0
Figs. 8 and 9 is not restricted to th fl -1e ux- ine center but
occurs in a large part of the WS cell. Therefore, the tun-
ne ing processes will lead to a strong overall reduction of

Bcs e s ould mentionthe states available near E —P . (W h 1

t at a similar, but much smaller, reduction of states will
also occur for an isolated Aux line. ) This result is con-
sistent with ultrasonic attenuation d t Na a on indicat-
ing the inadequacy of independent flux-line theories

C. Small Aux-line distance

Only a few calculations have been performed in the in-

ig. 10 where %(0,0.97,k, r) for 8/H =0 74
'

ted. As exe . s expected, at this high induction the line-sha ed
structure of th e density of states no longer exists. The re-

3. 5

3

2 . 5

2

1. 5

1

0. 5

0'
0

1

0. 5 1 1. 5

ENERGY/(BCS ORDER PARAMETER)

FIG. 8. Ener gy dependence of the density of states
N(E, cosO, k, r) for cos0=0.97 and k=k at the 0
r =0. Furtherr = . Further parameters used in this figure are sc =0.72
T/T, =0.6, and d =7.5$'acs.

FIG. 10. S atial~ . p
'

variation of the density of states
N(E, cosO, k, r) for E =0, cos0=0.97 d k=k

e vector k defines the preferred direction (parallel to the r
axis) in this dia rin is diagram. The maximal value of N is 2.2. Further

ara e o erII

parameters used in this plot are ~=0.8 T T =
c =0.5, and

BCS
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gion of nonvanishing X extends over most of the space,
while the double peak structure discussed in Sec. III B is
still visible. The results shown in Figs. 10 and 6 have
been produced using the same set of parameters except
for the quasiparticle direction k. For the direction k3 &,

considered in Fig. 6, several energy bands of relatively
small width occur (at each space point), while k,~, con-
sidered in Fig. 10, leads to a single band of great width.
The general trend of increased pairbreaking with increas-
ing induction shows up in the present context as an in-
crease of the spatial extension of the wave functions in
both the r

~~

and the r~ direction.

IV. CONCLUDING REMARKS

The local, direction-resolved density of states in the
vortex state of clean type-I I superconductors has been
calculated self-consistently. This numerical study has
been performed in the framework of the quasiclassical
formulation (in its isotropic, weak-coupling version) of
the microscopic theory of superconductivity. No approx-
imations have been made apart from standard approxi-
mations in numerical routines. Material parameters cor-
responding to clean Nb or V have been chosen.

The energy spectrum of a vortex lattice has been ob-
tained for arbitrary energies and inductions, and the tun-
neling states of quasiparticles have been calculated. A
shift of continuum states to energies higher than

~ gzcs~
has been found as a consequence of Aux-line interactions.
Besides that, some conclusions specific to the important
materials Nb and V may be drawn. Transport phenome-
na at low inductions are usually analyzed in terms of the
following two kinds of elementary excitations of an isolat-
ed vortex: bound states which are confined to the vortex
core, and unbound states which become BCS quasiparti-
cles far from the core. The present results provide evi-
dence, from a theoretical point of view, that both of these
concepts become more or less useless for a description of
transport processes in actually existing clean type-I I su-
perconductors like Nb and V. This is a consequence of
strong tunneling processes which dominate the excitation
spectrum already at the lowest possible inductions, near
the first-order transition at H, &. Jump and Gough and
Muirhead and Vinen arrived at a similar conclusion by
comparing predictions of independent Aux-line theories
with experimental data on ultrasonic attenuation and
thermal conductivity in Nb (see also the detailed discus-
sion in Ref. 25). The present results may only be con-
sidered as a first step towards a quantitative explanation
of the observed deviations from the isolated vortex be-
havior, since, despite several promising attempts, ' a
complete theory of transport phenomena in a dense vor-
tex lattice has not been worked out up to now.

Finally, we shall comment on recent tunneling experi-
ments' providing information on the local density of
states near a single Aux line. The quantity dI /d V ob-
served in these experiments is a weighted average of the
direction-resolved tunneling conductance o ( V, k, r) ~ One
may assume that the observed dI /d V agrees qualitative-
ly, with respect to its dependence on voltage V and posi-
tion r, with the tunneling conductance cr( V, r). The latter

is defined as the convolution of N (E,r ) and the derivative
of the Fermi distribution function.

In Ref. 17 the voltage dependence of the local conduc-
tance cr( V, r) has been measured for diff'erent values of
the radial distance from the vortex center r. From the
previously discussed theoretical results, like those
presented in Fig. 8, the qualitative behavior of N(E, r)
and o(E, r), for an isolated ffux line can easily be de-
duced. Generally, one finds that, in the bound-state re-
gion and for a given value of r, contributions to N(E, r)
can only occur in an energy range E ~ ED -=~l((r) ~, while
continuum states will occur for E )E„where E, de-
pends weakly on r and is approximately given by ~g~cs~.
In particular, at the fiux-line center, r =O, N(E, O) has a
sharp peak at E =0 (compare Fig. 8). This result may
also be derived from the theory of Kramer and Pesch. In
the tunneling conductance cr( V, r) this peak will also ap-
pear, at V =0, but with a finite, temperature-dependent
width. This behavior is in agreement with the data re-
ported in Ref. 17. The same applies to the observed
broadening of the peaks with decreasing vortex distance
(see Sec. III B).

Thus, theory predicts, in agreement with experimental
data ' but in disagreement with some previous statements
in the theoretical literature, that the energy dependence
of the local density of states at r =0 is (in the clean limit)
very difFerent from the normal-state behavior. We note
that the energy spectrum depends on the order parameter
in a nonlocal way and that the commonly used concept of
Caroli et al. ' of a "normal core radius" of the order of
the coherence length refers to the total density of states
rather than to the local one. Work is in progress in order
to explain the experimental results of Ref. 17 in a more
quantitative way.
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APPENDIX

In this appendix we review the approximate calcula-
tion by Kramer and Pesch of the low-lying excitations in
a dilute vortex lattice and calculate analytical expressions
for the energy levels in two simple cases.

Following Kramer and Pesch we formally eliminate
the vector potential from Eqs. (I)—(4) by means of a
gauge transformation

f—fels f —fels f+ —f +e lg

9(r~~~, r~, @k ) = ka(r
~~~,

r~, Pk )dr
~~

+cbk .
0

Here, Pk denotes the angle between k and the x axis.
For Pk =0 ( k =k, D), the following symmetry relations
may be derived:

f( r~[) = f (r~~ )

g( ~~)=g( ~~),
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and the transport equations take the form

iz +coso f (rll ) =qg (rll ),
II

(Al)

where

I

cosO o
(A 10)

2 cos8 g (rll ) =li ' f(rll )+g f ( —rll ),
II

g(rll)=[1+f(rll)f( —rll)]'~, Imz Reg(rll)) 0 .

(A2)

(A3)

d/2I, (d /2, r i ) = — f dr l'l 11t,( r ll, r~ )1
cosO o

I

X sinQ( r ll, r~ )e

A similar set of simplified equations may be derived for
two other high-symmetry directions, ko& and k

& &. For an
isolated vortex Eqs. (A 1 ) —(A3) hold for arbitrary k.
Equations (Al) —(A3) have to be supplemented by proper
boundary conditions. For an isolated vortex the solu-
tions must agree with the Meissner-state solution at large
distance from the vortex axis. For a vortex lattice of
nearest-neighbor distance d, translational symmetry ' im-
plies the following condition:

+d)=f rll exp i drjlk'v ril ri 0, (A4)
0

where v, ( r ll, r1,pk ) is the superfluid velocity defined by
v, =Vp —a (p is the phase of the order parameter li).

For E =0 and rj =0 Eqs. (Al) —(A3) have been solved
exactly by Kramer and Pesch. Using this solution as a
starting point these authors derived an approximate ex-
pression for g, valid in the range of small r II, small r~, and
large d. In terms of s and a, the symmetric and antisym-
metric parts of f, this solution reads

(A 1 1)

The solution given by Eqs. (A9) —(All) is a good ap-
proximation for large d, small r1 (small E), and large A.
The singularities of A give the positions r1 (E,d), or alter-
natively the energy levels (E =I, /a) where sharp excita-
tions occur in a dilute vortex lattice. These positions are
calculated later for two simple cases and compared with
the present numerical results.

To obtain our first estimate of the low-lying levels, we
assume a -= 0,

n(r, l, r, )
-=—arctan

and approximate the variation of the order parameter by

1tjBCS, "& kl

PBCS, "+41

g
—(1+ 2 2)1/2

—u (r, r~ )

s(rll, r~)= Ae

a (rll, ri) = f drl'l [—5 —iE

(AS)

(A6)

For d~~ and r1/(1&&1, Eq. (A9) yields E =E (ri),
where

(rl ) /PBcs ( rl Cl )g ( PBcskl /c

The function g is given by

+11@(rl', ,r, ) I
sinn(r

l,
, r, ) ]

i/~x/24&(i/x/2)+xe" ~ E, (x)
g(x)=

v'm. x /24(i/x /2)+ e
(A13)

II
'—u(r, r )

I
u (rll, rz ) = dr

ll
10(r ll, r~ ) Icos&(r ll, r~ )

cosO 0

(Aj)

(A8)

where N is the error function as defined in Ref. 3 1 and E&
is an exponential integral. For finite d the sharp levels
split into a double-peak structure of finite width in agree-
ment with the results presented, e.g. , in Fig. 4. The den-

sity of states differs from zero in a range
where Q=0 —P. An approximate form of the quantity A
will be given below. The range of validity of Eqs.
(AS) —(A8) may be extended to arbitrary rll in the follow-
ing way. For r~ =0, E =0 one has a =0, g = —s, and

Therefore, for small r z and large 2 the relation
g -=s will be approximately valid for arbitrary r

II
. On the

other hand, condition (A4) implies 1s1«1a1, and con-
secutively g —= (1—a )'~, for small rz and large rll.
Equating the two apparently contradictory solutions at
r

II

=d /2 yields the condition s +a = 1, which deter-
mines the unknown amplitude A. One obtains

E (r1,d) &E &E+(rj,d)

showing a singular behavior at E =E+ . The band edges
E+ are given by

E~(r~, d) =E(r~,d)+e

where

A = Ie
' ' +[(5—iE)a(d/2, r~)

+iI, (d/2, r~)] j (A9) and (to leading order in 1/d)
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b (gi —d)/2
rz g(bCi)e

i d) + (ri)+ PBcs
&m(bgi/2)' C&[(bg, /2)' ]+e

(A14)

E(ri)=sgn(ri)~g(O, ri)~ . (A15)

This result agrees with the first of our estimates in the ap-
propriate limit, but does not depend on a particular mod-
el for the order parameter variation. The level positions
obtained numerically agree exactly with Eq. (A15) for
small cos8 (see Fig. 2) and, on top of it, depend rather
weakly on the direction of the quasiparticle momentum.
As Fig. 2 shows, Eq. (A15) represents a fairly good ap-
proximation of the exact results for arbitrary values of
cos8. The weak dependence of E(ri) on cos8 is also
found in our first estimate given earlier [g(x) is a slowly

In Eq. (A14) the abbreviation b =QBcs/cos8 has been
used. Taking an estimate for g, from the computed g the
predictions of the Kramer-Pesch (KP) theory may be
compared with the present results. Reasonable agree-
ment is found with regard to both the level positions and
the widths of the line splitting.

The second situation we shall consider is that of small
cosO, i.e., quasiparticle motion nearly parallel to the vor-
tex axis. In this case only the isolated Aux line will be
considered. The preceding results of the KP theory, Eqs.
(A9) —(Al 1) have been derived by assuming 3 ))1, a con-
dition which is generally not fulfilled for small cos8.
However, if we restrict ourselves to a determination of
sharp energy levels, where A ~ ~ by definition, the
Kramer-Pesch approximation may still be used for arbi-
trary small cosO. In addition we should point out that
this approximation in order to be valid requires the ex-
istence of an infinite path through the vortex lattice. If
cos0=0 holds exactly, such a path does not exist. Then
the particle motion is restricted to a single point in the xy
plane and one obtains the well-known local solutions of
the transport equations which are di6'erent from the cor-
responding solutions of the Kramer-Pesch theory. Nev-
ertheless, this theory may be used to calculate the energy
levels for arbitrary small cosO, provided an infinite quasi-
particle path through the vortex lattice exists. The limit
cosO=—0 is to be understood in this sense.

Evaluating the integrals in Eqs. (A10) and (All) for
cosO=—0 by means of a simple saddle-point method one
obtains

varying function].
An asymptotic expansion including higher-order terms

in cosO may be calculated. It turns out that this asymp-
totic series is completely determined by the values of g
and k.v, at r~~

=0 and by the derivatives of these quanti-
ties with respect to r~~, again taken at r~~

=0. In the
present notation the superAuid term is given by

k v, = ri /r (ri /—r)a (r), (A16)

where r =(rl+ri)'~ . The first part of Eq. (A16), stem-

ming from the phase gradient, becomes large near the
flux-line center. To see how this singular term is elim-
inated from the final result, the contribution of order
(cos8)' to E(ri ) has been calculated. By means of
asymptotic methods discussed in Ref. 32 one obtains a
lengthy expression which, for small r, takes the form

E(r&) =sgn(r&) lg(o, r&) I+cos8 a (O, ~r, ~
)+

6/i

(A17)

Here, g, and g3 are defined by the expansion

~g(r)~ =g, r +$3r /6 .

In the course of the calculation leading to Eq. (A17) the
singular part of k v, has been canceled by a term con-
taining the first derivative of

~ g(r ) ~, which answers the
previously raised question.

Eq. (A17) agrees in part with the well-known shifted
energy spectrum

E""'=+i&1+k v, at r(I =O

E""'(ri ) =sgn(ri ) tg(O, ri )
~

+cos8 a(O, ~ri~)—
1

The present highly nonlocal situation leads to the re-
placement of the singular part of k-v, by the last term in

Eq. (A17).
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