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Percolation in two-dimensional lattices. I. A technique for the estimation of thresholds
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We put forward a relatively simple method to estimate reliable percolation thresholds p, of two-
dimensional (2D) lattices both for the bond and site problem. On the basis of this method, we actu-
ally evaluate p, for several 2D lattices by analyzing the results which we obtain from Monte Carlo
simulations. Our method enables us to achieve three significant figures for p, even when the system
size N is less than 300X 300 and the increment hp of the concentration p of intact bonds or sites is
0.002. We ascertain that our method works both for the bond and site problem, both for periodic
and nonperiodic lattices, and both for lattices with single-valued and mixed-valued coordination.

I. INTRODUCTION
It was only about 30 years ago when Broadbent and

Hammersley' first introduced the concept of percolation
into the realm of science. Since then, this concept has
literallyp ercolated into a remarkably vast area of science.
The number of papers published per year on percolation
exceeded three hundred by 1987 and keeps increasing.
(For reviews of percolation, see, for instance, Refs. 2 to
7.) Among various reasons why percolation is very popu-
lar, the following three are the leading factors.

In the first place, percolation is an interesting
mathematical quiz which is comparatively easy to ap-
proach and yet reasonably telling, thus being appropriate
for brain exercises. The second point is that the ideas of
percolation are applied to many problems of completely
different types of fields ranging from natural sciences to
sociological phenomena. The very first theme of Broad-
bent and Hammersley' was the motion of gas molecules
through the maze of pores in carbon granules filling a gas
mask. The infection of tree diseases in an orchard, the
spread of a forest fire, and the propagation of rumors
are popularly mentioned examples. Even when we
confine our discussions to physics alone, the list includes
topics at a macroscopic level such as electrical conduc-
tion in a mixture as well as topics at a microscopic lev-
el' such as magnetic properties, classical localization,
and hopping of electrons. It is also pointed out that some
theoretical explanations for the appearance of high-T, su-
perconductivity are also based upon the concept of per-
colation. As a matter of fact, examples of problems for
which the concept of percolation plays an important role
are too numerous to enumerate.

The third reason why percolation is widely studied lies
in the fact that percolation serves as a relatively tractable
model for the investigation of critical phenomena in gen-
eral. "' Among other things, it is easy to construct an
intuitive picture of critical phenomena near the percola-
tion threshold, and consequently the examination of criii-

cal behaviors in the percolation problem provides us with
clues to a better understanding of phase transitions ob-
served in more subtle systems.

-Despite some intensive efforts to establish the concrete
grounds of percolation theory, problems which have been
solved by mathematically rigorous arguments' are rather
limited, and even the scaling hypothesis which character-
izes critical phenomena is still hardly beyond a matter of
conjecture. In fact, it is the power of computers that has
made percolation theory what it is today. The central
themes of percolation which need further analyses are (1)
determination of the reliable values of percolation thresh-
olds for various structures, that is, for various ways of
connectivity of atoms and (2) confirmation of the ex-
istence of "un&uersality" in the sense that the critical ex-
ponents are dimensional invariants, depending only on
the dimension d of lattices and therefore being indepen-
dent of the details of the structure of each lattice. '"
We concern ourselves with the former theme' in the
present paper while the latter theme will be treated in the
succeeding paper' on the basis of Stauffer's cluster num-
ber hypothesis.

Except for some lucky lattices which happen to have
special topological advantages, percolation thresholds
have to be estimated numerically by means of computer
simulations. Naturally, the larger the system size to
study, the more accurate the values of the threshold ob-
tained therefrom. Accordingly, there seems to be no end
to the desire for the increase of the system size in most of
the computer simulations of this kind. But in practice, it
is far more desirable to have a method by which we could
achieve a reasonably accurate value of the threshold from
the study offinite size systems -without making the system
size very large. In addition, it is nicer if we could
somehow get an idea about the error bar for the value of
the threshold determined thereby.

Under this situation, it is a purpose of this paper to
make a proposal concerning the estimation of thresholds
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as well as of their error bars for percolation in two-
dimensional (2D) lattices. We also carry out Monte Car-
lo (MC) simulations of percolation, analyze their results
using the technique we propose, and derive percolation
thresholds of several 2D lattices.

We explain the scheme of our proposal concerning the
estimation of thresholds in Sec. II and concerning the es-
timation of errors bars in Sec. III. The method of MC
simulations and results are presented at length in Sec. IV
while a summary is found in Sec. V.

II. EFFECTIVE THRESHOLD

What is percolation anyway? Imagine a set of N sites,
pick up M sites in a completely random manner out of
the N sites, and put an atom on each of the M sites. We
call a site with an atom on it an "occupied" site while a
site without an atom on it an "empty" site. Then, we
connect each pair of nearest-neighbor occupied sites by a
bond and ask if we can find a cluster —a group of occu-
pied sites connected by bonds, each between a pair of
nearest-neighbor occupied sites —which extends from
one side to the opposite side of the system, say from top
to bottom or from left to right, for a given value of
p =M/N. When we find such a cluster, we say that this
cluster "percolates" through the lattice. This problem is
generally named "site percolation. "

On the other hand, we can also define "bond percola-
tion" as follows. We connect, by a bond, each pair of
nearest-neighbor sites (here, sites to be considered being
all the sites in a system), denote the total number of
bonds by X, and pick up M bonds in a completely ran-
dom fashion out of the N bonds. We call each of the M
bonds thus picked up an "intact" bond while each of the
other (N —M) bonds which are not chosen is named a
"broken" bond. Here again, we ask a question whether
or not there exists a cluster composed of connected intact
bonds which penetrates from one side to the opposite side
of the lattice (say from top to bottom or from left to
right) for a given value of p =M/N. If such a cluster ex-
ists, we call it a "percolating cluster. "

It is also possible to connect, by a bond, a pair of
second- and further-neighbor occupied sites. This is
named "site percolation" with further neighbors. A
counterpart for bond percolation is also defined by con-
necting, by a bond, a pair of nearest-second- and further-
neighbor sites out of all sites in a lattice and thereafter re-
move some of the bonds thus constructed. Both the site
and bond percolation with further neighbors lead to re-
sults quantitatively modified but qualitatively of no
di8'erence from those of the initial percolation which is
defined by nearest-neighbor bonds alone. Therefore, we
confine ourselves to the latter case in this paper.

A. Threshold

The central idea of percolation theory is the following
assertion; when both X and M become infinite under the
condition that p is kept finite, we find for a given lattice
the critical percolation concentration or the percolation
threshold, denoted by p„such that there always exists
one percolating cluster for p ~p, while there exists no
percolating cluster at all for p &p, . The important point
is that, as long as the structure of the background lattice
is the same, the value p, is always the same in spite of the
random configuration of a percolating cluster which
varies from sample to sample.

It is generally dificult to determine, analytically, the
value of the threshold p, for a given lattice. But for some
special and lucky types of lattices, geometrical considera-
tions enable us to derive thresholds exactly. To date, ex-
act thresholds are known for a square, triangular, and
honeycomb lattice concerning the bond problem and for
a triangular and kagome lattice concerning the site prob-
lem. Some details of these exact calculations will be
given in what follows if necessary.

B. Rightward and downward percolating clusters

The idea underlying our method is the analysis of the
probability R =Rz(p) that a lattice composed of N ele-
ments percolates at concentration p, elements being ei-
ther sites or bonds. Here we study the following three
definitions:

Rz(p): the probability that we find a rightward percolating cluster,

Rz(p): the probability that we find a downward percolating cluster,

R&(p): the average of Rz(p) and Rz(p) given by the relation,

Rn (p)—:—,'[Rx(p)+Rx(p)] .

(2. la)

(2.1b)

(2.1c)

In our MC work, Rz(p) for X =R or D is determined
for each "discrete" value of p in a given type of lattice of
a given size ¹ In order to express R~(p) as a function of
"continuous" p,values, it is convenient if we could fit
Rz(p) to some approximate function through the least-
mean-square method. The curve fitting is carried out us-
ing the error function because dR&(p)/dp is expected to
behave like the Ciaussian distribution as '

dR~(p)

GP

1 1 p p(N)—
exp

&2vr6~ 2
(2.2)

where p, (N) is the concentration at which the slope of
Rz(p) is the largest and b,~ is the standard deviation
from p, (N). The function R&(p) thus defined is the error
function which has properties that
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R~~(p)= —,
' at p =p, (N), (2.3a) in its matching lattice X is prohibited, and vice versa.

Then, the relation
that

p, (oo:site;X)+p, (m&:site;X )=1 (2.5)
the slope of Rz(p) is largest at p =p, (N),

and that

[R~(p) —
—,'] is an odd function

with respect to [p —p, (N)],

(2.3b)

(2.3c)

where X =R or D.
Discussions to follow remain unaltered as long as

R~(p) fulfills the properties as stated by Eqs.
(2.3a) —(2.3c), although the form given by Eq. (2.2) is
mathematically most reasonable.

While the definition of a percolation threshold is clear
cut when the system size N is infinite, this is not the case
when N is finite. Let us define that the e6'ective threshold
for each kind of percolation is given by p, (N) in a system
of size N. Either when the symmetry of a lattice has
some appropriate property or when the system size N is
large enough so that the symmetry of a lattice does not
matter, we have p, (N) =p, (N) and Az = b,z. When this
is the case, we denote an effective threshold by

C. Dual lattice and matching lattice

p,"(N)—:p, (N)=p, (N) .

We assert in the rest of this section that p,"(N) thus
determined for finite size N serves as a very good approxi-
mation for the percolation threshold of an infinite lattice.

is satisfied.
Both Eqs. (2.4) and (2.5) are the well-known relations

for infinite lattices. In the following, we discuss problems
of similar kinds for finite systems. Since what a dual lat-
tice is to bond percolation as what a matching lattice is to
site percolation, we mainly discuss the relation between
an initial lattice and its dual lattice concerning the bond
problem, but it must always be remembered that the
same argument holds with the relation between an initial
lattice and its matching lattice concerning the site prob-
lem.

From now on, we employ the description as follows.
When we discuss bond percolation, we denote by p the
concentration of intact bonds in an initial lattice X., and
by q the concentration of intact bonds in its dual lattice

This, of course, is similar to saying that, when we
discuss site percolation, we denote by p the concentration
of occupied sites in an initial lattice X and by q the con-
centration of occupied sites in its matching lattice X

Suppose we draw both initial lattice X and its dual lat-
tice X" in the same plane. In the first place, for a given
value of p, we choose M =pN bonds in a random manner
out of total N bonds in X, and decide these M bonds to be
intact. Then at each intersection of a bond of X and a
bond of X", we assume that a bond of X" is intact if a
bond of X is broken, and that a bond of X" is broken if a
bond ofX is intact. This inevitably leads to

p+q =1 . (2.6)

p, ( oo:bond;X )+p, ( co:bond;X") = 1 . (2.4)

A matching lattice X is constructed by drawing, in
addition to the bonds of the initial lattice X, all possible
diagonal lines in each cell (polygon) of X. From a
straightforward geometrical observation, it follows that if
there exists a rightward percolating cluster of sites in an
initial lattice X, a downward percolating cluster of sites

For any 2D lattice, it is always possible to define its
dua/ lattice 'When . an initial lattice X is given, its dual
lattice X" is constructed by assigning one and only one
site of X" with each cell (the smallest polygon made of
bonds) of X and connecting a pair of these new sites of

if they belong to neighboring cells of L which share a
bond of X. In this way, it becomes possible to realize the
situation that each bond of X" intersects one and only
one bond of X. It is also easy to see that the whole story
is vice versa in the above procedure; that is, one and only
one site of X is assigned with each cell of X and each
bond of X intersects one and only one bond X . In other
words, when X" is a dual lattice of X, then X is a dual
lattice of X".

From this definition of a dual lattice, we can easily con-
clude that, if there exists a rightward percolating cluster
of bonds in an initial lattice X, a downward percolating
cluster of bonds in its dual lattice X cannot form, and
this is again vice versa. This naturally leads to a relation-
ship, "

From the definitions (2.1), it is ready to show

R~(p;X)+R~(q;X")=I . (2.7)

Using Eq. (2.7) and the property of R~(p) as described
by Eqs. (2.3), we can prove that

p, (N;X)+q, (N;X )=1, (2.8)

D. Some simple lattices of two dimension

Now, on the basis of Eqs. (2.1)—(2.8), let us study per-
colation in several simple lattices. In particular, we are
going to show that, for each of the following cases dis-
cussed in Sec. II D 1 —4, p,"(N) for finite size N as defined
in Sec. II B is identical with the exact threshold p,"(~ ) of
an infinite system.

I. Bond percolation in a square lattice

A square lattice is called "self-dual" since the dual lat-
tice of a square lattice is again a square lattice. Then, Eq.

and a similar relation with R and D interchanged. Note
that the well-known relations (2.4) and (2.5) for infinite
systems are realized when the limit of N~ ~ is taken in
Eq. (2.8) because, in this limit, the effective thresholds of
all kinds (i.e., both for the rightward and downward per-
colation) become identical. In other words, Eq. (2.8)
which we have derived here for finite systems is the coun-
terpart of Eq. (2.4) or (2.5) for infinite systems.
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q, (N)=p, (N), X =R or D. Besides, the symmetry of a
square lattice guarantees that

p, (N) =p, (N) =p,"(N) .

I
I
I
I

1
I
I

I

I
I
I
I
I

I

I
I
I

I

I

I
I

FIG. 1. A square lattice of size 5X5 (solid lines) and its dual
lattice (broken lines). When boundaries are chosen this w'ay,

Eq. (2.9) holds right even for very small N.

(2.4) immediately gives p, (bond;square)= —,'.' It is easy
to see that a square lattice of finite size N =LXL —is also
self-dual when appropriate care is taken of the boun-
daries of the lattice (see Fig. 1). Accordingly, we have

Then, it follows directly that

p,"(¹bond;square) =p, ( oo:bond;square) =
—,', (2.9)

which means that the effective threshold p,"(N) as defined
in Sec. IIB for finite-size N is equal to the threshold
p, ( oo ) of an infinite system.

2. Bond percolation in a triangular and honeycomb lattice

For a triangular and honeycomb lattice which are mu-
tually dual, the technique of the star-triangle transforma-
tion provides us with exact thresholds as'

p, ( T) =p, ( oo:bond;triangular) =2 sin =0.347 296,
18

(2.10)

p, (H) =p, ( oo:bond;h—oneycomb) =1—2 sin =0.652 704 .
18

(2.1 1)

When p =p, (T) and q =p, (H), the star-triangle transformation proves that the connectivity of vertices in one of these
lattices is identical with that in the other lattice. It follows then that

R~(p, (T);triangular)=R&(p, (H);honeycomb), (X=R or D) . (2.12)

Now, let us regard a triangular lattice as initial and a
honeycomb lattice as its dual. (Our argument needs no
modification even when we take the description the other
way around. ) When these concentrations p, ( T) and

p, (H) are inserted in Eq. (2.7), we get

R+ (p, ( T); triangular )+R&(p, (H); honeycomb )=1,
(2.13)

and a similar equation with R and D interchanged. From
Eqs. (2.12) and (2.13), we have for a triangular lattice,

R~(p, (T))—:—,'[R~(p, (T))+R~(p, (T))]=—,', (2 14)

which leads to

p,"(N:bond; triangular )=p, ( oo:bond; triangular ),
(2.15a)

p,"(N:bond; honeycomb ) =p, ( oo:bond; honeycomb ),
(2.15b)

for finite-size X. Here again, the efFective threshold
p,"(N) of finite-size N as defined in Sec. II B is identical

with the exact threshold p, ( oo ) in a triangular and
honeycomb lattice.

3. Site percolation in a triangular lattice

Since we cannot draw any further diagonal line in a tri-
angle, a triangular lattice is self-matching, which directly
yields'

p, ( oo:site; triangular ) = —,
' (2.16)

4. Site percolation in a kagome lattice

A couering lattice X', which is obtained by locating a
site ofX' at the center of each bond of an initial lattice X
and connecting, by a bond, two sites of X' if and only if
the corresponding two bonds of X meet at a site of L.
Note that, when the coordination number of an initial
lattice is z, that of its covering lattice is 2(z —1). In this

Following the argument analogs to that for bond percola-
tion in a square lattice, we can readily show that

p,"(N:site;triangular) =p, ( oo:site;triangular) =
—,
' .

(2.17)
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way, the connectivity of an initial lattice is perfectly re-
tained in its covering lattice.

Consequently, we readily obtain the relation

is the case both for bond and site percolation in all the
lattices we study.

III. EXTRAPOLATION TO INFINITY
p, (site;X')=p, (bond;X) . (2.18)

Since a kagome lattice as illustrated in Fig. 1(a) is the
covering lattice of a honeycomb lattice, we have

p, ( oo:site;kagome) =p, ( ao:bond;honeycomb) (2.19)

p,"(N:site;kagome) =p, ( oo:site;kagome) . (2.20)

Since the initial-covering topology holds even in lattices
of finite sizes when an appropriate care is taken of the
boundaries of the lattices, we can derive from Eq. (2.15b),

The percolation threshold p, of an infinite lattice, when
it is not obtained exactly, is normally estimated through
the following two steps: (1) to calculate the eff'ective
threshold p, (N) for finite size N by some definition, and
(2) to extrapolate p, (N) into the limit of N~co based
upon some rule. As for the first step, we have just pro-
posed one definition of the efFective threshold p,"(N) in
the preceding section. As for the second step, we make
use of a relation due to scaling hypothesis, "' the rela-
tion being for the correlation length g as expressed

5. Other lattices

We have shown in the above that, for five cases where
some special aspects of lattice topology enable us to
evaluate exact thresholds for infinite lattices, the same as-
pects of topology help us to show that, even when system
size N is small, the eff'ective threshold p,"(N) of each lat-
tice is, in principle, identical with the threshold of a cor-
responding infinite lattice. Concerning lattices other than
those mentioned above, it is neither to derive an exact
threshold nor to prove that the efFective threshold p, (N)
serves as a good approximation of the exact threshold.
Our prediction, however, is that, even though we cannot
give a concrete proof for other lattices right now, the
effective threshold p, (N) for finite N, as defined in the
first part of this section, would be reasonably close to the
percolation threshold of an infinite system. Actually, in
sections to follow, we show by MC simulations that this

(p, (N) —p, ( (3.2a)

or

p I(N )
—

p + g xL —i Iv (3.2b)

where A is some constant, positive or negative, and
superfix X denotes the type of a percolating cluster.

It is also important to know the accuracy of p, thus
determined. We assert that we measure the degree of ac-
curacy or the error bar in the following way. That is to
say, we introduce two probabilities for a lattice of finite-
size X:

(3.1)

where v is a critical exponent which is analytically shown
to be —', . When p =p, (N), the correlation length
reaches to the linear dimension L:&N o—f the lattice.
Then we have

Rz(p): the probability that we find a cluster which percolates both in a rightward direction

and in a downward direction, (3.3a)

Rz(p): the probability that we find either a rightward percolating cluster or a downward percolating cluster .

(3.3b)

I=R AD,
U=R UD,

R~(p') = ,' Ã~(p»)+Rid(P)) =—,'—IRAN(p»)+RZ(p) ) . —

(3.4a)

(3.4b)

(3.5)

The initial-dual relation for bond percolation (or the
initial-matching relation for site percolation) also exists;

R~(p;X)+R~(q;X" or X )=1,
p+q=1 .

Again from definition,

Rr'(p) Rx (p') Rx~(p'»— —

(3.6)

(3.7)

where the equal signs hold in the limit of N~ oo. We as-

Here, I denotes "intersection" and U, "union. " From this
definition we can write

I

sume that the efFective threshold for R~(p) or R~(p) is
also obtained from the error function derived from Eq.
(2.2) with I=I or U. Then, it follows that

p,'(N) ~p, (N) ~p, (N), (3.&)

where the equal signs hold for X—+ ~.
By making use of Eq. (3.2), we obtain three values of

thresholds p,"( oo ), p, ( oo ), and p, ( oo ), which are the ex-
trapolations, respectively, from p,"(N), p, (N), and p, (N)
to X~~. Our assertion in the previous section amounts
to saying that p,"(~ ) gives a good approximation to the
percolation threshold of an infinite system. Our assertion
in this section is that the largest of ~p, ( ~ ) —p, ( ~ )

~
and

~p,"(~ ) —p, ( 00 )
~

serves as a measure for the accuracy of
p,"(~ ). There may be other ways of estimating the error
bar; e.g. , the error bar may be calculated from the root-
mean-square deviation in the curve fitting by means of
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Eq. (3.2b). Compared with this kind of estimation, the
advantage of our method as stated above lies in that it is
concerned with the values p, ( ~ ) with X = A, I, and U
extrapolated into infinity.

IV. MONTE CARLO SIMULATIONS

Now we are ready to carry out MC simulations of per-
colation. We first construct a desired lattice composed of
N elements (either sites or bonds). Then each MC run
consists of the following two steps: (1) a random choice
of M elements out of the N elements, and (2) the cluster
analysis first to determine the number n., of s clusters, an
s cluster being a cluster composed of s connected ele-
ments, for all values of s, and then to see if there exists a
percolating cluster. This percolating cluster could be R,
D, I, or U.

The construction of a desired lattice is easy when the

lattice under consideration is regular and periodic, while
it is not an easy task to construct a Penrose lattice espe-
ciaHy when X is large. One of the present authors
(Sakamoto ) has invented a quick algorithm to obtain a
Penrose lattice of any size by means of the deflation tech-
nique. The first step of each MC run —choosing M ele-
ments by means of random numbers —is the quintessence
of MC simulations. The second step of the cluster
analysis for a large system is exceedingly troublesome and
time consuming (or equivalently money consuming) un-
less some smart treatment is employed, ' ' which we have
managed to achieve (the details of the cluster analysis will
be found elsewhere).

In the construction of a desired lattice, we prepare a
lattice which contains somewhat larger number of sites
than a desired number X. Thereafter, we cut out a por-
tion of a square shape containing approximately X sites.
We use this portion not only for the study of site percola-
tion but also for the study of bond percolation. Since the

(c)

FIG. 2. Some two-dimensional lattices; (a) kagome, (b) dice, (c) Penrose tiling, and (d) dual lattice of Penrose.
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number of bonds in a lattice with the coordination num-
ber z is z/2 times the number of sites, the number of
bonds in the above-described portion is about zN/2.
Consequently, the accuracies of our results to be present-
ed in what follows are expected to be higher for bond per-
colation than for site percolation.

Then, it is necessary to calculate Rz(p) as a function of
p for X =R, D, I, and U. In simulations, we shall be con-
cerned with system. s which are large enough so that the
e6'ects of the boundary conditions are negligibly small
and the relation R&(p ) =Rg (p ) holds approximately.
The method to determine R&(p) for a given p is described

1.00 1.00

0.75- 0.75-

0.50- 0.50-

0.25-

0 I

0.450 0.475 0.500

~~(p)
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o R„(p)

0.550 0.575

FICx. 3. Probabilities R&(p) (solid circles), R&(p) (open squares), and Rz{p} {open circles) for the bond problem with
%=100000=310X310. The corresponding curves are obtained by the least-mean-square fitting o6 assuming the error function.
Note that the scale on the p axis is very minute. (a) square; (b) kagome; (c) dice; (d) Penrose; and (e) dual lattice of Penrose.
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as follows.

(i) Carry out n runs of MC simulations, and find out
the number nv of runs for which a percolating cluster of
the desired type exists.

(ii) Define Rz(p) by min

We perform steps (i) and (ii) for different values of p with
increment Ap. In our simulations, we choose concentra-
tions p with each interval of Ap =0.002, and carry out
500 MC runs at each concentration. Owing to the rela-
tion (2.14) and R&(p)=R&(p), the size of the ensemble
for R&(p) is twice as large, being 1000 in this case.
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FIG. 4. Probabilities R& (p) (solid circles), R&(p) (open squares), and R&(p) (open circles) for the site problem with

N =50000=230X230. The corresponding curves are obtained by the least-mean-square fitting on assuming the error function. Note
that the scale on the p axis is very minute. (a) square; (b) kagome; (c) dice; (d) Penrose; and (e) dual lattice of Penrose.



FUMIKO YONEZAWA, SHOICHI SAKAMOTO, AND MOTOO HORI

The results thus obtained give information of Rz(p) at
discrete values of p. It is therefore necessary to carry out
curve fitting assuming the error function related to Eq.
(2.2) in order to evaluate p, (N) and b, &. We use the
least-mean-square method for curve fitting.

We study both bond and site percolation in 2D lattices
such as square, triangular, honeycomb, kagome, dice,

Penrose, and a dual lattice of Penrose. The first three lat-
tices are periodic while Penrose tiling and a dual lattice
of Penrose are quasiperiodic. Exact shapes of the last
four lattices are given in Fig. 2. The coordination num-
ber z is single valued in a square, triangular, honeycomb,
kagome lattice, and in a dual lattice of Penrose, while z is
mixed valued in a dice lattice which has z =3 and 6 and
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FIG. 5. Probabilities R& (p) of the bond problem as expressed by the error function for several values of N.
N= 10000( =100X100); N =20000( =140X140);X-50000( =230X230); and N =100000(=310X310). (a) square; (b) kagome; (c)
dice; (d) Penrose; and (e) dual lattice of Penrose.
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in Penrose tiling which has z =3, 4, 5, 6, and 7. We show
detailed results for 6ve lattices —square, kagome, dice,
Penrose, and a dual lattice of Penrose.

In Fig. 3, we illustrate by solid circles, open squares,
and open circles, three probabilities R&(p), R&(p), and
R&(p), respectively, of bond percolation which we have

evaluated by the procedures stated above. The corre-
sponding results for site percolation are given in Fig. 4.
The best curve fittings for R~(p), R~(p), and R~(p) are
achieved for 6ve lattices as shown in Figs. 3 and 4. Fit-
tings are remarkable, especially in the region where
RN(p) =0.5.
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FIG. 6. Probabilities R&(p) of the site problem as expressed by the error function for several values of N. N =5000( =70X70);.
N=10000(=100X 100); N=25000( =160X160); and N=50000( =230X230). (a) square; (b) kagome; (c) dice; (d) Penrose; and (e)
dual lattice of Penrose.
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The size dependence of Rz(p) is presented in Fig. 5 for
bond percolation and in Fig. 6 for site percolation. In
each of the ten figures in Figs. 5 and 6, we can clearly ob-
serve that the point at which R&(p)=0. 5 behaves like

the so-called fixed point. This fact lends support to our
assertion in Sec. II that, even when the system size X is
not very large, p,"(X) is very close to the threshold p, of
an infinite lattice.

0.510,

0.505-

400 200
I

100
0.535

0.530

(b)

400 200
I

100
I

I
JC

0.500 = JC 0.525 .-
g4

0.495- 0.520

0.490
0

j

0.01 0.02

L
—1/V

0.03 0.04
0,515

0 0.01 0.02

L
—1/V

0.03 0.04

0.485
400 200 100

I 0.485
400 200 100

I

~C

0.480- 0.480

0.475- JC 0.475

0.470- 0.470

0.465
0 0.01 0.02

L
—1/V

0.03 0.04
0.465

0.01
I

0.02

g-1/V

I

0.03 0,04

0.535
400 200 100

0.530-
I

J C

0.525-
J C

0.520

0.515
0

I

0.01
I

0.02
I

0.03

J C

0.04

FIG. 7. Three thresholds p, (N), p, (N), and p, (N) of the bond problem vs I ' {=N ' ). (a) square; (b) kagome; (c) dice; (d)
Penrose; and (e) dual lattice of Penrose.
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In fact, the agreement among values for difterent X is
highly impressive as demonstrated in Table I where the
values of p =p,"(X) which satisfy R~(p)'= —,

' are listed.
Even when X=5000 or L =70 for site percolation,

p,"(N) gives three significant figures and the error in the
fourth digit is +0.0003. It is rather remarkable to be able
to achieve the accuracy as high as this from simulations
of a system with the size of 70X 70.
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Penrose; and (e) dual lattice of Penrose.
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TABLE I. Thresholds p,"{X)of the bond and site problem for five different lattices with various sizes

Bond 10000
20000
50 000

100000

Square

0.5000
0.4999
0.5001
0.5000

Kagome

0.5244
0.5244
0.5246
0.5243

Dice

0.4757
0.4759
0.4759
0.4759

Penrose

0.4770
0.4768
0.4768
0.4770

Dual of
Penrose

0.5234
0.5234
0.5235
0.5233

Site 5000
10000
20 000
50 000

0.5929
0.5928
0.5928
0.5930

0.6529
0.6524
0.6526
0.6527

0.5857
0.5853
0.5852
0.5854

0.5845
0.5841
0.5842
0.5840

0.6376
0.6377
0.6379
0.6379

The situation is visually expressed in Fig. 7 for bond
percolation and in Fig. 8 for site percolation. Among
other things, let us note that p, (N) gives a perfect hor-
izontal line in any of the ten figures shown in Figs. 7 and
8. As for the error bars, the extrapolations from three
lines p,"(X),p, (N), and p, (X) versus L '~ are almost
equivalent to one another, the differences being very
small. The diff'erences p, ( ~ ) —p, ( ~ ) ~

and ~p,"(ao )
—p, ( ~ ) ~

give the error bar which is less than 0.0003.
We have decided to show all these figures because we

want to emphasize that our assertion concerning p, (X)
turns out to be correct for a wide variety of cases —both
for bond and site percolation, both for periodic and non-
periodic lattices, and both for single-valued and mixed-
valued coordination.

Another important point is that our method does not
require precise values of critical exponents in the process
of estimating percolation thresholds. This is obvious

from Figs. 7 and 8 since, in each case, p, (X) is almost
constant for various sizes X as long asia ~ 5000, the cor-
responding line being practically horizontal. Naturally,
the same feature survives for any value of critical ex-
ponent v. This is a great advantage of our method corn-
pared to most of the previous methods by which both a
percolation threshold and the critical exponents must be
searched such that they are consistent among themselves.
Therefore, many trials and errors were undergone in pre-
vious methods while our method is perfectly free from
this trouble.

Percolation thresholds thus determined are listed in
Table II both for bond and site percolation. For lattices
whose percolation thresholds have previously been de-
rived either by exact analyses' ' or by comput-
ers, ' ' we can compare our results with those previous
values and we can readily see that agreement is outstand-
ing. This fact indicates that those percolation thresholds

TABLE II. Thresholds p, derived from our simulations compared with previous results. As ex-

plained in the test, our results for the threshold are derived by making use of the finite-size scaling
where 500 MC runs are performed for each p of each size, the largest being 100000 bonds and 50000
sites.

Lattice Our result
Previous results

Theoretical Numerical

Bond Square
Kagome

Dice
Penrose

Dual of Penrose
Triangular

Honeycomb

0.5001+0.0003
0.5244+0.0002
0.4760+0.0003
0.4770+0.0001
0.5233+0.0002
0.3473+0.0002
0.6527+0.0002

05'
0.524429'
0.475591

0.347 291'
0.652 704'

0.483+0.005'

Site Square
Kagome

Dice
Penrose

Dual of Penrose

0.5930+0.0001
0.6527+0.0002
0.5851+0.0004
0.5837+0.0003
0.6381+0.0003

0.652 704'
0.593+0.005

'Exact, Ref. 13.
Pott's model, Ref. 24.

'20 MC runs for 90000 bonds, Ref. 31.
MC, Ref. 29.
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that we have evaluated here for the first time (e.g., thresh-
olds for dice, Penrose, and dual lattice of Penrose) are
very reliable. Note a,iso that, for each set of dual lattices,
thresholds in Table II satisfy Eq. (2.4).

All these beautiful circumstantial evidences suggest
that our method as explained in Sec. II extracts impor-
tant and correct information from the analysis of finite
lattices of rather small sizes, and this situation seems to
hold true in almost any kind of 2D lattices including
disordered systems.

V. SUMMARY

We have proposed a new method for evaluating the
percolation thresholds in 2D lattices from the study of
finite systems. We have also introduced a method for es-
timating the error bars of the percolation thresholds thus
obtained. We have applied these methods of ours to the
study of bond and site percolation in some 2D systems on
the basis of Monte Carlo simulations. The results
achieved therefrom definitely prove that our method is
excellent.

The outline of our method, its applications and the re-
sults obtained are summarized as follows.

(1) We define probabilities R~(p) for finding a percolat-
ing cluster of type X which could be rightward, down-

ward, average, intersection, or union.
(2) Using MC simulations, we calculate Rz(p).
(3) Assuming the error function for Rz(p), we carry

out curve fitting by the least-mean-square method to
derive the effective threshold p, (N) and the standard de-
viation a~~.

(4) We assert that p,"(N) for finite N yields a true value

close to the percolation threshold p, of an infinite system.
(5) Another assertion here is that the upper and lower

bound p, (N) and p, (N) of the effective threshold are
given from R~(p) and Rtv(p), respectively, and that the
error bar hp, of the threshold is estimated by the largest
of ~p, ( oo ) —p, ( oo )~ and ~p,"( oo ) —p, ( co )~.

(6) Values of thresholds are actually derived for several
2D lattices. These values are shown to be reliable; the re-
liability of the thresholds is guaranteed by the small error
bars of 0.0003 at most estimated by the method as stated
in (5). The thresholds obtained confirm the initial-dual
relationship expressed by Eq. (2.4).

(7) From the analysis of the results of our computer
simulations, we ascertain that the above assertion of ours
holds right both for bond and site percolation in all the
lattices we have studied. This implies that our method
works both for the bond and site percolation, both for
periodic and nonperiodic lattices, and both for single-
valued and mixed-valued coordination.

For future study, it would be interesting to investigate
the modified effective-medium approximation (EMA) for
thresholds, ' because the lowest-order EMA gives the
threshold for bond percolation to be p, =2/z which is ex-
act in a square lattice and a fairly good approximation for
any of the other lattices. Research along this line is in
progress.
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