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Interaction between longitudinal-optical-phonon modes of a rectangular quantum wire
and charge carriers of a one-dimensional electron gas

Michael A. Stroscio
U.S. Army Research Ofhce, P.O. Box 12211, Research Triangle Park, North Carolina 27709-2211

(Received 10 April 1989)

The Frohlich Hamiltonian describing the interaction of longitudinal-optical (LO) phonons and
charge carriers in a three-dimensional polar semiconductor is generalized to the case where phonon
modes are confined in two of the three spatial dimensions. The generalized Frohlich Hamiltonian is
used to calculate the total scattering rate for electron —LO-phonon scattering of electrons traversing
a one-dimensional quantum wire with a rectangular cross section.

I. INTRODUCTION

Epitaxial techniques for the growth of new compound-
semiconductor structures have advanced to a level where
it is possible to grow wirelike regions of low-band-gap
semiconductor material surrounded completely by re-
gions of higher-band-gap semiconductor material. In
particular, such wirelike structures have been grown with
rectangular cross sections having dimensions small rela-
tive to the thermal dearoglie wavelength. ' In these struc-
tures the electron —LO-phonon scattering rate is afFected
not only by changes in the electron wave function due to
the confining rectangular potential but also by changes in
the Frohlich Hamiltonian caused by phon on
confinement. Indeed, Fasol et al. have recently present-
ed striking evidence of phonon confinement. Size eft'ects
on the total scattering rates for polar-optical-phonon
scattering of one-dimensional (1D) and two-dimensional
(2D) electron gases in synthetic semiconductors have
been evaluated previously by Leburton. In this paper,
Leburton's treatment of 1D electron —LO-phonon
scattering is extended by incorporating e6'ects of phonon
confinement in the Frohlich Hamiltonian.

boundary conditions requiring the LO-phonon potential
to vanish in both the y and z directions. HF, ' may be
written as

II(3D) y y e
—iK.r(a +a t

)
K

where the phonon wave vector is K= (k, k, ) and
1/2

2me %co

VK Cp

(2.1a)

(2.1b)

~F y ~Ke [e (ak, k +a —k, —k, )

k, k, &0

'k
+e '

(ak, —k +a —k, k )l . (2.2)

To derive the Frohlich Hamiltonian for phonons
confined in two dimensions, we first define

in Eq. (2.1b) A'co is the phonon energy, V is the crystal
volume, e is the high-frequency dielectric constant, and
ep is the low-frequency dielectric constant. Writing the
sum over E as a sum over k and as a sum over positive
values of k„'

II. FROHLICH HAMILTONIAN FOR LO PHONONS
CONFINED IN TYVO SPATIAL DIMENSIONS 1+(k)

2
(ak, k +ak, —k, ) (2.3a)

Licari and Evrard have calculated the operators
describing the interaction between an electron and the
phonon modes of an ionic crystal slab and have derived
explicit expressions for two classes of phonon modes for
such a slab: the bulklike sinusoidal modes and the local-
ized surface modes. Furthermore, one of the operators
derived by I.icari and Evrard is equivalent to the
Frohlich operator for bulk LO phonons in the limit as the
slab becomes very thick. The electron —surface-phonon
interaction operator of Licari and Evrard 1eads to the
classical image-charge theory result for the interaction
energy of an electron external to a semi-infinite crystal
and the polarization eigenmodes of the crystal.

To derive the Frohlich Hamiltonian describing the in-
teraction of LO phonons and electrons for a 1D electron
gas, the three-dimensional Frohlich operator for scatter-
ing in bulk semiconductor material, HF, ', is subjected to
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a (k)= (ak k

—ak k ), (2.3b)

A+(k )~= —[a+(k„,k )+a+(k„,—k )],1
(2.4a)

A (k )+=— —[a+(k„,k )
—a+(k„,—k )],

2
(2.4b)

+ik y +ik z
expanding both e ~ as well as e ', and taking
ky +I~/Ly and k, =+n m /L, to ensure that the slab
modes vanish at y =+L /2 and z =+L, /2 results in
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and take a+( —k) and a ( —k) to be the adjoints of
a+( —k) and a ( —k), respectively.

Then by defining
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The one-dimensional Frohlich Hamiltonian of Eq.
(2.5a) describes the interaction of an electron and LO-
phonon modes characterized by a traveling wave in the x
direction and standing waves in the y direction and z
direction. This result is approximate since the phonon
modes in the y and z directions are not identically zero at
y =+L /2 and z =+L,/2. Physically, these modes
should be small at heterojunctions since the dielectric
constant changes at the heterojunction interface and
since longitudinal modes propagate freely only at fre-
quencies where the dielectric constant vanishes; at other
frequencies the modes are damped. Similar conclusions
are reached on the basis of shell-model calculations.

III. SCATTERING RATE
FOR ELECTRON —LO-PHONON INTERACTIONS

IN A QUANTUM WIRE

The 1D Frohlich Hamiltonian of Eq. (2.5a) leads to
especially simple scattering matrix elements when elec-
tron states are confined in infinitely deep potential wells
in the y and z directions; in this case the electronic wave
functions are given by eigenstates orthogonal to the pho-
non modes of Eq. (2.5a). While treatments with more
realistic confining potentials are avaliable for LO pho-
nons described by the 3D Frohlich Hamiltonian, they
generally involve the extensive app1ication of numerical
techniques. Additionally, numerical treatments based on
a 2D Frohlich Hamiltonian have tended to emphasize su-
perlattice structures; many such works are cited in Ref. 8.
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where L„ is the length of the quantum wire,
I. /2 ~ y ~ l. /—2, and I., /2 ~ z ~ l., /—2. The corre-

sponding electron energy is

$2~2
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Z

(3.2)

Assuming that the Fermi-Golden rule gives an accurate
value of the probability of making a transition from an
initial state with electron wave vector q to a final state
with electron wave vector q, the transition probability is

w ' (q, q')= lM ' l'6(E(q ) E(q)+Ace) ~ (3.3)

where e stands for emission, a stands for absorption,
E(q') is the energy of the electron in the final state, E(q)
is the energy of the electron in the initial state, the upper

In the present treatment, electron-LO-phonon scattering
rates will be calculated in the extreme quantum limit
(EQL) where only the lowest subband is occupied. For
the infinite well potential, the ground-state 1D electron
wave function has the well-known form
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(lower) sign in the 6 function corresponds to emission (ab-
sorption), and where

(3.4)

is the matrix element for electron-LO-phonon interac-

tion; the phonon occupation number is taken as Nz+1
or as Nz depending upon whether the process under con-
sideration is emission or absorption and upon whether
the state under consideration is the initial or final state.
The y-dependent and z-dependent factors in Eq. (3.4) are
given by
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where the four expressions defined by Eqs. (3.5a) —(3.5d)
correspond to the four terms of Eq. (2.5a) and the values
of m and n correspond to those of Eq. (2.5a). The non-
vanishing terms in Eq. (3.5a) —(3.5d) are those of Eq.
(3.5a); using the identities cos3x =4cos x —3cosx and
cos5x =16cos x —20cos x+5 cosx, the integrals P „
may be evaluated analytically. The lowest-order P „
follow: P„=(8/3m. ), P, 3 =P3, =

—,'(8/3~),
P, 5 =P5& = —

—,', (8/3n), P33 —,', (8/3m ), P35 P53
= ——„',(8/3m), and P&z= „'„(8/3') . The phonon ma-

trix elements are evaluated by use of Eqs. (2.3a), (2.3b),
(2 4a), and (2 4b), as well as the
amplitudes (Nz+ l~ —az~NK) = —(Nz+1)' and

The matrix element of Eq. (3.4) is then a product of
three factors: P „ for the y- and z-dependent factors of
the electron wave functions, +(NK+1)' for the phonon
amplitudes, and 6, from the orthonormality of

&x qx+ kx

the x-dependent factor of the electron wave function.
The matrix element for a given phonon mode may then
be written as

M '„=+2o,"
5

&x &x+kx
2
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(3.6)

where

The total transition rate 1/~, D(q ) for electron —LO-
phonon scattering is obtained by first summing Eq. (3.6)
over the continuous values of k and the discrete values
of k and k„by then multiplying by the quantum-wire
volume V, and finally by substituting the resulting expres-
sion in Eq. (3.3):

~a'~ V(N +,+, )Y—
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X6(E(q +k ) E(q )+fico), —(3.7a)

y Z m=1, 3, 5, . . . n=1, 3, 5, . . . k2+
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The dominant contribution to the sum over phonon
modes in Eq. (3.7b) is made by the mode with m =n =1;
this conclusion follows from the relations P&3= —,'P»,
P33 2'5P» and for any remaining allowed combination

of i and j, P; —,', P&&.

For the cases of phonon emission (e) and absorption
(a), Eq. (3.7a) may be expressed in a more convenient
form by replacing the argument of the 5 function by
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E=fi q /2m' . (3.9c)

10
IV. DISCUSSIQN

Equation (3.9a) gives the total scattering rate for emis-
sion (e) or absorption (a) of Lo phonons. It is instructive
to compare I,D of Eq. (3.7b) with the results of Lebur-
ton. In particular, for scattering to or from the lowest
mode (m =n =1),

I1D(o)
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(Ly/Lo)(L /Lo)[(E /m) +(Lo/L ) +(Lo/L ) ]
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(3.8)

@=+1 for emission, and e= —1 for absorption. In-
tegrating Eq. (3.7a) over k and using Eq. (2.Sb) to elimi-
nate a' yields
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FIG. 1. I', D of Eq. (4.1) is displayed as a function of K„ for
four pairs of (L~/Lo, L, /Lo), where L =0[A/(2m co)]' . IP~
is displayed using dashed lines for four pairs: {1,1), {2,2), (3,3),
and (4,4). The values of I» calculated in Ref. 3 are displayed
for the same values of (L~/LO, L, /Lo); solid lines are used to
display the results of Ref. 3.

where X„=k Lo and Lo=(A'/2m*re)' . In Fig. 1,
dashed lines are used to display IP& as a function of K
for several values of the pair (L~/Lo, L, /Lo); namely,
the pairs are (1,1), (2,2), (3,3), and (4,4). The results of
Leburton are displayed on Fig. 1 as solid lines for the
same pairs. Figure 1 illustrates that the magnitude of I&D
is at least one half of its value at E =0 unless
K„~~[( L/oL)2+(Lo/L, )2]'~; for small K the
discrete values of k and k, control the magnitude of I'&D.
For selected values of E, inclusion of the modes corre-
sponding to P, 3 and P3& can lead to values of I I@', nearly a
factor of 2 larger than those of the corresponding I', D.
Equation (3.7b) illustrates clearly the extreme importance
of the mode corresponding to P», by comparison, elec-
tron scattering with the mode corresponding to P&3 or
P3, is described by a value of I &Dt' satisfying I&D & —,', I',D.
While the mode corresponding to P» dominates in the
EQL, the higher-order phonon modes can be expected to
make larger contributions when the electron wave func-
tions from higher subbands are included.
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