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High-field electron transport in quantum wires studied by solution
of the Boltzmann equation
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High-field electron transport properties in a one-dimensional GaAs quantum wire are studied by
a novel method to solve numerically the Boltzmann equation with Fermi-Dirac statistics. The wire
is so narrow that quantum subbands are formed. Impurity scattering, optical-phonon scattering,
and intersubband scattering are considered in the model. It is shown that two types of electron
transport take place, depending on the electron line density and the electric field strength: (1) Elec-
trons are confined to the energy region below the optical-phonon energy 5 under strong optical-
phonon scattering around 6, and (2) they exhibit velocity runaway in the energy region above b, un-
der decreasing optical-phonon scattering with increasing electron energy.

I. INTRl3DUCTK)N

By rapid progress in semiconductor technology it now
becomes possible to fabricate one-dimensional semicon-
ductor quantum wires' with cross-sectional lengths
comparable to the electron de Broglie wavelength ( —10
nm). Since electrons have standing-wave states in the
cross-sectional plane in these wires, their motion is re-
stricted in the direction perpendicular to that plane.
Thus, their energy levels are quantized and quantum sub-
bands are formed. As a result, their state density be-
comes different from that for bulk semiconductors, and
their transport properties are expected to be greatly
changed.

Low-field transport in quantum wires has been studied
theoretically by many authors. ' It has been reported
that electrons have impurity-limited mobility as large as
10 m /V s in degenerate-semiconductor wires at low tem-
peratures where acoustic phonon scattering has little
influence on electron transport. It has also been suggest-
ed that high-performance quantum-wire devices could be
fabricated, taking the advantage of their excellent high
mobility.

On the other hand, high-field transport has been dis-
cussed rather intuitively' and two phenomena have
been predicted to occur. One is that electrons are
confined to the energy region below the optical-phonon
energy 6 since they receive strong optical-phonon
scattering around 6 due to the one dimensionality. ' '
The other is that they populate the energy region far
above 6 since they receive less optical-phonon scattering
with higher energies also due to the one dimensionali-
ty. ' ' The latter case is called velocity runaway.

It is highly interesting to study in what condition
confinement or runaway occurs or how the Pauli ex-
clusion principle for electrons affects each phenomenon.
In addition, when discussing device applications, the
great concern is the transport in high fields where
optical-phonon scattering or intersubband (between the
different quantum subbands) scattering frequently occurs.

Monte Carlo methods ' have provided a powerful,
effective way to investigate high-field electron transport
in bulk semiconductors. However, when applying the or-
dinary Monte Carlo methods to the quantum wires
directly, fluctuations in physical quantities created in
each scattering become too large to obtain acceptable
values in reasonable computing time. Thus, the
Boltzmann equation has to be solved using a powerful
computer with a well-refined algorithm, or some other
method has to be introduced.

In this paper, a novel method extended from the
transport-equation method has been developed to solve
numerically the Boltzmann equation and applied to study
high-field transport in degenerate-quantum wires. It in-
cludes intr asubb and and inter subband optical-phon on
scattering as well as intrasubband impurity scattering
with energy-dependent scattering rates. It solves the
Boltzmann equation deterministically without using any
random numbers frequently generated in the Monte Car-
lo method, resulting in no fluctuations in physical quanti-
ties. Furthermore, it only assumes that electrons popu-
late according to the Fermi-Dirac distribution functions
before the onset of the field, and it does not require any
other assumptions used in the previous methods such as
for solution forms and for boundary conditions.

In Sec. II electron quantum states in quantum wires
are shown. In Sec. III the numerical method to solve the
Boltzmann equation with the Fermi-Dirac statistics is
presented and in Sec. IV the results obtained by this
method are discussed. Finally, conclusions are given in
Sec. V.

II. ELECTRON STATES IN QUANTUM WIRE

In wires with cross-sectional lengths comparable to the
electron de Broglie wavelength ( —10 nm), electrons have
standing-wave states in the cross-sectional plane. Assum-
ing that they populate the parabolic conduction band and
are confined in the wire by infinite potential barrier, their
wave function P and quantized energy F. are written by
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FIG. 1. (a) Electron energy-band structure in a quantum wire
with three quantum subbands; (b) electron state density.

k~ N~ 7TLx & ky Ny 7TLy

where x and y indicate the cross-sectional directions and
z the line direction. The symbols L and L are the wire
widths in x and y directions, k, is the continuous wave
number in z direction, A' the Planck constant, m* the
electron efi'ective mass, and A the normalization con-
stant. Positive integers N„and N are quantum numbers
specifying quantum subbands.

The first quantum subband has a state with
N„=N =1. When L &L~, the second quantum sub-
band has a state with N =2 and N„=1, and the third a
state with N =1 and N„=2. When the wire has the
symmetry of L =L, the second subband has twofold de-
generacy with N„=2 and N =1, and with N =1 and
N =2.

Figures 1(a) and 1(b) show this situation schematically.
Figure 1(a) depicts the energy-band structure with three
quantum subbands and Fig. 1(b) the state density. The
state density is inversely proportional to the square root
of energy, diverging at energies where subbands appear.
Quantum wires are realized when the energy difference
Ed;ff between the first and the second subbands is
su%ciently larger than temperature energy so that most
of the electrons populate the first subband in an equilibri-
um state.

Here, high-field electron transport in a 10 nm X 10 nm
degenerate-GaAs quantum wire at low temperatures is
considered. Impurities are assumed to locate in the wire
with the line density of 10 m '. In GaAs, the optical-
phonon energy b, is estimated to be 5.60X 10 ' J and the
I —L-valley energy difference 5.28X10 J (9.426,). In
this wire, the energy dift'erence Ed;ff between the first and
the second subbands is 2. 68 X 10 J (4.786,).

Intrasubband scatterings by impurities and intrasub-
band and intersubband scatterings accompanied by
optical-phonon emission are considered in this method.
Intersubband scattering by impurities is neglected since

where p(Ef) indicates the postscattered state density.
The matrix element M is evaluated by using the wave
function in Eq. (2) assuming that the electron-phonon
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FICx. 2. (a) Scattering rates for electrons in the first subband
as a function of electron energy normalized to the optical-
phonon energy b; (b) scattering rates for electrons in the second
subband. Here, n —+m indicates the transition from the nth to
the mth subbands (n, m =1,2); IMP, impurity; OP, optical pho-
non; FWD, forward scattering; and BWD, backward scattering.

the impurity scattering rate decreases rapidly with the
electron energy and becomes small enough around Ed'ff.
The temperatures are assumed to be low enough so that
acoustic phonon scattering and optical-phonon absorp-
tion scattering can also be neglected. In the fields which
will be discussed in the next section, the electron energy
is small, so that electrons in the first and the second sub-
bands belonging to the I valley are considered.

The scattering rate for each mechanism is written us-
ing Fermi's golden rule,
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coupling constant is the same as that for bulk semicon-
ductors. ' Figure 2(a) shows the calculated scattering
rates for electrons in the first subband and Fig. 2(b) for
electrons in the second subband. In each figure, intrasub-
band scatterings in the nth subband are written by n —+n
and intersubband scatterings from the nth to the mth
subbands by n~m (n, m =1,2). IMP and OP indicate
impurity and optical-phonon scatterings, respectively.
FWD and BWD stand for forward and backward scatter-
ings, respectively. The electron energy is measured from
the bottom of the first subband and normalized to the
optical-phonon energy A.

As shown in Fig. 2(a), the intrasubband impurity
scattering rate diverges at zero energy, the intrasubband
optical-phonon scattering rate at b„and the intersubband
optical-phonon scattering rate at 5+E„;z. Also as
shown in Fig. 2(b), the intrasubband impurity scattering
rate diverges at Ed;z and the intrasubband optical-
phonon scattering rate at 6+Ed;z. The divergences in
optical-phonon scattering rates and the decrease in
scattering rate for larger energy electrons reAect the ener-

gy dependence of the state density in the one-dimensional

systems.
In high fields where intr asubband or intersubband

optical-phonon scatterings become relevant, the distribu-
tion function is expected to become greatly different from
the Fermi-Dirac one. This means that the perturbation
method starting from the Fermi-Dirac function cannot be
applied to the present situation. Thus, the Boltzmann
equation has to be solved numerically to study high-field
electron transport.

III. NOVEL METHOD TO SOLVE THE BOLTZMANN
EQUATION

The wire is assumed to be suSciently long and the ap-
plied electric field spatially uniform so that the distribu-
tion function f (k„t) does not depend on the space. For
simplicity, the variable k, is changed to the electron total
energy E measured from the bottom of the first subband.
Then, the distribution function is written by f„(E,+, t),
where the signs + and —indicate the direction along
and opposite the field, respectively, and the subscript n

the nth subband (n =1,2). The Boltzmann equations for
f, and f2 can be written by

f, (E, +, t)+— f, (E,+, t)=T,'Mp(E«E)p, (E)[f,(E, +, t) —f, (E,+, t)]

+ ToipF(E+b, «E)p, (E+b )f, (E+b„+,t)[1 f, (E, +, t )]-
+ To'pB (E+b«+E )p, (E+b, )f, (E+b„, +, t )[1 f, (E,+, r —) ]
—To'pF (E«E b)p, (E b)f, (E—, +, t)[1—f ) (E—b„+—, t ) ]0(E —6 )

—
TopB (E«E —b, )p, (E 5)f i (E,+,—t) [1 f, (E—b„+,—t) ]0(E b,)—

+ To'p„(E+ b. «E)p2(E +5)f2(E+6„+,t)[1 f, (E,+, t )]0(E+—b, Ed')—
+ To'ps(E+ b«+E )p2(E +b. )f2(E+6, +, t)[1 f, (E,+, t )]0(E+—b. Eds)—
—Top„(E +E 6, )p2(E ——6)f, (E, +, t)[1 —f2(E —b„+,t )]—0(E —b, —Eds)
—Topic(E«E —b, )p~(E b, )f, (E, +, t)[1 f2(E b„—, +, t —)]0(E b, Ed;rr), — — —

f2(E, +, t)+ — f2(E, +, t) =T,Mp(E «E )p2(E)[f2(E, +, t) f2(E, +, r)]—
+ TopF(E+b«E)p2(E+5)f2(E+b. , +, t)[1—f2(E, +, t)]
+ Top(BE+b «E )p2(E+ b )f~(E+b, , +, t )[1 f2(E, +, t )]-
—Top„(E«E b, )p2(E —6)f2(E, +, t)[1 —f2(E b, , +, t ) ]0(E —b, Eds)—— —
—Tops (E«E b, )p2(E b)f2(E, +, t)[1—f~(E b„+,t)]0—(E b— Ed;s.)———

+ Top„(E+A~E)p, (E+b, )f, (E+b„+,t)[1 f2(E, +, t)]-
+ Tops(E+6«+E)p, (E+6 )f, (E+b„+,t)[1 f2(E, +,t)]-
—To'p„(E +E b, )p, (E 5)f2(E—, +, t)[1 f—, (E 6, , +—, t)]- —
—To'pB(E «E b, )p, (E b, )f2(E, +, t )[1 f, (E —b„—+, t )], — —



6268 TOSHISHIGE YAMADA AND JUN'ICHI SONE

where T,"Mp(E~E') is matrix T (defined by the squared
matrix element multiplied by 2m/A') for impurity scatter-
ing in the nth subband with prescattered and postscat-
tered energies E and E', Top„(E~E') the matrix T for
optical-phonon forward scattering from the nth to the
mth subbands, and Topic(E +E—') the matrix T for
optical-phonon backward scattering from the nth to the
mth subbands. The functions 0(E) indicates the step
function; and p„(E) the state density in the nth subband
per unit wire length defined by

1/2

2E
(E)=

the integrals contain the singular state densities.
After the electrons are redistributed among cells by

scatterings, the electron number distribution in energy
cells is transformed into that in momentum space. The
momentum for each electron is increased by the amount
of eE5t due to the drift motion. Then, the electron num-
ber distribution is inversely transformed into that in ener-

gy space, and the electron number in each energy cell
after the time period of 6t is determined.

A new distribution function is evaluated by dividing
the electron number by the cell-occupation capacity. By
repeating these processes, the time evolution of distribu-
tion function is studied until a stationary state is reached.

p2(E) =
sruti 2(E Ed;tt)—

where the numerical factor 2 due to the electron spin
freedom and the factor 2 due to the twofold degeneracy
in the second subband by the symmetry in the x-y plane
are included.

In this method, energy space is divided into multiple-
energy cells with the energy span 6E su%ciently smaller
than the optical-phonon energy A. 'Electrons populate in
accordance with the Fermi-Dirac distribution function
up to the onset of the field. Time is also discretized with
the period of 5t, su%ciently shorter than the inverse of
scattering rates. The time evolution of the distribution
function is traced every timestep of 6t after the onset of
the field. Electrons are redistributed among energy cells
through scatterings and drift motions according to the
following procedure.

First, the electron number X„,« transferred from the
kth cell in the nth subband to the 1th cell in the mth sub-
band due to scattering mechanism X is written by

Ek +6E EJ +5E
N„„,=5t f dE f ™

dE'Tg (E~E')

Xp„(E)p (E')f„(E)
X [1—f (E')], (9)

where Tg. (E~E') is matrix T for scattering mechanism
X and Ek„and EI the bottom energies for the prescat-
tered and the postscattered cells, and the distribution
functions f„(E)and f (E') are for the prescattered and
postscattered cells, respectively. Since matrix elements
are finite for each scattering mechanism after introducing
the electron-screening effect for the impurity, matrix T~
varies fairly slowly in a cell. The distribution functions
also vary slowly in a cell. Thus, they can be replaced by
the values for the central energy in the cells in Eq. (9).
Then, the electron transfer number X„,« is expressed by

N„„,=5t Tg. (Ei,„+5E/2~Ei +5E/2)

Xf„(Ek„+5E/2)[1 f (Ei +5E/2)]-
Ek„+5E EIm+~E

X f "
dEp„(E)f ™

dE'p (E') . (10)
kn

Two integrals in the above equation correspond to cell-
occupation capacities, defined by the maximum electron
accommodation numbers in the cells. These capacities
do not diverge due to the integration procedure although

IV. RESULTS AND DISCUSSIONS

In the following, results by the present method are
given. It is shown that two types of electron transport
corresponding to electron confinement or electron runa-
way occur, depending on the electron line density and the
field strength.

Figures 3(a) —3(e) show the former example for electron
transport. The field strength is 1X 10 V/m and the elec-
tron line density 8.68X10 m '. For convenience, the
Fermi energy is used to specify the electron line density
hereafter. The line density in this case corresponds to the
Fermi energy of 0.36. The spatially uniform electric field
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FIG. 3. Time evolution of the distribution function in the
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showing electron confinement in the region below 6; the distri-
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and (e) at 20 ps.
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is applied at 0 ps as a step function.
At 0 ps in Fig. 3(a), the distribution function is the

Fermi-Dirac one. At 5 ps in Fig. 3(b), it shifts to the pos-
itive direction through the drift motion caused by the
field. Since electrons receive strong optical-phono n
scattering around 6 in the positive direction due to one
dimensionality, the function rapidly decreases above 6 in
the positive direction.

At 10 ps in Fig. 3(c) and at 15 ps in Fig. 3(d), the func-
tion is almost zero except the region between zero energy
and the optical-phonon energy. After 10 ps shown in
Figs. 3(c)—3(e), the function form is almost the same.
The drift velocity and the average energy reach station-
ary values after around 10 ps. The function after 10 ps is
a typical distribution function for electron confinement in
the energy region below A. It indicates that the electrons
are accelerated by the field and when obtaining the ener-

gy above 6, they are scattered by optical phonons into
zero energy, repeating these processes.

The period of 10 ps approximately corresponds to the
time when electrons obeying the Fermi-Dirac function at
the initial stage are accelerated without sufFering scatter-
ings finally to have the energy of h. After obtaining the
energy above 6, they receive strong optical-phonon
scattering and approach their stationary state. The time
required for a stationary state to be reached is character-
ized by the inverse of the optical-phonon scattering rate
around h. It is estimated to be a few tenths of a pi-
cosecond.

Figures 4(a) —4(e) show the latter example for electron
transport. The field strength is 1X 10 V/m and the Fer-
mi energy 1.26, corresponding to the electron line densi-

ty of 1.74X10 m '. Under this condition, electrons
have already occupied the region over 6 in zero field. At
0 ps in Fig. 4(a), the distribution function is the Fermi-
Dirac one. At 0.5 ps in Fig. 4(b), it shifts to the right due
to. the drift motion by the field. Because of the nonlinear
dispersion relation between momentum and energy, and
optical-phonon backward scattering, the function spreads
in both directions. Since the function has the value of al-
most unity around zero energy, optical-phonon scattering
seldom occurs because of the Fermi-Dirac statistics.

At 1.0 ps in Fig. 4(c), the function becomes slightly
smaller than unity around zero energy due to the drift
motion and the electrons with the energy above 6 begin
to receive optical-phonon forward scattering. Thus, the
function decreases rapidly above 5 in the positive direc-
tion. Because of the nonlinear dispersion relation and the
velocity runaway due to the decrease in scattering rate
for higher electron energies, the function spreads far in
the positive direction. It also spreads in the negative
direction because more electrons begin to populate the
energy region above 6 in the positive direction and to re-
ceive optical-phonon backward scattering.

At 2.0 ps in Fig. 4(d), the function has a notch at b, ,

reAecting strong optical-phonon scattering due to the one
dimensionality. At 3.0 ps in Fig. 4(e), it spreads farther
in both directions, and some electrons receive intersub-
band scattering and go up to the second subband. The
average energy and the electron number in the second
subband still gradually increase because of the small in-
tersubband scattering rate of a few tens picoseconds.
However, the drift velocity begins to reach the stationary
value.

The transport is quite di6'erent from that in bulk semi-
conductors. Because of the sharp onset of optical-
phonon emission due to the singular state density, the
distribution function has a characteristic structure
around h. This leads to marked transport patterns of
confinement or runaway, depending on what happens to
electrons around A.

Figure 5 shows the drift velocity as a function of the
electric field for various Fermi energies. When the Fermi
energy is 0.36, the drift velocity is proportional to the
field below the field of 10 V/In, with the impurity-
limited mobility. In the fields of 10 V/m to 10 V/m,
electron confinement in the energy region below 5 occurs
with strong optical-phonon. scattering, - and the velocity
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FIG. 7. Average electron energy at 5 ps measured from the
bottom of the first subband as a function of electric fields for the
zero-field Fermi energies of 0.36, 0.66, and 1.26.

increases slowly with the field. Above the field of 10
V/m, the electron runaway occurs, and the velocity rap-
idly increases with the field. In the field of 2X10 V/m,
the velocity becomes 2. 5 X 10 m/s.

When the Fermi energy is 1.26, some electrons have
already had the energy above 6, and the Optical-phonon
scattering influences the transport even in lower fields
below 10 V/m. In the fields higher than 10 V/m, elec-
trons with the energy above 6 runaway and the drift ve-
locity rapidly increases with the field. It becomes
3.9 X 10 m/s in the field of 2 X 10 V/m, achieving larger
velocity than that of 2. 5 X 10 m/s for the Fermi energy
of 0.36.

In higher fields where intervalley scattering from I to
L valleys takes place frequently, the drift velocity will
saturate, and negative differential resistance is expected

0.5 E p
~ 0.5&

E~~ I.2

ELECTR IC F I ELD
{IO V/rn)

FIG. 6. Population ratio of the second subband electrons to
whole electrons at 5 ps as a function of electric fields for the
zero-field Fermi energies of 0.35, 0.66, and 1.26.

to appear. However, the situation in these fields is out of
scope in this work at present.

Figure 6 shows the population ratio of the second sub-
band electrons to the whole electron as a function of the
electric field or various Fermi energies. As shown in Fig.
2, the inverse of the scattering rate for the intersubband
optical phonon is the order of 10 ps. Thus, the time evo-
lution during a few tens picoseconds has to be traced un-
til a stationary state is reached. Here, the population ra-
tio 5 ps after the onset of the field is plotted. The ratio
increases monotonically with the field. Comparing in the
same field, the ratio is larger for the larger Fermi energy.

Figure 7 shows the average electron total energy (mea-
sured from the bottom of the first subband) 5 ps after the
onset of the field as a function of the electric field for
various Fermi energies. Comparing in the same field, the
average energy is larger for the larger Fermi energy. In
zero field, it is equal to one third of the Fermi energy. It
increases monotonically with the field. In the field of
2 X 10 V/m, it reaches around 2.0 X 10 J (3.6b, ) for
the Fermi energy of 1.26, where around 25% of electrons
populate the second subband as shown in Fig. 5. In the
fields higher than 2X 10 V/m, the electron number with
the energy above 5.28X10 J (9.426.) is not negligible
especially for larger Fermi energy, Then, intervalley
scatterings from I to L valleys have to be considered. It
is out of the present formulation.

The results mentioned above are obtained assuming
that electrons are confined in a well with an infinite bar-
rier height. However, since the potential barrier is not
infinite in a real, physical wire, more subbands appear at
low energies. As a result, electrons are transferred to
these subbands, and the observation of runaway might
become difficult.
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Electron-electron scattering is not included in the
present model. The effect of this scattering is expected as
follows. (1) Since energy exchange among electrons
occurs frequently, notches in the distribution function are
smeared out. (2) The time for electrons to reach their
equilibrium state becomes shorter.

Generalization of the present method taking into ac-
count this electron-electron scattering is possible from
the simulation-algorithmic point of view. In the
electron-electron scattering process at each time step,
two arbitrary energy cells are chosen, and electrons are
redistributed to the other two energy cells chosen in ac-
cordance with energy and momentum conservation law.
Ho~ever, this process requires much more computer
memory due to a large number of possible combinations
of energy cells.

In this paper, the spatially uniform system has been
studied. When considering device applications, it is
necessary to study spatially nonuniform systems coupled
with the Poisson equation. In order to apply the present
method to this problem, the present method needs to be
extended to include the spatial dependence of distribution
function. These two problems remain for future work.

peratures where acoustic phonon scattering has little
influence on electron transport have been studied by solv-
ing numerically the Boltzmann equation with Fermi-
Dirac statistics. Scatterers considered here are intrasub-
band impurity, intrasubband, and intersubband optical
phonons. The following is shown. (1) When the Fermi
energy is below 6, electrons with the energy above 6 re-
ceive strong optical-phonon scattering due to the one
dimensionality in lower fields. As a result, they are
confined to the energy space region below 6, and the drift
velocity rapidly saturates with the increase in field.
When the field is further increased over 10 V/m, some
electrons have the energy above A. They receive decreas-
ing optical-phonon scatterings with their increasing ener-
gy. Thus, the electron runaway occurs and the drift ve-
locity rapidly increases with the field. (2) When the Fer-
mi energy is above 5, the electron transport is influenced
by optical-phonon scattering even in low fields around
10 V/m since some electrons have already had the ener-
gy above h. Such electrons run away, and the drift veloc-
ity rapidly increases with the field. (3) Comparing in
higher fields over 10 V/m, the drift velocity becomes
larger as the Fermi energy increases.
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