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We study the temporal and spatial evolution of a pump, test, and signal field generated in a four-
wave-mixing process for resonant excitation of a nonlinear medium by nanosecond pulses. The
propagation effects for the pulses are taken into account beyond the usual mean-field approxima-
tion. The model is then applied to a three-level system, describing CuCl at low temperatures. A
great deal of new information concerning the temporal and spatial structures of the different fields
propagating through the sample is obtained. We show, for instance, that the temporal shapes of the
interacting fields are well established after propagation through the first few micrometers of the
sample. Beyond this, they propagate with a diminishing amplitude. We also show that these struc-
tures are due to the dephasing of the fields throughout their propagation as well as to the temporal
evolution of the absorption and generation function of the sample.

I. INTRODUCTION

Degenerate four-wave mixing has been shown to be a
powerful technique to study optical transitions in semi-
conductors.’? In this type of experiment, a pulsed laser
beam is split into two parts, labeled pump and test beams.
These beams are then focused under small angles into a
slab of the material, having a thickness of a few microme-
ters. The nonlinear interaction gives rise to a nonlinear
polarization which coherently generates a pulse of the
same frequency, namely the signal pulse. These three
pulses propagate through the sample. In this process,
two photons are absorbed from the pump pulse and the
generation of the signal pulse is induced by the test
pulse.® 8 It is a coherent process in which the virtual in-
termediate state decays, yielding one photon to the test
beam and one to the signal beam without any collision
process. Therefore, since no real quasiparticles are excit-
ed by the preceding two-photon absorption, the signal in-
tensity is a function of the instantaneous fields of the ex-
citing light beams (pump and test) only. The signal gen-
eration follows adiabatically the exciting fields. Based on
the expansion of the polarization in terms of the electric
light field, this nonlinear polarization is of third order.
Since this perturbation expansion converges rapidly"? off
resonance, it is usually truncated in order to study non-
linear processes.

Closer to resonance and at high-field intensities, the
perturbation treatment breaks down and the full dielec-
tric susceptibility ¥ has to be considered:>!° In addition,
a population of real quasiparticles is then created which
influences the absorption, the dispersion, and the non-
linear optical properties of the material.>!! This is espe-
cially important under pulsed excitation conditions when
the population dynamics governs the time evolution of
the nonlinear susceptibility.!!™!3 The influence of these
populations was studied in Ref. 9, where the nonlinear
susceptibility was calculated as a function of exciting
fields, while, in Ref. 11, the time dependence of the am-
plitudes of these fields was taken into account, resulting
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in a memory effect, shown to be dependent on the lifetime
of the populations. This memory effect has been ob-
served near resonances in four-wave-mixing experiments
performed on a nanosecond time scale.!> In these experi-
ments, structures in the temporal shape of the signal ap-
pear.!* They have different origins: besides the memory
effect of the complex nonlinear dielectric function, the
generation of the signal rate varies between oscillatory at-
tenuation and gain due to competition between coherent
and incoherent scattering processes. The effect of this
competition on the wave mixing and its application to the
case of CuCl was studied,'> !¢ and it was found that in-
coherent processes not only diminish the signal genera-
tion but also lead to temporal structures which depend on
the lifetimes of the quasiparticles created during the exci-
tation. In this study, the time dependence of the wave-
mixing process is described in the mean-field approxima-
tion for the exciting pump pulse, neglecting propagation
effects.

The propagation of a picosecond exciting pulse and its
effect on the population of the quasiparticles was stud-
ied!’ by solving numerically the equation of evolution of
the density-matrix elements together with Maxwell’s
equations, near the two-photon resonance. It was found
that in this frequency range the pulse is strongly altered
and the excitonic and biexcitonic levels show a popula-
tion inversion.

To our knowledge, the competition between the part of
the dielectric susceptibility, leading to a nonlinear ab-
sorption, and its coherent part, giving rise to an induced
emission and a reconstitution of the propagating pulse,
has not been extensively discussed in the literature. It is
the aim of this work to perform a theoretical study of the
degenerate four-wave-mixing processes in three-level sys-
tems, where the time dependence as well as the effect of
the propagation of the exciting resonant fields and the
generated signal field are taken into account. To do this,
we cut the sample into slices of variable thickness Az, the
output fields of each slice being the input ones of the
next. For each slice, the population and hence the sus-
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ceptibility ¥ and the absorption coefficient « are then cal-
culated in terms of the mean field of the incoming pump
beam. The slice thickness is chosen so that aAz <<1 (we
took aAz <0.04). Inside each slice the population rate
equations are integrated numerically (using Grear’s
method), while the variation of the fields is calculated
analytically. At the front part of the sample, the field
amplitudes are real but its imaginary parts start growing
as the fields propagate through the sample. This can be
considered as a dephasing of the propagating fields due to
the dispersion and absorption in the sample.

In Sec. II we describe the model and the physics in-
volved in this process and in Sec. III we discuss the result
of the numerical calculation done in the case of CuCl
modeled by a three-level system (ground state, excitonic,
and biexcitonic levels), when wave mixing occurs and we
excite at the biexciton resonance.

II. THEORY AND MODEL OF CALCULATION

A. Coherent and incoherent susceptibility

Let us consider as interacting fields an intense pump
pulse (p) and a frequency degenerate test pulse (2). They
both propagate almost collinearly in a nonlinear medium
and generate the signal beam (s). If we neglect transverse
effects—that is, take the medium and the fields as homo-
geneous in the x and y directions—and if we consider the
propagation in the z direction only, the linearly polarized
electric fields E;(z,¢) (with i =p,s,t) can be described by
plane waves:

E(z,t)= %[E?(z,t)ei(“”_kiz>

FE™(z,ne TR (1)
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where all the complex field envelopes E,~°(z,t) are assumed
to be slowly varying with respect to the rapid variation of

e’ and e’*?. The nonlinear wave equation can then be
written as
O 20— poo LBz, t)— o2 B (2,1)
322 THoT G S Hoat2 i\%,
82
=Hoa 2PNL(Z,t) (2)

o is the linear conductivity of the system and Piy(z,t)
the nonlinear polarization of the ith beam which, in turn,
is related to the nonlinear susceptibility tensor x¥; and to
the jth electric field E;(z,¢) via the convolution product

iz, z,t,t")E;(z,¢')dt’ 3)

t ii
=3 f _ XA
j 0
if we assume local spatial response for simplicity.
x(z,t,t') can be separated into slowly and quickly vary-
ing terms in space (wave vector nk,) and time (frequency

nw) via the expansion

Ex

k z)

x¥i(z,t,t") Miz,t,t)e" 7 )

If the field amplitudes EX(z,t) vary slowly in time with
respect to )(” (”’(z, t,7), we may define time- and
frequency-dependent susceptibility components!! by

X{{i}_”)(z,t,a))':fowxf{i(L")(z,t,T)e_"“’Tdr . (5)
Using (1), (3), and (5) together with the relation
)((z,t,a))=)("‘(z,t,-—a)),'we obtain for the nonlinear po-
larization component Py (z,t)

i[(n—l)m:—(nk—kj)z]] ©

Keeping in (6) all terms which oscillate at frequency o, we find

zm,

k z)
= + l]
NL(z 2 XNL

2)(’/(0 z,t, w)EO(z t)e
J

(z,t,a))EjQ*(z,t )e

i[w;—(zkfkj)z]l . -

We can now solve Eq. (2) in the slowly varying envelope approximation by neglecting all time derivatives of the func-

tions E (z,t) and x4{". We can also neglect (32/822)E (z,¢) with respect to k;(3/0z)E

lation ,uoelw 2=k} we obtain

(z t). Using the dispersion re-

—opoEXz,t) a);u i(k;—k, —i(2k, —k, —k,
gaz’E,'O(Z,t): :u'02k‘1 2lkO EE —i ‘)Z+EJQ*(z,t)e i(2k, kj ,)z] ) (8)
i
|

If we restrict ourselves to the phase-matching condition d o _ T Hewo 0) fhow’ 0
Ak =0=2k,—k, —k, and assume that the test and signal B;EP(Z’”— 2k, E)z)txf (2,1 0) 2ik, Ey)zt)
beams are so weak that they do not introduce changes in
the nonlinear susceptibility,!® we get for the differential
equations governing the propagation of the pump, test, 0%
and signal pulses (indices p, ,s) AR 20, a)) k EP @0, ©
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As discussed in Refs. 12 and 13, the first term on the
right-hand side of Egs. (9)—(11) gives rise to the linear ab-
sorption and the second one to the nonlinear absorption
and dispersion induced by the pump beam. These terms
do not distinguish between the coherence or incoherence
of the excited states involved in the calculation of the sus-
ceptibility for the interacting beams. The last term, on
the contrary, represents a parametric process in which
the pump and test beams generate the signal beam
coherently, i.e., only coherent states contribute to this
generation [via x§{{2*(z,1)].
Now let us write Egs. (9)—

aO
az

where

(11) in the compact form

=AE,+BE}, (12)
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If we solve Egs. (12) for a slice of the sample with the in-
coming fields E{" and E|", the variation of the fields in
the z direction inside the slice can be described by

sinhAz
A

E;=e"VE{V |coshAz +ia, +E/V* =t s‘“;:}‘z ,

(14)

where A>=b?+b% —a3 is a parameter which we will call
the “regeneration function” and a,,a,, and b,,b, are the
real and imaginary parts of 4 and B, respectively. In the
case of A2<0, the hyperbolic functions are replaced by
the corresponding trigonometric ones. In Egs. (12)-(14)
(i,j) are replaced by (p,p) for the pump beam, (t,s) for
the test beam, and (s, ¢) for the signal beam.

The mean field inside the slice m of thickness Az can be
calculated from the relation

fZ +Az

E,(z,t)d (15)
Using Eq. (14), we obtain

a (| a,Az A2 sinhA Az
7 e coshA Az ————F— | —1
P Az(a?—A%) l ’ [ a, A
+ [E;”*B-HE;l)az] sinA Az coshA Az +_1_ } ‘ (16)
I
The initial conditions for the first slice can be taken as H=H,—uE , 17

EV=(1)'?, E{V=(1))"/?, and E{"'=0, where the fields
are real and 1, 0 and 1, 6 are the incident pump- and test-
beam 1ntensmes, respectlvely Equations (14) and (16)
govern the propagation of the three interacting fields in-
side the sample. To use them we have to know the
coherent and the incoherent parts of the susceptibility,
which we will determine below.

B. Application to CuCl

In order to determine the coherent and incoherent
parts of the susceptibility, we will consider a three-level
system which is well adapted to describe CuCl. As dis-
cussed in more detail in Refs. 9, 11, and 19, it consists of
the crystal ground state |1), the exciton state |2), and
the biexciton state |3), having energies 0, E,,, and E,;,
respectively. The transition between states |1) and [2)
and |3) are dipole allowed for linear polarization, while
those between |[1) and [3) are allowed for two-photon
transitions. The Hamiltonian H in the dipole approxima-
tion can be written as

where H is the Hamiltonian of the noninteracting system,
u is the dipole operator, and E is the exciting electric field
(the field of the pump beam in our case).

In the framework of the density-matrix formalism, the
polarization P(z,t) can be expressed by’

P(z,t)=N tr[p(z,t )u] , (18)

where N is the density of the molecules in the crystal.
The matrix representation of the dipole operator y is

0 pe O
B= tex O pyi |, (19)
0 wy O
where
ax=(2[ul1) (20a)
and
i = 3]ul2) . (20b)
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We can find from (18)-(20)
P(2,)=N{[pps(z,t) (2, ) ey

+[p23(z,t)+p32(z,t)]ubi] . 2n

We now develop the density-matrix elements p;;(z,?)
into a series in order to separate quickly and slowly vary-
ing contributions,?!

pij(z,t)zzp"_lj(z,t)ein(wt—kz) . (22)

Inserting this expression into Eq. (21) and keeping only
the terms which oscillate with the frequency w, we get

P°=PP+P¢;

=N{ [pi2(z’t )+p%1(z’t )].u’ex

+[pli(z,t)+ply(z, ) Juy J e k), (23)
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FIG. 1. Temporal shape of the initially Gaussian pump pulse
after its propagation through a sample of CuCl of 10 um thick-
ness. The maximum intensity of the incident pulse is
n,=5X10" photons/cm® and its photon energy #w=3.186 eV.
It is a, calculated from Egs. (14) and (16); b, neglecting the in-
duced recombination (that is, setting x{3/*=0); ¢, as in a, but
taking the whole sample as one slice only (mean-field approxi-
mation); and d, as in b, but within the mean-field approxima-

tion.
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where Py is the linear polarization which is given by
PI(:):XLEP(Z’t)ei(mt—kZ) . (24)

Py is given by Eq. (7) and ), denotes the linear sus-
ceptibility. Using Eq. (7), Eq. (23) can be written as

E,(z,0)Y'%z,t)+E} (z,t )xP*(z,1)

=E,[x(z,t)—xL1=E xn(z,t) , (25
where
= 2N |
x(z,t) o, (1) {[pi2(z,8)+p31(z,8) Juex
+p2s(z, 1) +p5lz, )]uy}  (26)

gives the dielectric susceptibility and )y; its nonlinear
part. We may now calculate the time dependence of p
through the time-dependent Schrédinger equation, which
leads to (20),

dp;;(z,t)
at

where H is the Hamiltonian of the system and I';; denote
the different damping constants which we will discuss
later on. Using now expansion (22), and following the
same procedure as in Ref. 11 but considering the propa-
gation of the fields with complex amplitude, we get for
the rate equations of pf;(z,7)

é[P(Z,t),H],‘j —pij(z,)T;; , @7

& (1,10 pm Yem™)

A (1,10 pm)(em™d)

|
0 15 3.0
t (ns)

FIG. 2. Time dependence of the absorption coefficient a
(curve a) and of the regeneration function A? (curve b) at the end
of the sample for the conditions of Fig. 1(a).
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dpl.(z,t) )
iﬁ—gl—%;——‘—“—(Eex—nhw—i-iﬁl‘lz)p'fz(z,t)+%[Ep(z,t)pi'3_l(z,t)+Ep*(z,t)pi'3+l(z,t)]
+ LB, (2,000 —pn)" N2+ ES 2,0 pn—pn) T2, 0)]
dpls(z,t) ;
5 P_l._z_t :_(E,,,.~nﬁw+mr,3)p;g(z,t)+%"-[Epu,t)p;';l(z,t)+E;(z,t)p;’2+‘(z,t)]
- “2” [E,(z,0)p5 Nz, )+ EX(z,0 )™ Mz, 0)]
. ap;S(z’t)__ . n .uex n—1 * n+1
lﬁ————&-—-———-—(Ebr-Eex—nﬁw+1h1“23)p23(z,t)~T[Ep(z,t)pw (z,0)+ES(z,t)ply (2,1)]

Hoi

+T[Ep(z,t)(pzz—-p33)”_l(z,t)+Ep*(z,t)(pzz—p33)"+1(z,t)] ,

l"ﬁ—aa?(p“_p22)n(z,t )= —iﬁrlﬁn’o—(nﬁw—iﬁrl)(p“ _pzz)n(Z,t)

Hoi
2

—:uex{Ep(z’ t )[pTZ_I(Z’t )—pa

iﬁ%(Pn—Pw)"(Z,t )= —(nfiwo—i#il)py—py3)"(z,t)

“ex —_ —
+—{E,(z,0)[pf; '(z,0)—p5 !

2
—I"l'bi{Ep(z’t)[pgfi;l(z,t)—'p:;z

Equations (28) form an infinite set of simultaneous
differential equations which can be truncated to |n|<2.
It was shown®!! that if one considers the functions
(01— P2)%(2:1), (pra—p33)%2,1), pia(2,0), p1i(2,0), pis(z,0),
p31(z2,1), phs(z,1), and pl,(z,t) together with their complex
conjugates, the dielectric function in the steady-state re-
gime can be described within a very good approximation.
The system is then reduced to 14 coupled differential
equations which can be solved numerically to get the sus-
ceptibility [Eq. (26)].

To calculate the susceptibility, we need to obtain the
coherent and incoherent parts separately. In order to do
this, let us go back to Eq. (27), which represents the time
evolution of the density matrix. If we now build up an
ensemble average over the quasiparticle population, then
I';; represents the energy transfer from the exciton-
biexciton system towards a heat bath, T;=1/I";; being
the corresponding decay time due to inelastic collisions.
These dampings do not give information on the time evo-
lution of the actual states which are excited coherently.
If we now calculate the susceptibility using these damp-
ings together with the I';; which corresponds to the phase
relaxation of the quasiparticle states, then we get both the
coherent and the incoherent parts of the nonlinear sus-
ceptibility yni(z,2).

In the case of direct-band-gap semiconductors, I'; is of

(28)
+ = {E,(z,0)[p55 Nz,0)—p%y Uz, )]+ E} (2,0)[p55" (z,0) —p3 (2, 1)])
5 Nz, O1+EN(z,0)[ph z,0)—ps 2,01},
(z,t)]+E;(z,t)[pi’zﬂ(z,t)—p§'1+1(z,t)]}
5 Nz O1+EN(z,0)[ps () —ph (2,01} .
0.125
s,
:E
>~ b
’E* (4]
g
=
w
~0.125}—
5 ¥ 30

the order of ns™! and I';; of ps~'. In order to separate

the two parts of the susceptibility, we build an ensemble
average, made of equivalent states. Then, Eq. (27)
represents the time evolution of the states which are ex-
cited coherently. We denote their decay time by ;.
They are limited by both elastic and inelastic collision

t(ns)

FIG. 3. Time dependence of the real (curve a) and imaginary
(curve b) parts of the electric field amplitude of the pump pulse
relative to its maximum incident amplitude [(n,)'”?] after its
propagation through the sample for the conditions of curve a of
Fig. 1.
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FIG. 4. Same as curve a of Fig. 1, but for different maximum intensities of the incident pump pulse, n, having the following values
(in photons/cm?): (a) 2.5 X 10", (b) 4X 10", (c) 5X 10, and (d) 7.5 X 104,



I&

[((Q,IOpm)/lp(to,o)

0.06

THEORY OF PULSE PROPAGATION AND WAVE-MIXING . ..

°
<)
s
T

o
o
@
I

0.02—

0.0 |~

6169

(b)

0.03
(a)
0.02}—
B
o
-
=
~—~
£
5
e
d \ ~
/A = N
/ \ \
/ \ 001 |- \
// \ \
\ \
N /// \ \
- \
\
\
\
|
15 3.0
t(ns) °
(c)
0.02}-
°
‘-O
-
~~
g_ 001
=4
i
- e AN
\
\
\
\ /
\ /
\ /
\ /
N /
’
> / \
S -7 N
l - A

1.5
t(ns)

30

FIG. 5. Temporal shape of the test pulse when taking into account its propagation through the sample compared to the shape ob-
tained within the mean-field approximation (the dotted line) for different maximum input pulse intensities, n, having the values (in
photons/cm?) (a) 2.5X 10'4, (b) 5X 10™, and (c) 7.5 X 10'4.
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processes. Considering quasistationary states,?? these
lifetimes give rise to the nondiagonal damping constant
of the density matrix through

11 1

l" _
i T T

2 |7 y (29)

If we now calculate the susceptibility using 1/7; as diago-
nal damping constants, we only get the coherent contri-
bution of the susceptibility, which we will call x.,. Then
Eq. (25) is reduced to

*(z t))(m*(z, Ep[Xco(z’t)_XL] . (30)

Usmg, now Egs. (29) and (30) we can get x\J(z,¢) and
X\3*(z,¢) and the incoherent susceptibility part through
Xin=X " Xco -

As we have seen, the pump field can be calculated from
Eq. (14) as a function of 4 and B which in turn, are func-
tions of the pump field through the rate equations. Some
kind of iteration now has to be performed. To do this, we
follow the procedure mentioned in Sec. I. Namely, we
treat the problem as if the sample was cut into slices. For
the ﬁrst slice, the input pump and test fields [E, (D(z,¢) and
E!V(z,t) in Eq. (14)] are taken as Gaussian pulses of the
form

2
—[(t—1y)/7] )1/2

E(0,t)=(Iy+1,e (31)

For computational reasons, I, has to be chosen different
from zero. 7 is the width of the pulse. The value of ¢, is
chosen to be equal to 37 and the integration of Eq. (27) is
performed in the range from O to 67. In the present case,
dealing with ns pulses, we have chosen 7=500 ps. For
the first interval of the time integration, we took for the
mean field the value

172

I
Em= ® _(1— )

—2a; Az
e
? 2a; Az ’

where a; is the linear absorption coefficient. For the
other time intervals or for the other slices, we use Eq.
(16) for the mean field and then obtain the susceptibility.
We use Eq. (14) to get the fields. For all the parameters
we took the same values as in Ref. 8, except for the I'’s,
where we used the values #/27,=#/213= 1074 eV,
#;=10"%eV, and #/7,=0

III. THEORETICAL RESULTS AND DISCUSSION

A. Pulse shapes after propagation
through samples of 10 um thickness

Let us first consider the propagation of the pump pulse
through a sample of 10 um thickness. The maximum in-
cident intensity is chosen to be 3 MW/cm? which corre-
sponds to a photon density of approximately n, =5X 1014
cm ™3 in CuCl. The excitation frequency is at fico, =3.186
eV, i.e., at the biexciton two-photon resonance. Figure
1(a) shows the temporal shape of the initially Gaussian
pulse when transmitted through the sample as calculated
from Eq. (16), using 69 slices of variable thickness. Com-
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pared to Fig. 1(b) when the source term Y{2/* has been
neglected, the pulse becomes quite structured and its in-
tensity is increased at the end of the pulse due to the in-
duced recombination of the biexcitons. Figures 1(c) and
1(d) give the same information when the mean-field ap-
proximation is applied. In this approximation, all spatial
variations are neglected and the field is assumed to be
constant throughout the sample. The pulse intensities
then obtained are much higher and the structures which
remain are only due to the temporal variation of a and
A% As we see from Fig. 1, the mean-field approximation
gives, qualitatively and quantitatively, results different
from the pulse propagation under these excitation condi-
tions. In addition, the pulse becomes much more struc-
tured if the regeneration term and the propagation are
properly included, and these structures show up at much
lower intensities than in the mean-field approximation.
As shown in Fig. 2(a), the absorption approximately fol-
lows the pump-pulse intensity without affecting its shape
considerably. As we will see later on, a influences the
pulse shape only at the beginning of the propagation (in
about the first micrometer). However, it is mainly re-
sponsible for the regeneration of the pulse, and thus the
signal generation has a different shape. It gives rise to
gain (A2>0) at the beginning of the pulse and to at-
tenuated oscillation (A><0) at its end. The fact that
structures appear in the pulse shape is due to the effect of
gain and attenuated oscillation of the pump field as well
as to its phase change, induced by the propagation. This
is clearly shown in Fig. 3, where we have plotted the real
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Q
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o

€ (tiopm) [E (1,

~0.05}—

-0.10f

-0.15}—

|
0 1.5 3.0

t(ns)
FIG. 6. Same as Fig. 3, but for the test field.
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and imaginary parts of the field at the end of the sample.
It is worth remembering that the incoming fields have a
Gaussian shape and are real. The imaginary part of the
field is generated through the propagation only. This can
be understood if we look at the real Ep1 and imaginary

E,, parts of Eq. (14) for the case of the pump field sepa-

rately, which corresponds to a system of coupled equa-
tions:

Eplzea‘z Elg:’ coshkz+blsm)lCM
sinhAz

_Elﬁi)(a2_b2) Y ’

Ep2=ea‘z E,) |coshAz—b, sm}l:M
sinhAz

+E;:)(a2+b2)——}:—- ,

respectively. In Fig. 4, we show how these structures de-
velop with increasing intensity. As already stated in Ref.
9 for the stationary case, at even higher maximum inten-
sities than n,= 10 cm™3, the system becomes unstable
and no correct pulse shape can be established, at least for
the damping constants used here.

Since, in the pump pulse, strong temporal structures
are generated through the propagation, these structures
show up in the test and the signal pulse, as can be seen in
Figs. 5-8. Figure 5 shows the test-pulse shape for

0.05}—

Eg(t.10mm) [EL(t, 0)
o

—0.054—

l 4
1S
t(ns)

FIG. 8. Same as Fig. 3, but for the generated signal field.
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different intensities up to n,=7.5X 10" cm™? as a func-
tion of time, and compared with the mean-field results.
Figure 6 gives the real and imaginary parts of the test
field for n, =5X10" cm™>. It clearly shows the origin of
the spike in the intensity around 1.4 ns. In this case, the
real part of the field is still large and the imaginary part
almost reaches its minimum value. Figures 7 and 8 show
results similar to Figs. 5 and 6 for the generated signal.
One should point out here that these differences between
the mean-field theory and the propagation show up at
high intensities and at the biexciton resonance. Outside
the resonance, both theories give the same results since
al << 1.

B. Propagation effects at fixed temporal positions
in the pulse envelope

Besides the pulse shapes obtained after propagation
through the sample, it is also interesting to study how the
pulses evolve inside the samples. In order to discuss this
point in more detail, we have first studied how A% and a
behave at a fixed time position (t=1.5 ns, i.e., at the max-
imum of the incoming pulse) inside the crystal. The re-
sult is shown in Fig. 9. Both A% and a have very high
values in the first micrometer and then reach their low-
intensity values. This behavior explains why the shapes
of the different pulses are practically established after a
propagation through a slice of about <1 um. These tem-

)
x 10
x10°
~s0
op —2.5
«T
-~ A2 [
t —_—> o
§ =
v N
3 0 8
o Np(
0.5 -2
]
«—
-5.0
| I | 2
0 25 5.0 7.5 10.0 S
Z(pm)

FIG. 9. Spatial evolution of the absorption coefficient a and
the regeneration function y” at a maximum incident pump-pulse
intensity n, =5X 10" photons/cm? for t=t,=1.5 ns.
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FIG. 10. Spatial evolution of the real and imaginary parts of FIG. 11. Same as Fig. 10, but for the signal field.

the pump field relative to a maximum incident pump field
[(n,)'7*] at n,=5X 10" photons/cm® at ¢t =t¢,.

0 7.5 ! 5.0 7.5
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FIG. 12. Spatial evolution of the generated signal intensity at ¢ =t#, for different maximum intensities of the incident Gaussian
pump pulse, when n, has the values (in photons/cm?) a, 2.5X 10'; b, 3X10'; ¢, 3.5X 10'%; d, 4X 10'%; ¢, 5X10'; f, 6X10'; and g,
7.5X 10,
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poral shapes are maintained afterwards. In the case of
the test pulse, only its overall intensity decreases due to
absorption. In Fig. 10 we show the evolution of the
pump fields for the real [Epl(z, ty)] and imaginary

[Epz(z,to)] parts corresponding to Fig. 9, and Fig. 11

that of the signal fields. Although the dephasing of the
signal is important, its overall shape remains almost un-
changed. Only the temporal positions of the relative
maxima and minima of the pulse in Fig. 7 are slightly
shifted. This is shown in Fig. 12, where for low intensi-
ties only one maximum appears, since the pulses do not
present any structures, but do present a nearly Gaussian
form. Then, at higher intensities, the structures appear
first in the trailing edge of the pulse (as shown in Fig. 7)
and then move with higher intensities towards the lead-
ing edge. This explains the relative maxima and minima
of I (z,ty) at higher intensities. If one plots the absolute
maximum of the generated pulse as a function of z, in-
dependently of its temporal position, curves like those at
low intensities are obtained.

IV. CONCLUSION

We have shown that the propagation effects in a non-
linear medium modify the pulse shapes tremendously.
These effects are important even at quite low intensities
at resonance where one would expect the mean-field ap-
proximation to be valid. A great deal of these temporal

S. S. MONTASSER, J. MILETIC, AND B. HONERLAGE 40

and spatial structures are due to the dephasing between
the real and imaginary parts of the fields, the last part be-
ing due to the generation process which results from the
induced recombination. It gives rise to the signal genera-
tion as well as to an important reconstitution of the pump
pulse. The different temporal behaviors of this coherent
process (A?) with respect to the nonlinear absorption (a)
have been completely neglected, to our knowledge, up to
now.
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