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By making use of finite-size scaling and Monte Carlo simulations, we study the so-called "uniuer-

sality concerning critical exponents of percolation in several two-dimensional lattices. In particu-
lar, our main purpose is to clarify how uniuersal is "uniuersality. "For this purpose, we choose the
following five lattices —square and kagome (both periodic where the number z of nearest-neighbor
sites is single valued, i.e., z=4), dice (periodic where z is mixed valued, i.e., z=3 and 6, the average z
being four), Penrose tiling (nonperiodic where z is mixed valued, i.e., z=3, 4, 5, 6, and 7, the average
z being four), and the dual lattice of Penrose (nonperiodic where z is single valued, i.e., z=4). For
both site and bond percolation of these lattices, we analyze the results of our Monte Carlo simula-

tions and evaluate six critica1 exponents, all of which are in good agreement with respective values

predicted theoretically. Our results indicate that "universality" is really universal irrespective of
classes of problems, i.e., whether bond or site; irrespective of kinds of lattices, i.e., whether periodic
or nonperiodic; and irrespective of types of coordination, i.e., whether sing1e valued or Inixed

valued.

I. INTRODUCTION

Among various problems concerning percolation, two
major themes are the determination of percolation
thresholds and the investigation of the critical phenome-
na near a threshold. The previous paper (the first paper
of this series of papers, which hereafter is referred to as
I)' is concerned with the former theme, while the present
paper deals with the latter theme.

In I, we proposed a method of deriving a reliable value
for the percolation threshold p, of an infinite lattice from
the information of finite lattices. The key point was the
appropriate definition of the effective threshold for a
finite lattice, which turned out to be a good approxima-
tion for the percolation threshold of an infinite system.
Using Monte Carlo (MC) simulations and employing our
method thus proposed, we obtained the "reliable" thresh-
olds of several two-dimensional (2D) lattices both for
bond and site percolation.

The scaling theory has been put forward in order to de-
scribe the behaviors of some quantities near a critical
point p, of a phase transition, ' these behaviors are nor-
mally called critical phenomena. ' Percolation is one
example for which the peculiar properties near p, are ex-
pressed by means of critical exponents introduced by the
scaling hypothesis. The most important assertion con-
cerning critical exponents is that they are independent of
the details of the lattice structure but depend on the di-
mension d of the lattice. This aspect is considered to
hold for thermal phase transitions in general, as well as
for our problem of site and bond percolation. This
feature is widely amounted by a somewhat magnified ter-
minology of "universality. "

Now the main purpose of the present paper is to exam-
ine how universal is "universality. " The reason why we
are interested in this theme is that, although periodic
structures are not invoked in the scaling theory, ' al-
most all MC simulations performed so far ' ' have
dealt with periodic lattices in which the coordination
number z is single valued. Consequently, it is only for
those periodic lattices which have single-valued coordina-
tion that no violation of "universality" has been ascer-
tained. Actually, the status of research on "universality"
remains as described in Table I, i.e., lattices analyzed pre-
viously are only those belonging to the category in the
top left column. Then, it directly follows that, in order to
ensure the validity of "universality" more firmly, it is re-
quired to study lattices in other columns as well. This is
exactly what we do in this paper.

On the basis of Stauffer's cluster number scaling hy-
pothesis, and MC simulations, we evaluate the following
six critical exponents of some 20 lattices periodic or non-
periodic where the coordination number is either single
valued or mixed valued, i.e., exponent v defining the
correlation length, exponent ~ defining the sizes of clus-
ters at p„ the fractal dimension D, exponent o, defining
the total number of clusters, exponent P defining the

single valued
mixed valued

seems to have
not studied yet

not studied yet
not studied yet

TABLE I. Has the existence of "uniuersality" been ascer-
tained by previous work?

Type of lattice
Periodic lattice Nonperiodic lattice
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TABLE II. Lattices we study in this paper: the coordination
number z of each lattice is either single valued or mixed valued;
z =4 for the former case while the average coordination number
z =4 for the latter case.

Type of lattice
Periodic lattice Nonperiodic lattice

single valued

mixed valued

square
kagome

dice
(z =3 and 6)

dual of Penrose

Penrose
(z=3, 4, 5, 6, and 7)

II. SYSTEMS AND METHOD

As we have mentioned in the preceding section, it is re-
quired, for our purpose of confirming "unIUersaltty, " to
study lattices in the columns in Table I which are denot-
ed by "not studied yet. " In order to meet this require-
Inent, we choose five lattices listed in Table II according
to the criterion that either the coordination number z it-

probability that a site or bond belongs to a percolating
cluster, and exponent y defining the mean cluster size.

Aside from the critical exponents, there exi.st other
quantities in disordered systems which, in general, have
been asserted to be dimensional igvariants in the sense
that they depend only on the dimension of the system.
The problem of disorder and dimensionality has long
been discussed in various contexts. The appearance of
magnetic ' ' or crystalline ' order and the electron lo-
calization in disordered systems are some examples
which are explained in relation with dimensionality.
Concerning the percolation problem, it has been empiri-
cally pointed out that the following two quantities are di-
mensional invariants, that is, the critical volume frac-
tion U,

—=fp, (site) for site percolation, f being the
filling factor, and the critical value g, for the effective
coordination number defined by iI, =—zp, (bond). We will
show that, according to our results, both U, and g, are,
respectively, almost equivalent for all lattices we study,
thus indicating that they are really dimensional invari-
ants in a wide variety of lattices.

Our method is explained in Sec. II and results are given
in Sec. III. The critical volume U, and the critical value

g, for the effective coordination number are mentioned in
Sec. IV and discussions are found in Sec. V.

self is four in the case of single-valued coordination or the
average z is four in the case of mixed-valued coordina-
tion.

Stauffer's cluster number scaling hypothesis for per-
colation asserts that quantities listed in Table III show
the critical behaviors as described in the table, where p is
the concentration of intact elements (bonds or sites), p,
the percolation threshold of an infinite system, d the di-
mension of the lattice, n, (p) the number of s clusters at p,
an s cluster being a cluster composed of s connected ele-
ments (bonds or sites); L is the linear dimension of the
system defined by L =N', Xbeing the system size, s „,
the size of a percolating cluster, and f (x) as an appropri-
ate function of X. The strength P of an infinite network is
the probability that an element (a bond or site) belongs to
a percolating cluster. Most of the quantities as listed in
Table III are related to the number n, (p) of s clusters.
Detailed explanations about the critical behaviors of
these quantities are given in the attractive book by
Stauffer.

In thermodynamic phase transitions such as the para-
ferro magnetic transition in a magnetic system and the
liquid-gas transition in a fIuid, exponent a defines the
critical behavior of the specific heat; exponent P defines
the magnetization in a magnetic system and the density
difference between liquid and gas in a Auid; and exponent
y defines isothermal magnetic susceptibility in a magnetic
system and isothermal compressibility in a fluid. Ex-
ponent v, defining the correlation length, has the corn-
mon meaning in all these systems.

Although the scaling theory in its original form is ap-
plied to infinite systems, similar arguments are developed
for finite systems, which is termed as the finite-size scal-
ing and is very useful in predicting the behaviors of
infinite systems from the results for finite systems. The
finite-size scaling is characterized by the fact that the
linear dimension L of the system appears in the discus-
sions. In our analyses to follow, we use the idea of the
finite-size scaling. The scaling hypothesis gives rise to the
relationships among critical exponents, which are gen-
erally referred to as the scaling law. When the dimension
d of a system appears in the scaling law, the theory is
called hyperscaling and it is implicitly assumed that the
relations hold only for such d as satisfies 2 ~ d ~ 6, be-
cause the mean-field theory is exact for d )6. The scal-
ing law for seven critical exponents in Table III is ex-
pressed by five independent equations in Table IV. This
means that at least two out of seven exponents must be

TABLE III. Critical exponents and critical behavior of quantities (after StaufFer).

Exponent Quantity

total number of clusters
strength of infinite (p &p, )
mean size of finite clusters
correlation length at p =p,
cluster number at p =p,
fractal dimension at p =p,
cluster number for pAp,

network

Critical behavior

M lp
—p, l"

P cx (p —p, )~

lp
—p, l

"
n, (p, ) o:s

D
~pere

n, (p)~s "f((p —p, )s )
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TABLE IV. The scaling law (d: dimension of system).

a+2P+y=2
2 Q —Vd
P= v(d D)—
D =1/vo
~= l+d/D

A. Exponent v

In a system of finite size X =L, let us pick up p which
is slightly larger than the effective threshold p,"(N) such
that p =p,"(N)+Bb,z, where p, (N) and Ag are, respec-
tively, the mean and the standard deviation of Gaussian

determined by other methods. Note that the same scal-
ing law as listed in Table IV holds for the phase transi-
tion in a magnetic and Quid system.

We carry out MC simulations in the same way as stat-
ed in I. That is to say, for a given lattice of size X, we
choose M elements (either bonds or sites) at randon out of
X elements and count the number n, of s clusters for each
s. When the cluster of the maximum size extends from
one side to the other side of the lattice, say from top to
bottom or from right to left, we call the cluster "percolat-
ing. " We denote this size by s „,.

In the above process, it is necessary to identify each s
cluster composed of s elements, which is not an easy task
to carry out unless 1V is very small. Since this job of
identifying clusters is required at each MC run, the
efficiency of the algorithm for the cluster analysis is the
key factor in the economy of computer time. Actually,
the smart way of dealing with the cluster analysis is of
central importance in the computer simulations of phase
transitions including percolation and magnetic phase
transitions. One of the present authors (Sakamoto ') has
worked out a very efficient algorithm for the cluster
analysis, which enables us to treat systems of consider-
able sizes and to try many MC runs.

For each p:—M/N with each increment Ap
—=0.002, we

carry out n MC runs and count the number I of runs in
which we find a percolating cluster. Then, the probabili-
ty R&(p) of finding a percolating cluster is identified by
m/n. Several explanations have been proposed to verify
that R&(p) near the percolation threshold has the form of
an error function defined by the mean p, (N) and the
standard deviation, 6&. In I, we have shown that, when
a percolating cluster is approximately defined, p,"(N)
thus determined gives a very good approximation of the
percolation threshold in an infinite system even if N is not
very large.

Using this method, we have obtained in I the percola-
tion thresholds, each with three significant figures, both
for bond and site percolation in several 2D lattices. Since
very accurate values for thresholds are required in the
scaling analyses, it is a great advantage that we have reli-
able values for thresholds at the starting point.

III. CRITICAL EXPONENTS AND SCALING LAW

gZ

O' —1.8-
O

—2.0-

—1.5

0 —1.7
O

—1.9-

100

2.00 2.25 2.50

log)0 L

100 200 300
I

lcm

200 300 400
I I I

(a)bond problem

Now let us try and estimate some critical exponents
from the information made available in our simulations
and analyses. For our study, we choose six exponents a,
f3, ), v, r, and D in Table III. We omit o because it is
rather dificult to determine o. accurately. In what fol-
lows, we. demonstrate the numerical results for these six
exponents.

1.75 2.00 2.25 2.50

logio L

FICx. 1. Log, oh~ vs log, oL where hg is the standard devia-
tion which defines RN(p). (a) the bond problems; (b) the site
problem.
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TABLE V. Values of some critical exponents obtained from our simulations.

Bond

Lattice

square
kagome
dree
Penrose
dual of Penrose

v/vp

1.01
1.02
1.01
1.01
0.98

D /Dp

1.00
0.98
1.01
0.98
1.02

0.96
0.96
0.97
0.97
0.96

2 cx

2 exp

0.95
0.95
0.94
0.94
0.95

0.95
0.76
0.94
0.79
0.90

0.92
1.03
0.95
1.03
1.04

Site

square
kagome
dree
Penrose
dual of Penrose

1.06
1.01
1.01
1.01
1.02

0.96
0.99
1.02
1.00
1.02

0.96
0.96
0.95
0.94
0.97

1.00
0.99
1.00
1.00
0.99

1.02
0.78
1.09
1.09
0.73

0.93
0.95
0.88
1.05
1.16

Theoretical prediction
Vp

.1.333.
4
3

Dp
1.896

91
48

jo
2.055

187
91

2 exp

2.667
2
3

Po
0.139

5

36

7p
2.389

43
18

distribution related with the error function defining
R&(p), and B is a small positive constant satisfying
0(B((1. Noting that p,"(N) is almost identical with
the percolation threshold p, of an infinite system and the
correlation length g at this p is about L, we can write the
critical behavior g ~ ~p

—p, ~

in the form

for v in the estimation of a percolation threshold. In oth-
er words, our method for the estimation of percolation
thresholds as proposed in I makes it possible to derive
percolation thresholds without a knowledge of the criti-
cal exponent v, which is an immense advantage of our
method.

Ip, (N) —p, l
~L (3.1) B. Fractal dimension D

Then, it is easy to see that

gA L —1/v (3.2)

In Fig. 1(a) and 1(b) are shown log&ob, z versus log&OL,
respectively, for bond and site percolation in the five lat-
tices in Table II. According to Eq. (3.2), the slope of
each line corresponds to ( —I /v). The values of v thus
estimated are listed in the first column of Table V in rela-
tion with the theoretically predicted value vo= —', . For the
bond problem, the deviation of v from the theoretically
predicted value is 2% at most, while for the site problem,
the largest deviation is 6%. When we remember the way
in which 6& are determined, we can say that the devia-
tion of this magnitude is small enough and we can con-
clude that the exponent v for either bond or site percola-
tion is a dimensional invariant, taking the theoretically
predicted value vo 3.

It is interesting to note that we employed the theoreti-
cal value vo= —', when we estimated in I the error bar for
the percolation threshold from the extrapolations of the
upper and lower bound of the effective thresholds at finite
size L =N' . In the evaluation of a percolation thresh-
old itself, on the other hand, each p,"(N) as determined
and enumerated in I is almost independent of N or L
when N ~ 5000 (see Table I and Figs. 6 and 7.in I), and
therefore it is practically unnecessary to assume the value

In order to evaluate the fractal dimension D as defined
in Table III, we have to express s„„,at p, as a function of
the linear dimension L of the system. We pick up four
sizes —5000, 10000, 25000, and 50000 for site percola-
tion and twice of each of these sizes for bond percolation.
We carry out 500 MC runs to take the average.

The log, os „, versus log, oL plot is illustrated in Fig.
2(a) for bond percolation and in Fig. 2(b) for site percola-
tion. The slope of this line gives an estimation of the
fractal dimension D. The values D thus obtained are
presented in the second column of Table V in relation
with the theoretically predicted value Do= —',

8
—1.896.

The deviation from the theoretically predicted value is
2% at most for bond percolation and 4% for site percola-
tion, which undoubtedly shows that fractal dimension D
is a dimensional invariant.

C. Exponent r

From the definition of ~ in Table III we see that the
slope of the log&o[n, (p, )] versus log, os plot gives (

—r).
The relations log&0[n, (p, )] versus log, os are illustrated in
Fig. 3 for bond percolation and in Fig. 4 for site percola-
tion. The results presented in this figure have been ob-
tained from the average of 100 MC runs in lattices of size
400000 for bond percolation and of size 200000 for site
percolation.
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Each line is drawn so that the fitting is the best for in-
termediate values of s. For small s, the data points are
lower than the straight line since the simple power law of
the scaling theory is not valid for small s. For very large
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3.75

O

o 350
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I
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agio I.

FIG. 2. Log, ~ „, vs log, oL at p =p, . The value of s~,„, is
determined by taking the average of the results obtained from
500 MC simulations at p =p, . (a) the bond problem; (b) the site
problem.

(p) ~L —(2 —a)/v

P(p) ccL

&(p) ~Lr

(3.3)

(3.4)

(3.5)

where p =p,"(N)+BAN. When these relations are illus-
trated in the logarithmic-logarithmic scale, the slopes of
the obtained lines are, respectively, —(2 —a)/v, —P/v
and y /v, from which we can derive ( 2 —a ), /3, and y on
assuming that v= vo= 3.

The results thus determined are presented in the last
three columns in relation with the respective predictions
(2 —ao)= —,'=2.667, Po= —,'6 -0.139, and yo= 4', -2.389.
As for (2 —a), the deviation from the theoretical value is
6% at most for bond percolation and 1% for site percola-
tion, and therefore we can say that a is a dimensional in-
variant. As for the probability P that an element (bond
or site) belongs to a percolating cluster, the critical be-
havior of P as described in Table III makes sense only for
p )p, when the system size is infinite. In a finite system,
this is not the case. Actually in a finite system, the prob-
ability P is proportional to s „„where s „,is the size of
a percolating cluster which is proportional to L . Not-
ing that %=L, we have P ~L . Comparing this re-
sult with Eq. (3.4), we obtain 13/v=2 D. Since the —frac-
tal dimension D is slightly lower than the physical dimen-
sion d, the difference (d D) or (2 —D)—for our 2D sys-
tems is small, which implies that P is a parameter very
dificult to determine accurately from simulations. This
is the reason why the deviation of 13 from the theoretical
value Po= —,', =0.139 becomes as large as 27% in some
lattices. Exponent y su6'ers a similar difhculty, although
the deviation of y from the theoretical value
yo= —"„' =2.389 is not so serious as in the case of P. How-
ever, when we recollect that it is generally much more
subtle to estimate critical exponents than to evaluate
thresholds, the agreement as a whole is reasonable both
for P and y, which proves that P and y are also critical
exponents.

To summarize, we conclude that the scaling hypothesis
is valid and "universality" is fulfilled irrespective of the
class of the problem, i.e., whether it is bond or site per-
colation, irrespective of the type of a lattice, i.e., whether
it is periodic or not, and irrespective of the kind of coor-
dination therein, i.e., whether it is single valued or mixed
valued.

s, the data points become higher than the straight line
since clusters of larger sizes are cut into several pieces by
the existence of the boundaries.

The values ~ calculated from the slopes of the lines in
Figs. 3 and 4 are given in the third column of Table V in
relation with the theoretically predicted value
70—

9] 2.055. The deviation from the theoretical value
is 4% at most for bond percolation and 6% for site per-
colation. Here again, agreement is remarkable, and ~ is
also a dimensional invariant.

D. Exponents a, P, and y

When Eq. (3.1) is inserted, the equations defining a, P,
and y are written, for a finite system of size X=L, as
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FIG. 3. Log&on, vs log&~ for the bond problem where n, is the number of clusters composed of s bonds. The value n, is deter-
mined by taking the average of the data from 100 MC simulations in a lattice composed of approximately 400000 bonds at p =p, . (a)
square; (b) kagome; (c) dice; (d) Penrose; and (e) dual lattice of Penrose.
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FIG. 4. Log&on, vs log&~ for the site problem where n, is the number of clusters composed of s sites. The value n, is determined by
taking the average of the data from 100 MC simulations in a lattice composed of approximately 200000 bonds at p =p, . (a) square;
(b) kagome; (c) dice; (d) Penrose; and (e) dual lattice of Penrose.
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TABLE VI. Critical value for the effective coordination
number.

Lattice

square
kagome
d&ce

Penrose
dual of Penrose
triangular
honeycomb

p, {bond)

0.5001
0.5244
0.4760
0.4770
0.5233
0.3473
0.6527

g, =zp, {bond)

2.00
2.10
1.90
1.91
2.10
2.08
1.96

q, /g, (emp)

1.00
1.05
0.95
0.96
1.05
1.04
0.98

IV. DIMENSIONAL INVARIANTS OF OTHER KINDS

Aside from the critical exponents which we have dis-
cussed in the preceding section, it has been empirically
examined that there exists a dimensional invariant for
bond percolation as well as for site percolation. As for
bond percolation, the product of the threshold p, (bond)
and the coordination number z seems to be given as

FIG. 5. A three-dimensional illustration of a dice lattice
where the packing object at each vertex is defined by the cross-
sectional view of a sphere at the lattice point of a simple-cubic
lattice.

2 (2D)
il, —=zp, (bond) = —

1 5 (3D) (4.1)

where d is the dimension of the lattice; g, can be inter-
preted as the critical value for the eft'ective coordination
number. As for site percolation, the product of the
threshold p, (site) and the filling factor f of the lattice
seems to be a dimensional invariant, satisfying

0.45 (2D)
v, =fP, (site) = 0 15 (3D) (4.2)

where U, is usually called the percolation volume frac-
tion.

Although the relations (4.1) and (4.2) are found only
empirically, these relations play important roles in the
practical applications of the idea of percolation. For in-
stance, Eq. (4.1) gives a good measure for the study of the
resistance in a random network and Eq. (4.2) serves as a
good guideline for the discussion of conductivity in the
classical mixture of conducting and insulating constitu-
ents.

For our lattice, it would be approximate to substitute z
in Eq. (4.1) by the average coordination number z when z
is mixed valued. The products il, —=zp(bond) are given in
Table VI where our thresholds p, (bond) as obtained in I
are used. Agreement with Eq. (4.1) is reasonable.

In order to calculate the critical percolation volume, it
is necessary to know the filling factor of a lattice under
consideration. When a lattice is periodic and simple as is
the case for a square, triangular, honeycomb, and kegome
lattice, the filling factor f is obtained by enumerating the
area occupied by close-packed hard circles associated
with lattice sites, because these close-packed hard circles
do not change the connectivity of a lattice. This does not
hold any longer when close-packed hard circles are allot-
ted to lattice sites of a dice lattice, because the circles on
the opposite corners along the short diagonal of a
rhombus become in contact with each other despite the
fact that these two sites are not topologically connected.

One way of avoiding this troub1e in the case of a dice
lattice is to take the cross-sectional view of a three-
dimensional sphere on a three-dimensional simple-cubic
lattice as illustrated in Fig. 5. The packing object at each
vertex looks like either a three™or six-leaf clover. As is
clearly demonstrated in the figure, the clover at each ver-
tex does not violate the connectivity of the lattice.

A similar recipe of assigning an n-leaf clover with an
n-bonded vertex is shown to work even in quasiperiodic
and disordered lattices. Some detailed explanation is
given in the Appendix. The filling factors thus deter-
mined for Penrose tiling and its dual lattice are, respec-

TABLE VII. Critical volume fraction.

Lattice

square
kagome
dice
Penrose
dual of Penrose
triangular

'Exact.

p, (site)

0.5930
0.6527
0.5851
0.5837
0.6381
05'

0.7854
0.6802
0.7854
0.7854
0.7106
0.9069

u, =fp, (site)

0.466
0.444
0.459
0.459
0.453
0.453

v, /v, (emp)

1.04
0.99
1.02
1.02
1.01
1.01
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tively, about 0.7854 and 0.7106.
When these values are used in Eq. (4.2) to calculate v„

we achieve the results as shown in Table VII, and we can
see that they approximately satisfy the empirical predic-
tion as expressed by Eq. (4.2).

In this way, the numerical analysis shows that both v,
and q, are dimensional invariants for some two-
dimensional systems both periodic and nonperiodic
where the coordination could be single valued or mixed
valued. This suggests that Eqs. (4.1) and (4.2) would hold
generally even when the system is disordered.

V. SUMMARY AND DISCUSSION

In this article, we have investigated the percolation
problem using the idea of finite-size scaling and Monte
Carlo simulations. %'e have studied five different kinds of
two-dimensional lattices —square, kagome, dice, Penrose,
and dual lattice of Penrose. The reason why we have
chosen these particular lattices is the following. The so-
called "universality" concerning critical exponents has
previously been studied only for periodic lattices where
the coordination number is single valued. Since actual
systems in which the concept of percolation plays an im-
portant role are mostly disordered, it is interesting to see
if this "universaIIty" survives even in systems without
periodicity and/or without the single-valued requirement

for coordination numbers. The above-mentioned five lat-
tices meet our needs as clearly presented in Table II. The
information obtained from our study is summarized as
follows.

(1) We have evaluated critical exponents —v for the
correlation length, fractal dimension D, ~ for the cluster
number at p =p„a for the total number of clusters, P for
the strength of the percolating cluster, and y for the
mean size of finite clusters. Each of them agrees well
with the value predicted from the scaling theory. This
means that these exponents are all dimensional invari-
ants, and accordingly, "universality" is retained in the
lattices studied in this paper.

(2) Empirical laws are fulfilled concerning the product
g, =zp, (bond), z being the average coordination number
and p, (bond) being the bond percolation threshold and
concerning the product v, —:fp, (site), f being the packing
fraction, and p, (site) the site percolation threshold. The
latter product is identical with the percolation volume
fraction which has an important meaning especially when
percolation at macroscopic level is a matter of concern.

Our final objects are disordered systems. From the
analysis of our results, we are almost certain that there
exists "universality" in disordered systems. Furthermore,

(b)

(c)

(c)
(e)

FIG. 6. Portions of packing spheres in regular polygons for
(a) n =3, (b) n =4, (c) n =5, (d) n =6, and (e) n =7.

FIG. 7. Seven different clovers at seven different vertices in
Penrose tiling.
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Regular polygon
of n edges Filling factor

TABLE VIII. Filling factors of regular polygons with n

edges for {a) n =3, (b) n =4, (c) n =5, (d) n =6, and (e) n =7.
The corresponding 6gure polygons with packing objects are
shown in Fig. 6.
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our prediction is that "universality" holds in three-
dimensional systems as well.
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APPENMX

When each pair of nearest-neighbor lattice sites in a
system are connected by a bond, the whole space is 611ed
with various kinds of polygons. For a simple and period-

FICr. 8. Seven different vertices (dashed curves) (a) —(g) in
two-dimensional Penrose tiling and the corresponding seven
different polygons (solid curves) in the dual lattice of Penrose
tiling.

TABLE IX. Volume fractions of packing in seven different polygons in a dual lattice of two-
dimensional Penrose tiling.

Polygons in a
dual lattice
of Penrose

Volume
of

polygon Frequency

Volume fraction
of

polygon

Volume fraction
of

packing

(a)

(b)

(c)

{d)

(e)

(g)

2&S~
8

5w

8

8

~5~'
8

3&SR
8

—5+ —7

—3

—7T

1

8{3~—4)

7v.—11
8(3~—4)

2(7s—11)
8(3~—4)

5(5—3~)
8(3r—4)

v.+ 1

8(3~—4)

7—4v.

8{3w—4)

3(7w —11)
8(3~—4)

0.1760

0.0750

0.3355

0.0467

0.0774
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ic lattice, there appears only one kind of unit polygon,
e.g., a square in a square lattice, a triangle in a triangular
lattice, and a hexagon in a honeycomb lattice. A kagome
lattice has two kinds of unit polygons —a triangle and a
hexagon.

The filling factors for these lattices are evaluated by
enumerating the area occupied by close-packed hard cir-
cles associated with lattice sites. If we look at the prob-
lem from a slightly difFerent viewpoint, the filling factors
can be obtained by calculating the shaded regions in each
regular polygon as shown in Fig. 6.

When the three- and six-leaf clovers are associated as
the packing objects with vertices in a dice lattice as in
Fig. 5, the filling factor in each rhombus is m/4 which is
identical with the filling factor in a square as shown in
Table 8(b). The correspondence is clear because the
leaves in each rhombus are the projections from the
cross-sectional view of the spheres associated with the
lattice points of a three-dimensional simple-cubic lattice,
and this cross-sectional view in three dimensions is noth-
ing but a regular square with four quarters of a circle.

A Penrose lattice is tiled with two kinds of rhombi.

When we employ the same recipe as that used in a dice
lattice; the filling factor of a Penrose lattice is identical
with that of a square lattice, i.e., f =a/4. Seven different
clovers on seven different vertices in a two-dimensional
Penrose lattice are presented in Fig. 7.

Unit polygons in a dual lattice of Penrose are not
necessarily regular as can be seen from Fig. 8, but here
again we can generalize the above-described recipe such
that the filling factor in each n polygon is equivalent to
the value described in Table VIII even if the polygon is
not regular. This generalization is verified by the fact
that Penrose tiling as well as its dual lattice are obtained
by projecting the cross-sectional view of a five-
dimensional hypercubic lattice into two-dimensional
space. Now, what we have to do is to calculate the prod-
uct of (a) the volume of each polygon in Fig. 8, (b) its fre-
quency, and (c) the filling factor of the corresponding reg-
ular polygon in order to obtain the volume fraction of the
filling object in the po1ygon under consideration. This
product is given in the last column of Table IX for each
polygon. The filling factor of a dual lattice of Penrose is
given by the sum of these products to be 0.7106.
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