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Electron —optical-phonon interactions are studied in single and double heterostructures. The
Hamiltonian describing electron-phonon interactions is derived with use of orthonormal eigen-

modes of phonons calculated in the dielectric continuum model. Effects of interactions are ex-

pressed in the form of an effective electron-electron interaction mediated by virtual exchange of
phonons. It is given by the sum of products of coupling constants and form factors for different
modes. The coupling constants correspond to the Frohlich coupling constant in bulk and the form
factors describe effects of electron confinement. The resulting expression is convenient and useful in

discussing relative importance of interface modes and bulklike confined modes and also in exploring
the possibility of reduction of electron —optical-phonon interactions in heterostructures. It is ap-
plied to calculations of the polaron mobility and magnetophonon resonance spectra. The results
clearly demonstrate roles of interface phonons.

I. INTRODUCTION

It is well known that the mobility of a two-dimensional
electron gas is enhanced considerably at low tempera-
tures by the so-called modulation-doping technique in
semiconductor. heterostructures such as single hetero-
structures, double heterostructures (quantum wells), and
superlattices. This is due to the spatial separation of elec-
trons from donor impurities. At high temperatures, how-
ever, electron —optical-phonon interactions play a dom-
inant role in determining various electronic properties in-
cluding mobility. There have been considerable interests
in the problem of the electron —optical-phonon interaction
in heterostructures. As a matter of fact, there have been
calculations of electron scattering rates, ' two-
dimensional polarons, cyclotron resonance, ' ' hot-
electron relaxation, ' magnetophonon effects, ' hot-
electron magnetophonons, etc. In most of these
works, use has been made of the usual Frohlich interac-
tion based on bulk phonons and only effects of electron
confinement have been properly taken into account.
However, optical phonons can be strongly influenced by
the presence of heterointerfaces as was recognized recent-
ly. The purpose of the present paper is to elucidate the
role of interfaces on electron —optical-phonon interactions
in single and double heterostructures.

The presence of heterointerfaces gives rise to
confinement of optical phonons in each layer as well as
interface modes which are localized in the vicinity of in-
terfaces. Therefore, use of the usual bulk Frohlich Ham-
iltonian is certainly misleading. It has been shown
theoretically that the interface phonons can give a
significant contribution to the electron —optical-phonon
interaction in some cases. ' There has been a sug-
gestion that interactions with the confined optical pho-

nons can be reduced in some double heterostructures in
comparison with those with usual bulk phonons. In
spite of such extensive studies, effects of interfaces on
electron-phonon interactions have not been fully clarified
because of the inclusion of various other effects such as
screening, plasmon-phonon couplings, hot phonons, etc. ,
in most of these works.

In this paper we study the electron —optical-phonon in-
teraction in single and double heterostructures composed
of diatomic polar semiconductors (not alloys). In partic-
ular, we try to clarify roles of interface phonons as well as
effects of phonon confinement on electron-phonon in-
teractions and in which cases we can utilize the bulk
Frohlich Hamiltonian, and explore the possibility of re-
ducing electron-phonon interactions. We proceed as fol-
lows. First, optical-phonon modes in heterostructures
are determined with use of the dielectric continuum mod-
el. Then, the Hamiltonian describing elec-
tron —optical-phonon interactions is derived by a standard
quantum-mechanical method. ' '" We calculate matrix
elements of effective electron-electron interactions due to
virtual exchange of optical phonons. ' These matrix ele-
ments make it possible to separately discuss effects of in-
terfaces on electron —optical-phonon interactions due to
modifications of phonon modes and those due to the
confinement of electron wave functions. We also consid-
er magnetophonon effects because of the presence of a
number of interesting experiments " and some remain-
ing controversies in their explanation.

The organization of the present paper is as follows. In
Sec. II we derive phonon eigenmodes and Hamiltonian
for electron —optical-phonon interactions by a standard
manner for the sake of completeness. In Sec. III the
effective electron-electron interaction mediated by optical
phonons is calculated. We show how the elec-
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tron —optical-phonon interaction in hetero structures is
modified relative to the case that electrons are assumed to
interact with bulk longitudinal optical phonons. The re-
sulting formula for the effective interactions is applied in
actual problems in Secs. IV and V. In Sec. IV we calcu-
late the low-field polaron mobility which is one of the
best candidates to see how the electron —optical-phonon
interaction is different from the case of the bulk phonons.
In Sec. V the transverse magnetoresistance due to magne-
tophonon resonances is calculated. A summary and dis-
cussion are given in Sec. VI. Throughout this paper we
set 6=k~ = 1, where k~ is the Boltzmann constant.

II. INTERACTION WITH OPTICAL PHONONS

A. Dielectric continuum model

P(r) =soy„(co)E(r),

E(r) = —VP(r),

V' P(r) = ——p(r),1

Ep

p(r) = —V P(r),

(2.1)

(2.2)

(2.3)

(2.4)

together with conventional boundary conditions at
heterointerface(s), where r is the three-dimensional posi-
tion vector, P(r) the polarization field, E(r) the electric
field, P(r) the scalar potential, p(r) the total charge densi-

We consider single and double heterostructures whose
geometry is given in Fig. 1 ~ In the single heterostructure,
there is a heterointerface normal to the z axis and the ma-
terial 1 (material 2) fills up the half-space z & 0 (z ~ 0). In
the double heterostructure, the material 1 lies between
z =+—,'a and the material 2 fills up the spaces z —,'a and
z ~ —

—,
' a. In the following analysis we introduce

periodic-boundary conditions in volume L (i.e.,
,'L ~x,y, z ~—,'—L). Optical-—phonon modes in the het-

erostructures are determined using the classical electro-
statics. For instance, we have the following equations in
each layer:

ty, eo the permittivity of vacuum, and g„(co)=e„(co)—1

the dielectric susceptibility of the material n (n=1,2).
The dielectric function e„(co) is given by

2 2
CO COL„

e„(co)=~„„
CO Cc)T„

(2.5)

where cuL„and cuT„are the frequency of longitudinal-
optical (LO) phonon and the transverse-optical (TO) pho-
non, respectively, and op~ „ is the high-frequency dielec-
tric constant. Because of the translational invariance
along the interface, we can introduce two-dimensional
Fourier transforms along the xy plane and work in (Q, z)
space, where Q is the two-dimensional wave vector.
Moreover we choose the x axis in the direction of the Q
vector for the sake of simplicity. Working on this coordi-
nates system in Eqs. (2.1)—(2.4); we can separate the po-
larization field into an s-polarization part [P(Q,z)
=(O, P~, O)] and a p-polarization part [P(Q,z)
=(I'„O,P, )], which are completely decoupled. Since
electrons do not couple to phonons with s polarization,
we will consider only p polarization in the following
analysis.

B. Equation of motion and normal modes

We can readily solve the eigenequation for P(Q, z),
which is obtained from Eqs. (2.1)—(2.4) by the two dimen-
sional Fourier transforms. The eigenmodes P' '(Q, z) (J
is a quantum number) are determined in such a way that
the corresponding relative displacements of the positive
and negative ions are orthonormalized. We have

I dz[(eon„p„)' u' '(Q, z)]' [(eon„p„)' u' '(Q, z)]—L/2

=51J, (2.6)

where u(Q, z) is the two-dimensional Fourier transform
of the relative displacement of the ion pair, n, the num-
ber of ion pairs per unit volume, and p, the reduced mass
of the ion pair. The relation between P(r) and u(r) is
given by the equation of motion

—p„co u(r) = —p„coo„u(r)+e„*E„,(r) (2.7)

pixy a% xy and the microscopic relation

P(r) =n„e„"u(r)+n„a„E~„(r), (2.8)

Wz -a/2.": :::'a/2

Mat er ial 2; Material 1

I

I

Material 2,' Material 1:, Material 2

(a) Single Heterostructure (b) Double Heteros t rue t u I e

FIG. 1. geometry relevant to the discussion of the single (a)
and double heterostructure (b). In the single heterostructure,
material 1 and 2 fill up the right (z + 0) and the left (z ~ 0) half-
space, respectively. In the double heterostructure, material 1

lies between z =+
~ a (a is the well width) with heterointerfaces

normal to z axis and material 2 fills up the half-spaces z ~ 2a
and z ~ —2a.

where cop„ is the frequency associated with short-range
forces between ions, e„* is the effective charge of the ions,
and a„ is the electronic polarizability per ion pair. The
local field E&„(r) satisfies the well-known Lorentz rela-
tiOn Eloc =E+P/36'P.

The obtained eigenmodes in single and double hetero-
structures are summarized in Tables I and II, respective-
ly. Those eigenmodes are exact in the limit of L ~+ oo.
We have shown only the x components in case of double
heterostructures for conciseness. (It is straightforward to
calculate the z components from the x components using
the relations in each layer: dI' /Bx =iQP, if co&coT„
and/or dP, /Bz = —iQP„ if co&coL„. ) Those eigenmodes
satisfy the closure relation:
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g [(eon„,p, „)' u' '(Q, z')]'t'(eon„p„)' u' '(Q, z)]
J

=5(z —z') (ct=x or z) . (2.9)

There are three types of modes in the single hetero-
structure. (1) Interface modes whose amplitude decreases
exponentially away from the interface. (2) Half spac-e LO
modes which have the frequency coL„ofbulk LO phonons
and no polarization in the opposite layer and whose po-
larization parallel to the interface vanishes at the inter-
face (3.) Half space -TO modes which have frequency toT„
of bulk TO phonons and no polarization in the opposite
layer and whose polarization field normal to the interface
has a node at the interface. The frequencies of.the inter-
face modes, co+, are given by the solutions of

e, (to)+ ez(co) =0 . (2.10)

These frequencies lie between co~„and coL„. For example,
when we set coL& =36.2 meV, mr, =33.3 meV, ~ I =10.9,
coL2=50. 1 meV, cuT2=44. 8 meV, . and x 2=8.16, which
are the relevant physical parameters for a GaAs/A1As
single heterostructure, we get m+ =47.4 meV and
m =34.6 meV.

There are six types of modes in the double heterostruc-
ture. (1) Symmetric interface modes whose amplitude de-
creases away from the interfaces and whose polarization
field parallel to the interfaces is symmetric with respect

to z=O. (2) Antisymmetric interface modes whose ampli-
tude decreases away from the interfaces and whose polar-
ization field parallel to the interfaces is antisymmetric
with respect to z=O. (3) Confined LO modes with fre-
quency coL&, which have vanishing polarization field in
the barrier layers and whose polarization field parallel to
the interfaces has nodes at the interfaces. (4) Confined
TO modes with frequency mT&, which have vanishing po-
larization field in the barrier layers and whose polariza-
tion field normal to the interfaces has nodes at the inter-
faces. (5) Half space L-O modes in the barrier layers. (6)
Half space T-O modes in the barrier layers.

The frequencies of the symmetric interface modes,
co++, are given by the solutions of

e&(co)tanh( —,
' Qa)+e2(co) =0 . (2.1 1)

e, ( oc)cot h( —,'Qa)+e2(co) =0 . (2.12)

For short wavelengths co~+ approaches co+ and for long
wavelengths it approaches ~„,or AT&. In Fig. 2 we show

tos+ and to„+ in an A1As/GaAs/AlAs double hetero-
structure as a function of Qa.

For short wavelengths co&+ approaches co+ and for long
wavelengths it approaches coL2 or coT, . The frequencies of
the antisymmetric interface modes, co&+, are similarly
given by

Mode
Eigenfrequency

Interface mode'

TABLE I. The p-polarization eigenmodes in single heterostructures.

Eigen vector

—1/2
P„(Q,z) Hi(co+ )g(co+ ) e, (co+ )yl(co+ ) —Qlzl

p (Q ): + g (co+)V ge X
QPp ) COp2

l—sgn(z) '

1 if z~0
where

nnen "nan
and 0„(m)= 1+(coo„—m )

&OPn COCO pn

—2

Half-space LO mode

P„(Q,z) 2 ig sin(q, z)
P, (Q, z) ~L g~»(~„) (g2+q2)&» " q, cos(q, z)

1 if z is in the n layer
where H„(z)= '00 otherwise

Half-space TO mode

P„(Q,z) 2 iq, cos(q, z) b
P, (Q,zi ~L g&»(~ ) (g2+q2)»& " g sin(q, z)

'The frequencies co+ are the solutions of e, (co)+e2(co) =0.
q, =(2n. /L)m (m =1,2, 3, . . . ).
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TABLE II. The p-polarization eigenmodes in double heterostructures.

Mode
Eigenfrequency

Symmetric
interface mode'

Eigenvector

—1/2
0 ( )y'( ), ~ ( )y'( )

P, (Q,z)=i, tanh( —,'Qa)+
67p1 COp2

y„(~,+)
1/2

fs(gz),

1 if ——'a z —'a
2 2

2 otherwise

Antisymmetric
interface mode l(~ A+ )Xl(~A+ ) 02(~ A+ )X2(~ A+ )

P„(Q,z)=i, coth( —,
' Qa)+

COp1 COp2

1 if ——'a +z ~ —'a
2 2

where n ==
t 2 otherwise

—1/2 1/2

X.(~~+) — f~ (Qz»
2

Confined
LO mode

1/2

P„(Q,z) =i 2

a
H, (.) xgl/2( ) (g2+q2)1/2

m 7T
cos z, m =1,3, 5, . . .

a

m&
sin z, m —246, . . .

a

1 if ——'z z ~ —'a
2 2

where Hc(z) =
0 otherwise

Confined
TO mode

1/2
2

P„(Q,z) =i
a gl/2( ) (g2+q2)1/2 H, (z)X .

m~
sin —z, m =1,3, 5, . . .

a

cos z, m =2,4, 6, . . .
a

Eialf-space
LO mode'

P, +(Q,z) =i —,/z- , , HH+(z)sin[q, (z+ - a)] (q, & 0),()1/2(~ ) (g2+q2)1/2

1 if z& —'a
2

1 if z ——'a
2

where H~+(z) =
0 h

. and HH (z) =

Half-space
TO mode'

P„+(Q,z) =i . . . , HH+(z)cos[q, (z+ —,'a)] (q, &0)gl /2( ) ( g2+ q
2)1/2

'The frequencies cos+ are the solutions of el(co)tanh( —'Qa)+ ez(co) =0, and the function fs(gz) is defined in the text.
The frequencies co~ ~ are the solutions of el(co)coth( 'Qa)+ ez(co—) =0, and the function f„(Qz) is defined in the text.

'P + (P ) is the polarization eigenvector for the half-space mode of z ~
2 a (z ~ —

2 a).
q, =(2m. /L}m (m =1,2, 3, . . . ).
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TABLE III. The electron-optical-phonon interaction Hamiltonian in single heterostructures.

Optical-phonon mode

Interface mode'

Interaction Hamiltonian

%ep +

' 1/2
co~e

o 2epL

2

P1 '(C0+)+P2 '(Co+)

1/2

e'O "e @' [a+(Q)+a'*( —Q)]
v'2g

Half-space LO mode ' 1/2
col„e

ep'll T 3
q )0 Q

X [a„(Q)+at ( —Q)]

1/2
I H„(z)2 sin(q, z)

( Q
2 +q

2
)

1 /2

'The function p„(co) is defined in the text

C. Electron-optical-phonon Hamiltonian

Since the interaction energy of an electron at the posi-
tion r with the polarization field is given by —e P( r ), we
can determine the electron —optical-phonon interaction
Hamiltonian by expanding the scalar potential in terms
of the normal modes obtained above. The resulting in-
teraction Hamiltonian in single and double heterostruc-
tures are given in Tables III and IV, respectively. Note
that phonons with the bulk TO-phonon frequency do not
couple to electrons.

III. EFFECTIVE ELECTRON-ELECTRON
INTERACTION

A. Single heterostructures

It is very convenient and useful to de6ne the two-
dimensional efFective electron-electron interaction due to
exchange of optical phonons. ' The efFective electron-
electron interaction can be formally written in the same
form for each phonon mode j. We have

TABI.E IV. The electron-optical-phonon intel. action Hamj. ltonian in double heterostructures.

Optical-phonon mode

Symmetric
interface mode

' 1/2
s+e~.,S+= g ~22eoL

Interaction Hamiltonian

[p, '(cos+)tsnh( —'Qa)+p2 '(cos+)] ' ' e' fs(Q z)v'2g

X [as+(Q)+ as+ (
Antisymmetric

interface mode
1/2

co z+e
Q- 26'gL

[p, '(co„)c+oth( 'Qa)+p-(2coq+)] ' e' f~(gz)v'2g

Confined
LO mode

Jy, =
ep, c

X [a~+(Q)+a„+( —Q)]

1/2
coL]e

X
Koo 1 Ko 1 a

iQ R

[g'+(m ~/a)2]'"

X Hc(z)cos z [a (Q)+a ( —Q)]a

m =2,46, . . . Q
1/2

' 1/2
r 1e

2e11L
'

KO1

' 1/2
I iQ R

[g'+(m ~/a)']'"

Half-space
LO mode

xHe(z)sin z [a (Q)+a ( Q)la

1/2 ' 1/22
COL28

~ep, H+ =
q &0 Q ~0

e iQ.R

( g2+ q
2)1/2

I

K~2 KP2

X HH+(z)2sin[q, (z+ ,'a)][aH+, (Q) —++aH,q ( ,
—Q)]
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Since a+ is proportional to the harmonic mean of 13i(co+)
and P&(co+), it is almost determined by the smaller value
of I3, (co+) and P2(co+). The function f3„(co), which be-
comes ( I/a„„—1/tco„) at co=coL, and 0 at co=co&„, de-
scribes effects of the shift of the eigenfrequency on the
coupling constant. Since ~+ lies between coT„and coL, ,
where P„(co) is always smaller than (I/z „—I/tco„), cc+
cannot become extremely larger than the usual bulk
Frohlich coupling constant. For example, in GaAs/A1As
heterostructures, we get F1=0.071, F2=0.11, o.+ =0.054,
and a =0.031, when we set m '=0.067mp.

FIG. 2. Frequencies of symmetric and antisymmetric inter-
face phonons as a function Qa (Q is the magnitude of phonon
wave vector parallel to the interfaces) for an AlAs/GaAs/AlAs
double heterostructure. The symmetric (antisymmetric) inter-
face phonons co&+ (cu&+) converge to co~ (the interface phonons
of a GaAs/A1As single heterostructure) as Qa ~+ co. At
Qo ~S+ ~L2 ~S — + Tl ~A + ~T2 a d ~A — ~L1

2. Form factor FJ(Q).

(3.5)

X ( e
—Qlz —z'I —Qlz +~'I

) (3 6)

In single heterostructures the form factors are given by

FI(Q)= f dz jgc(z)l e
L

F (Q)= f dz f dz' lg' (z)l lg (z')l

1/2

2'~V (Q, iv ) =2irct
m* FJ(Q)D, (iv ),1

(3.1)

FH-(Q)= f dz f dz' lgo(z)l'lg, (z')I'

X (e tilz z
I —e Lilz+ (3.7)

1. Coupling constant a,-

The coupling constants of the half-space I.O phonons
are given by

1/2
e m*

~n=
47'Ep 2' Ln

(n =1,2), (3.2)

with ao„=(coL„/coT„) tc„„. It is identical to the Frohlich
coupling constant for the bulk material n. On the other
hand, the coupling constants of the interface phonons are
given by

' 1/2
e m

0,'+ =
4''6'p 2'+

2

Pi '(co+)+P2 '(co+)
(3.3)

where a. is the coupling constant, Fi(Q) is the form fac-
tor, D~(iv )=2co /[(iv ) co ] i—s the phonon Green's
function with imaginary frequency iv, ~ is the eigen-
frequency, m * is an electron effective mass, and we have
set L=1. In general the effective electron-electron in-
teraction depends on four electron subband indices
s 1 s2 + 3 +4 ~

' For the sake of simplicity, in the following
analysis we confine ourselves to the ground subband
(s, =s2=s3=s4=0). In Eq. (3.1), ct. is defined as the
term independent of the electron wave function g„(z) as-
sociated with the quantized z motion and reduces to the
usual bulk Frohlich coupling constant if the difference
between materials 1 and 2 is neglected, and the form fac-
tor F~(Q) is defined as the term that is independent of
material parameters (such as co„„,coT„,tc„„,etc.).

independently of go(z), where Fti(Q) is the form factor in
the case that electrons are assumed to interact with bulk
LO phonons, given by

Fii(Q)= f dz f dz' lgo(z)l le(z')l e

(3.9)

This sum rule is a direct consequence of the complete
orthonormality of the eigenmodes u' '(r) and is a major
advantage of considering the effective electron-electron
interaction. If we neglect the difference in eigenfrequen-
cies due to the existence of the interface, namely, if we
neglect the difference in coupling constants of phonon
modes, the effective electron-electron interaction is the
same as that for bulk phonons.

Let us use the Fang-Howard trial function

1/2

go(z) = b3
z exp( ,'bz) for z ~ 0 . ——(3.10)

In Fig. 3 we show FI(Q) and EH+(Q) as a function of
Qlb together with Fii(Q) for comparison. Since we use
the wave function which vanishes in the left half-space,
FH (Q) is always equal to zero. For long wavelengths or

where F~( Q) is for interface phonons (co+ or co ),
FH+(Q) is for the half-space phonons in the right half-
space (coi, ), and FH (Q) is in the left half-space (coL2).
These form factors always satisfy the relation

Fit(Q) =F1(Q)+EH+(Q)+FH (Q),
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the single heterostructure. This is because the exponen-
tial decay of the scalar potential associated with the inter-
face phonons implies decreasing inAuence of the two in-
terfaces as decreasing wavelength or increasing well
width. For long wavelengths or narrow well widths
(Qa ~0) the frequency of symmetry interface phonons
approaches the TO-phonon frequency of the well layer,
coT&, or the LO-phonon frequency of the barrier layers,

co„z, resulting in the coupling constants approaching 0 or
az (the Frohlich coupling constant of the barrier's ma-

terial). In Fig. 4 we show the coupling constants of inter-
face phonons as a function of Qa for an
AlAs/GaAs/AIAs double heterostructure.

The coupling constants of antisymmetric interface pho-
nons with frequency co~+ are written as

FIG. 3. The form factors in a single heterostrotvre as a func-
tion of Q/b [b is the Fang-Howard trial parameter {Ref. S5)].
F,(Q) is for interface phonons, FH+(Q) for half-space phonons,
aud Fs{Q) for bulk phonons. Since the electron wave function
vanishes for z(0, FH {Q) is identically zero, and
F~{Q)+FH+{Q)=Fs{Q).

P?2a~+(Q)=
4&Ep 2' g+

1/2

coth( —,
' Qa ) + I

X
P, '(to„+)coth( —,'Qa)+Pz '(co„+)

short average distances between electrons and the inter-
face (i.e., Q/b~0), Ft(Q) increases and approaches
F~(Q), because the scalar potential associated with the
interface phonons decreases exponentially away from the
interface according to exp( —

Q~z~ ). On the other hand,
F H(+Q) approaches Fz(Q) for short wavelengths or long
average distances between electrons and the interface as
is expected. For a fixed wavelength, the average distance
between electrons and the interface determines the ratio
of the contribution of the interface phonons to the total
electron —optical-phonon interaction.

It is readily seen that a„+(Q) converges to a+, which is
the coupling constant in single heterostructures, for short
wavelengths or wide well widths, and it approaches a&

(the Frohlich coupling constant of the well's material) or
0 for long wavelengths or narrow well widths (Fig. 4).

2. Form factor F, ( Q )

The form factors for the ground subband are given by

B. Double heterostructures

The effective electron-electron interaction is given by
the same expression as Eq. (3.1).

1. Coupling constant a;(Q)

The coupling constants of the confined phonons o,'& and
that of the half-space phonons in barrier layers a2 are
also identical to the bulk Frohlich coupling constants,
and given by Eq. (3.2). Since the eigenfrequencies of in-
terfaces phonons have dispersion, the coupling constants
depend on Q. Those of the symmetric interface phonons
with frequency co&+ are written as

' 1/2
e m*

as+(Q) =
47TE'p 2cog+

1.5 =

C3

1.0
U
CQ

CD

CD

~~ 0.5
O

C3

0.0

AlAs

&A+

aA
'Y~

j
/

I
)

Al As/Ga As/AlA s—

a,

10

tanh( —,'Qa)+1
X

P, '(~s+)tanh(-, 'Qa)+Pe '(cos+)
(3.1 1)

For short wavelengths or wide well widths (Qa ~+ ~ ),
as+(Q) approaches a+, which is the coupling constant in

FICx. 4. Coupling constants of the symmetric as+(Q) and an-

tisymmetric a„+{Q)interface phonons as a function Qa for an
A1As/GaAs/A1As double heterostructure. as+(Q) [a&+(Q)]
converges to a+ as Qa~+ ~. At Qa=0, as+=a~, as =0,
a&+ =0, and a„=a].



6182 N. MORI AND T. ANDO 40

'2
(3.13)

'2
(3.14)

F,(g)= f' dz f dz ~g, (z)~'~g, (z )~' e-

1 sinh( Qz)sinh( Qz
'

)

1+coth( —,
' Qa ) sinhz(, ' Qa )

F„+(g)=f dz f dz'ig, (z)i'ig, (z')i'(e ' '' —e ' ' '),
a/2 a/2

= f '"d.f '
dz lg, (z)l'~g, (z)l'(. -"'-'~—."'+'+')

(3.15)

(3.16)

(3.17)

Q(z+ —a)1

e ' z& ——'a

fs(gz) =
~

cosh(gz)/cosh( —,'Qa),
—Q(z —

2 a)1

e

——'a &z & —'a
2 . 2

(3.18)

Q(z+ —a)1—e 2 z& ——'a

where Fz(g) is for symmetric interface phonons (nels+ or
co+ ), F„(g) is for antisymmetric interface phonons
(co„+ or cuz ), Fc(Q) is for the confined phonons (coLi),
FH+(Q) is for the half-space phonons (cozz) in the barrier
layer z~ —,'a, and FH (Q) is for the half-space phonons

(coLz) in the barrier layer z ~ —
—,'a. The functions fs(gz)

and f~ (Qz) are defined as

Fz(g) vanishes because of the symmetry. In Fig. 5 we
show Fc(g) and Fs(Q) as a function of Qa together with

F~ ( Q) for comparison. The wavelength dependence
shown in Fig. 5 is similar to that in the single hetero-
structure (Fig. 3). Contributions of interface phonons be-
come more and more important for long wavelengths or
in narrow wells, which is analogous to the case of single
heterostructures considered in Sec. III A. However,
there is an important di6'erence: In case of single hetero-
structures, the coupling constants of interface phonons
are independent of the momentum Q and the two inter-
face phonons co+ contribute to electron-phonon interac-
tions. In the case of double heterostructures, on the oth-
er hand, one of as+(Q) (as+ in Fig. 4) approaches a~ and
the other (as in Fig. 4) vanishes in the limit of long
wavelengths or narrow well widths. This means that
electrons in a narrow quantum well interact only with LO
phonons outside the well.

f~(gz)= . sinh(gz)/sinh( —,'Qa), —
—,'a ~z ~

—,'a
—Q(z —

2
a)1

e

(3.19) 1.0

0.8

These form factors also satisfy the sum rule independent-
ly of $o(z), that is

Fii(g) =Fg(Q)+Fg (Q)+Fc(g)+F0+(Q)+FH (Q),

(3.20)

where the function F~ (Q) is given by Eq. (3.9).
For the sake of simplicity, . let the electron wave func-

tion associated with the quantized z motion be

o 0.6
a
E

L 0.4

0.2

0.0

Qa
1/2

2
g (z)=

a
cos z

a
for —

—,'a z —,'a . (3.21)

For this wave function which vanishes in the barrier lay-
ers, FH+(Q) and FH (Q) are identically zero. Moreover,

FIG. 5. The form factors in a double heterostructure, Fz{Q)
and Fc{Q), as a function of Qa together with the form factor of
bulk LO phonons, Fz{Q). Since we use Eq. {3.21) as the wave
function, FH+{Q), FH (Q), and F„{Q)are identically zero, and
Fs{Q)+Fc{Q) =Fs{Q).
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IV. POLARON MOBILITY

@=ed /m*, (4.1)

For the sake of the simplicity, we will consider the in-
teraction of just a single electron with optical phonons
and the low-Aeld mobility of electrons to the lowest order
in coupling constants. The mobility p limited by scatter-
ings from optical phonons is given by

&0o .
; GaAs/AlAs

T 300K

10-'-
l

0)
U

B
W

where r =(2I „,) is the total scattering time with the
total polaron damping rate I „„which is the sum of I J
associated with mode j over all the modes.

We calculate the polaron damping rate as the imagi-
nary part of the self-energy in small wave-vector limit
and have'

I ~(k ((y~ )=, A~(y~ )coj(yj )
1

( )/E ( )
J J 1 J

%3

1010

r. ~ ' I+

.r.r.r.r",r.r r.r' r
,r r..r".r

&0~~

Ndpp)+(///32) Ns (cm j

10"

X&g(~J(yJ ))FJ(yj), (4.2)

where k is the magnitude of electron wave vector, E(k) is
the electron energy E(k) =k /2m *, Xz(co) is a distribu-
tion function for optical phonons with frequency co, y is
a solution of E (y~ ) =co~(y. ) (y )0), i.e., the wave vector
which satisfies both energy- and momentum-conservation
law, E'( k)=B E( k) /B k, and aj(Q)=Bc@ (Q)/BQ. The
term within the large parentheses is identically unity for
half-space phonons or confined phonons. Further, its de-
viation from unity for interface phonons is usually unim-
portant because coj(y~ )/E'(yj ) is at most of the order of
(coL„—coT„)/2coL„which is much smaller than unity for
most semiconductors.

A. GaAs/A1As single heterostructures

The polaron damping rate I is determined by the op-
tical phonons whose wave vector parallel to the interface
is y . The amplitude of the interface phonons decreases
exponentially away from the interface according to
exp( —yj ~z~ ). Therefore, if the average distance between
electrons and the interface z,„ is larger than y~ (i.e.,
z„y ) 1), effects of the interface phonons become negli-

gibly small and we can safely use the usual bulk Frohlich
Hamiltonian. On the other hand, if z„y & 1, we cannot
neglect the effect of the interface phonons as well as the
reduction of that of the half-space LO phonons.

We calculate I in a GaAs/AlAs single heterostruc-
ture using the Fang-Howard trial function Eq. (3.10).
The results are shown in Fig. 6 as a function of
X Ãd p] +

32 X„where Xd,p&
is the depletion charge

density and X, is the electron sheet density, together with
the damping rate I z obtained by assuming bulk GaAs
LO phonons. The damping rates are normalized by
I 0

'= ,'era, coL,X~(c—oL,), which is that of an ideal two-

dimensional electron gas, i.e., ~$0(z) ~
=5(z), in bulk

GaAs. In GaAs/A1As single heterostructures,
z,„—3/b —110 A (for N = 1.5 X 10" cm ),

y~ '-yL&'-40 A [where yL& =(2m'coL, )' ], and

z,„y -2.8, which shows that we can neglect the effect of
the interface phonons as actually demonstrated in Fig. 6.

FIG. 6. The polaron damping rates in a GaAs/AlAs single
heterostructure as a function of N ~Nd, ~&+ —,'2 N, at T= 300 K.
I H is for half-space phonons in the right half-space, I &+ (I I )

is for interface phonons co+ (co ). I z is the damping rate for
bulk phonons. The average distance between electrons and the
interface is so large that the contribution of interface phonons
can be neglected and there is no notable difference between I H

and I"g.

B. AlAs/GaAs fAlAs double heterostructures

In Fig. 7 we show I J in an A1As/GaAs/AIAs hetero-
structure as a function Of well width a. We consider in-
trasubband transitions within the ground subband only,
and use Eq. (3.21) as the electron wave function along the

1.2

1.0

AlAs

t
I

AlAs/GaAs/AlAs

0.8
L

0)
a 0.6
CO

O
E 0.4
U

C3

/

]~ I s-
O~

00' I L'o I

8
GaAs

FIG. 7. The polaron damping rates in an AlAs/CxaAs/AlAs
double heterostructure as a function of yL&a at T= 300 K. I c is
for con6ned phonons, I"z+ (I z ) is for symmetric interface
phonons ~&+ (~& ), and I „, is the total rate, i.e.,
I tot=I c+I s++I s — I a is for bulk LO phonons. For thin
wells such that yL&a & 1, the contribution of interface phonons
increases resulting in the reduction of the contribution of
con6ned phonons. Because I 0

'- I 0 ', however, there is no not-
able difference between I „,and I z.
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z axis. Note that LO-phonon absorption due to intersub-
band transitions can occur for wells wider than m&3yL, '

(i.e., y„,a )m&3 —5.4).
When the well width decreases (yLia S6), the contri-

bution of modes confined in the well starts to decrease
and those of symmetric interface phonons co++ and co+
become appreciable. With further decrease of the width,
the contribution of co++, which approaches the LO pho-
non in the barrier cuL2, continues to rise. The contribu-
tions of ~z, on the other hand, has a maximum and
then starts to decrease. This is because co+ approaches
coT&, the TO phonon in the well, as has been mentioned in
the preceding section. This crossover occurs around
yL, a= 1. In the limit of thin well widths (yL, a~0),
the total damping rate I „, converges to I o

'

=—,
'

~amoco L2iV& ( coi 2), that of an ideal two-dimensional
electron gas in the barrier (with electron efFective mass in
the well). In AlAs/GaAs/A1As systems, however, there
exists only a small difference between I o" and I 0

'

(I 0"=1.3 meV and I o '=l.4 meV at T=300 K), and
I „,is not remarkably different from I z.

C. AlSb/InAs/AlSb double heterostructures

1.2

1.0;
1

'~

.8- ' ~B„0
l

4l

0.6-
CS
C
CL
c~ 0.4

C3

I
I

Ge/In As/Ge
T-300K

0.2

0.0 I 1
~a~» ~ %~a
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FIG. 9. The polaron damping rates in a Ge/InAs/Ge double
heterostructure as a function of yL, a at T=300 K. We have
I «, = I z+ I z. Since Ge is homopolar, the notable reduction of
rt 1 occurs for the well widths such that yL&a&1, and I „,ap-
proaches zero in the limit of vanishing width.
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The relevant physical parameters for A1Sb/InAs/A1Sb
double heterostructures are coL&=30.2 meV, coT, =27.1

meV, ~ )
= 12.3, ~L2 =42.2 meV, coT2= 39.5 meV,

K 2= 10.2, and m *=0.023mo. We have a& =0.050 and
+2=0.032, which leads to I 0") I o

'. Because the
effective mass of InAs is lighter than that of GaAs, the
relation yL, a(1 is more easily satisfied (yLi=l/74 A).
Further, this system has a large barrier height for elec-
trons [1.8 eV (Ref. 56)] which is advantageous in applica-
tions.

In Fig. 8 we show the damping rates as a function of
well width. The damping I „, is close to I z and in-
creases as decreasing well width for yL&a& 1. However,

when the well width a becomes thinner than yL&', r...
starts to decrease in contrast to I z. In the limit of
infinitely narrow widths, I „, converges to I 0 '=0.52
meV which is smaller than I o"= 1.1 meV.

D. Ge/InAs/Ge double heterostructures

If the two-dimensional electron gas is formed in a
homopolar-polar-homopolar heterostructure, we can ex-
pect that the polaron damping vanishes for the limit of
thin well widths. To demonstrate this we will consider a
Ge/InAs/Ge double heterostructure, in which two-
dimensional electrons are confined in the InAs layer. The
barrier height for electrons is estimated as 0.8 eV from
the difference of electron a%nities. The relevant physi-
cal parameters are cuL&

=30.2 meV, cu T, =27.1 meV,
)
= 12 3, coL2=37 3 meV, v 2= 15 8, and m *

=0.023mo. The frequency co+ of symmetric interface
phonons is given by Eq. (2.11) with @2=jr 2 and its cou-
pling constant is given by Eq. (3.11) with P2

' =0.
In Fig. 9, I 's are shown as a function of the well

width. In the limit of thin well widths, I „,converges to
zero as expected. The well-width dependence given in
Fig. 9 is in qualitative agreement with the result of Rid-
doch and Ridley, who have calculated the electron
scattering rates as a function of electron energy in thin
ionic (GaAs) slabs by utilizing the eigenmodes obtained
by Fuchs and Kliewer and found that the scattering
rates can be significantly less than in the bulk.

4 6 e
InAS

10
V. MAGNETOPHONON RESONANCE

FIG. 8. The polaron damping rates in an A1Sb/InAs/A1Sb
double heterostructure as a function of yL&a at T=300 K. In
this system, I o" is larger than I 0 ', leading to the reduction of
I «, relative to I & for thin wells.

The magnetophonon resonance is an oscillation of the
transverse magnetoresistance caused by resonant electron
scatterings between Landau levels due to emissions and
absorptions of optical phonons. ' If we use the magne-



ELECTRON-OPTICAL-PHONON INTERACTION IN. . . HETEROSTRUCTURES 6185

tophonon resonance, we can get much richer information
about the electron —optical-phonon interaction in hetero-
structures.

Making a perturbation expansion of the Kubo formula
for conductivity and taking into account broadening of
Landau levels as a Lorentz form, we get the transverse
magnetoconductivity o.„'~„' corresponding to inelastic
scatterings with the optical phonon (mode j) as

~.".'= y f '
&C~o~"(Q)&C&~~ (C)+, (Q)

N, N'

with

X [f(E~ co, ) —f—(E~)]

X Sr((EJv + coj E~)/—to, ), (5.1)

~(j)—le2~ (Q)0
co, (Q)

toe
(co, /'r)Nti (coj )

X [Nii(~, )+ 1] (5.2)

where g= —,'Q 1 with l the cyclotron radius, co, is the cy-
clotron frequency, E& is the Xth Landau-level energy, T
is temperature, f (E) is the Fermi-Dirac distribution
function, 5&(x) is a Lorentzian function defined by
5 (x)=(y/n. )/(x +y ) with y=2I" /co, (1 is they

2Landau-level width), and J~~. (g) is the well-known ma-
trix elements. ' ' In the regime of high magnetic fields
such as co,r))1 (r is the electron relaxation time), the
transverse magnetoresistivity p„„ is proportional to o.

i.e., p, =o., /(N, e /m*co, ) .

0
structures with well width a=100 A (yiia=2. 5), a=50
A (yi ia= 1.3), and a =25 A (yLia =0.63). In spite of the
fact I o"-I o

' there appears a significant difference in the
spectra of magnetophonon resonances. That interface
phonons can be important in magnetophonon resonances
in narrow quantum wells has been suggested by Lassnig
and Lassnig and Zawadzki' without any explicit calcula-
tions. They derived the Hamiltonian describing
electron —optical-phonon interactions by application of a
modified image-charge ansatz and calculated form factors
(which correspond to the quantities a1 ( Q)F& ( Q) /a „ in
the present paper) approximately. Although their deriva-
tion of the interaction Hamiltonian is based on the ansatz
that is not justified, the resulting Hamiltonian seems to be
identical with ours.

There have been experiments in InP/In„Gai „As/InP
double heterostructures, which have shown that InAs-
like modes are stronger in thicker wells (a —100 and 150
A) while InP-like modes are more important in thinner
wells (a-80 A). If sample parameters appropriate in
these systems are used, we have yL&a —1.7 for a —80 A,
where contributions from interface phonons to scatter-
ings are already comparable to those from confined pho-
nons according to the present calculation. Therefore,
these experimental results can be explained qualitatively.
Similar experiments in systems with well widths much
narrower or wider than the above are required to observe
a clear crossover of phonon modes dominant in electron
scatterings.

A. GaAs/AIAs single heterostructures 60
1

'
1

'
I

In Fig. 10 we show an example of calculated magne-
toresistance spectra in a GaAs/A1As single heterostruc-
ture. It clearly shows that contributions of the interface
phonons are negligibly small in complete agreement with
the case of the polaron damping rate. This is because the
average distance between electrons and the interface is
too large for interface phonons to contribute to p ap-
preciably.

There have been reported several experiments on mag-
netophonon resonances in GaAs/Al„Ga, ,As single het-
erostructures. Most of them have been explained in
terms of bulk GaAs LO phonons " ' in agreement
with the present calculations. However, some experi-
ments have suggested that phonon frequencies are
significantly lower than that of bulk GaAs LO pho-
nons. ' ' Experiments have been performed also in
In+ Ga i z As/Iny Al ] y As and In~ Ga& „As/InP hetero-
structures. In In„Gai „As/In~Al, As, electrons
seem to interact mainly with InAs-like LO modes, while
both in bulk
GaInAs and in In Ga, As/InP, GaAs-like LO modes
are dominant. Origins of these interesting experimental
results remain unanswered.

B. AlAs/GaAs/AlAs double heterostructures

In Fig. 11, we show examples of calculated magne-
toresistance spectra in A1As/GaAs/A1As double hetero-

GaAs/A)As
T 200K

40-

0.2 0.4 0.6 0.8
/~ GoA8

C

i

1.2 1.4

FIG. 10. The transverse magnetoresistivity p „as a function
of ~, /coL& of a GaAs/AlAs single heterostructure caused by
magnetophonon resonances for T=200 K, N, =3X10" cm
and N&,» =S X 10' cm . The broadening of Landau levels I is
5 meV independent of the magnetic field. p is normalized by
po=2m*I o"/N, e . pI+ (pr ) is for interface phonons mr+
(ul ), pH for half-space phonons in right half-space, and p& for
bulk phonons. The average distance between electrons and the
interface is so large that p&+ is negligibly small relative to pH
and there is no notable difference between pH and p&.
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FIG. 11. The magnetoconductivity as a function of co, /coL& of an AlAs/GaAs/AlAs double heterostructure caused by magneto-
phonon resonances for T=200 K, X, =1X10' cm, and I =5 meV. p&+ (p~ ) is for symmetric interface phonons with frequency

0 0
~&+ (co& ), p& for con6ned phonons, p~ for bulk phonons, and ptpt:pg++pp —+pc (a) a=100 A (y„,a=2.5), (b) a=50 A
{yL&a=1.3), and (c) a=25 A {yL&a=0.63).

VI. DISCUSSION AND CONCLUSION

We have derived in this paper the effective electron-
electron interaction mediated by optical phonons in semi-
conductor single and double heterostructures. The Ham-
iltonian describing electron —optical-phonon interactions
has been obtained using orthonormal eigenmodes of opti-
cal phonons calculated within the dielectric continuum
model.

One of the important results is the sum rule of form
factors, Eqs. (3.8) and (3.20), which states that the sum of
the contributions of all kinds of phonon modes is exactly
equal to that of bulk modes if coupling constants are in-
dependent of modes. This leads to a certain relation be-
tween the contribution of interface phonons and that of
the rest (half-space LO phonons in single heterostruc-
tures, confined LO phonons in double heterostructures
and so on). That is, the reduction of interactions with

confined LO phonons (or half-space LO phonons) does
not necessarily mean the reduction of the total interac-
tion because of the increase of interactions with interface
phonons. In double heterostructures we have found that
electrons confined in the well interact mainly with pho-
nons of barrier layers in narrow wells such that yL, a & 1.
Therefore, we can reduce the total electron —optical-
phonon interaction by us-ing thin ionic slabs as suggested
by Riddoch and Ridley or the double heterostructures
such that I o") I o ', especially the homopolar-polar-
homopolar double heterostructures, as discussed in this
paper.

In A1As/CxaAs single heterostructures, we have found
that the contribution of the interface phonons can be
neglected as compared with that of half-space LO pho-
nons. Note that this does not mean that interface pho-
nons are completely neglected in single heterostructures.
If we consider phenomena where phonons with long
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wavelengths play dominant roles, for example, resonant
polaron couplings in magnetic fields, there can be appre-
ciable contributions of interface phonons. Usually reso-
nant polaron couplings give rise to a discontinuity in the
effective mass when co, -co . The discontinuities at inter-
face phonons m+ and co are estimated as about 4 of that
at coL, . There have been no experiments which have ob-
served such discontinuities occurring at frequencies of in-
terface phonons in GaAs/Al„Ga, ,As systems. It
may be hard to observe the discontinuity at co as m is
close to co„, while that at co+ may be observed more easi-
ly. In double heterostructures with narrow well widths
we can expect stronger discontinuities at the frequency of
interface phonons. Resonant polaron effects have
been observed in In„Ga& „As/In~ Al

& „As and
In„Ga, „As/InP heterostructures, where discontinuities
in the effective mass look similar to those occurring at the
GaAs- and InAs-like TO phonons. ' This has not been
explained satisfactorily although there have been at-
tempts to ascribe it to interface phonons or plasmon-
phonon couplings without explicit calculations.

The present study is restricted to the case of hetero-
structures composed of diatomic semiconductors in spite
of the fact that most experiments have been carried out in
systems consisting of alloy semiconductors. In the case
of alloys, it is not possible to obtain exact phonon modes
possessing complete orthonormality because of the pres-
ence of randomness and we have to introduce some ap-
proximations. In case of alloys with well-separated two
modes, the present calculation can easily be extended by
using the generalized Lyddane-Sachs-Teller relations to
determine the coupling constant for each mode. It may
be possible to use the image-charge ansatz, because we

now know that it gives the effective electron-electron in-
teractions identical with that obtained in the present
method in the single-mode case.

It may be worthwhile to make a few remarks on the
dielectric continuum model. There have been various
calculations reported of phon on modes in superlat-
tices. Such calculations have shown that phonon
eigenmodes, though quite complicated, can be different
from those predicted in the dielectric continuum model
especially in the vicinity of interfaces. Further, there can
be interface localized modes whose origins are quite
different from those discussed in this paper. It is expect-
ed, however, that the dielectric continuum model can still
give reasonable answers to various problems in single het-
erostructures and wide quantum wells (meaning much
wider than the lattice constant), since such perturbations
due to the presence of interfaces seem to be localized
within a few atomic layers from interface planes. In or-
der to give a definite answer to the accuracy of the dielec-
tric continuum model, we have to perform more
elaborate calculations using phonon eigenmodes obtained
by lattice dynamics or other reliable methods. ' This
problem is certainly out of the scope of the present paper
and left for future study.
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