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Green's functions for antiferromagnetic yolaritons. II. Scattering from rough surfaces
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The scattering of an incident electromagnetic wave from a semi-infinite antiferromagnet with a
rough surface is treated using the classical Maxwell wave equations. %'e limit our discussion to
scattering within polarizations perpendicular to the plane of incidence. %'e first calculate the
roughness-induced scattering from a periodic grating and show how the grating can couple the in-

cident wave to both the forward (+k ) and backward ( —k„) traveling surface-polariton states. We
also find that the grating can induce strong coupling to the Brewster-type "leaky" modes. Finally
we consider scattering from a randomly varying surface and estimate the change in reAectivity due
to roughness-induced scattering into surface-polariton states.

I. INTRGDUCTIQN

Interest in the effects of surface roughness on surface
polaritons stems from a number of considerations.
Foremost, of course, is the fact that roughness is always
present in reality, no matter how perfect a sample may
be, . and necessarily influences any optical measurement of
the material. In addition, roughness may increase cou-
pling of electromagnetic waves to the normal modes of a
material (particularly the surface modes), as with photons
to plasmon-polaritons in a rough metal, ' by causing the
photon of wave vector k and frequency co to interact with
polariton modes also of frequency co but with wave vec-
tors in a range determined by the roughness. The pres-
ence of roughness yields a width in wavelength for the
response of the media to driving fields analogous to the
way dissipation mechanisms result in a width in frequen-
cy. Hence surface roughness plays a role determining the
linewidths of absorption and scattering spectra. Furth-
ermore, since surface polaritons exist on the interface be-
tween two media, surface roughness clearly plays an im-
portant role in the excitation and propagation of surface
polaritons by affecting the geometry of the interface.

Surface roughness provides two mechanisms by which
surface polaritons can lose energy: either through rough-
ness induced radiation or through roughness induced
scattering into different polariton states. Which mecha-
nism dominates depends on the polariton's frequency.
Thus surface roughness can affect the mean free path
length of polaritons propagating on the surface of a ma-
terial. These mechanisms have in fact been suggested as
explanations of certain anomalies in attenuated total
reAection measurements of plasmon-polaritons. Anoth-
er effect due to random roughness is the shifting of fre-
quencies of surface-polariton states below their Aat sur-
face frequencies, thus displacing the dips in reQectivity
curves by amounts dependent on the distribution of
heights and profiles that characterize the roughness.

Again, this is also a typical consequence of dissipation
mechanisms.

For periodic gratings, a number of interesting results
also appear. The effect of a grating is to couple the in-
cident electromagnetic wave, with wave vector k„, para1-
lel to the surface, with polariton modes at wave vectors
1„,+g where g is a reciprocal lattice vector for the
periodic grating. This is a discrete form of the wave-

length smearing described for random roughness. This
process is analogous to the scattering of electrons in
periodic potentials, and one can construct reduced Bril-
louin zone representations for the surface-polariton
modes. Other features reminiscent of energy bands is
the appearance of "band gaps" in the surface-polariton
dispersion relations that exist at the Brillouin zone boun-
daries. Finally, we note that it is also possible that the
fields very near a rough surface are enhanced to such a
degree as to significantly affect nonlinear optical process-
es.

Numerous theoretical methods have been developed
which attempt to describe the effects of various types of
surface roughness. Scattering due to random roughness
has been treated by perturbation methods in the limit of
small surface height Auctuations using a variety of classi-
cal formulations. Earlier methods ' expanded the fields
and surface profiles in power senes under the assumption
of small fluctuations in surface heights. Later formula-
tions considered perturbations in the dielectric functions
due to surface roughness and solved integral equations in
the manner of the Born approximation of scattering
theory. ' Microscopic quantum-mechanical approaches
have also been implemented, and the resulting expres-
sions for scattering cross sections have been shown con-
sistent with the classical perturbation theories.

The above approaches all suffer from the assumption of
roughness profiles that are small with respect to the
wavelength of the incident light. These perturbative
techniques are usually only carried to first order and sub-
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sequently do not describe many of the more interesting
features found in large amplitude studies (band gaps, fre-
quency shifts, etc.). Alternative approaches have also
been developed which attempt to deal with large ampli-
tude gratings, and these constitute a whole subject unto
themselves. Most notable are formulations of the Ray-
leigh hypothesis, which assumes that fields inside and
outside the surface, or selvedge, region are also valid in-
side the selvedge region and may be used to satisfy the
appropriate boundary conditions at the surface. Another
technique is an integral equation method based on the
"extinction theorem" which allows a formally exact solu-
tion for the scattered fields in all regions without invok-
ing the Rayleigh assumption. ' Each method has its
disadvantages, the Rayleigh hypothesis being limited to
describing fields in regions outside the surface region and
the extinction theorem being dif5cult to implement nu-
merically. Consequently, new techniques are constantly
evolving.

Mindful of the above remarks, our aim in this paper is
to provide a preliminary study of the effects of surface
roughness on light scattering from semi-infinite uniaxial
antiferromagnets. Most of the previous studies have con-
sidered the effects of roughness on only plasmon-
polaritons and ferromagnetic magnons. " We will be
most concerned with the scattering of light near antifer-
romagnetic surface-polariton frequencies, where the scat-
tered light's amplitude and linewidth are related to the
total magnitude of the power scattered into surface-
polariton states.

We will assume the roughness is slight and follow the
perturbation method used by Mills and Maradudin in
their initial studies of scattering from rough metals. '

This method, though not without certain shortcomings,
provides a reasonable first attack on the problem and can
be shown to be consistent with other techniques, at least
to first order in the roughness height io, i2 Since t
technique requires the Green's functions for a semi-
infinite antiferromagnet, we refer to the preceding paper
(paper I) of this present work (paper II) for the derivation
of these functions.

Once expressions for the roughness induced scattered
fields are obtained, we then estimate the power losses due
to roughness from a beam specularly reflected by the sur-
face of an antiferromagnet. Since random roughness can
be considered as a superposition of random periodic grat-
ings of varying height, we will first consider the case of a
sinusoidal one-dimensional grating impressed upon the
material's surface. From there we will represent the ran-
domly rough surface as an average of surface profiles, as
also done by Mills and Maradudin, ' with a Gaussian dis-
tribution of surface heights and profiles.

Besides allowing an incident beam to couple with ei-
ther or both the +k and the —k surface-polariton
branches, we also find that surface roughness can enhance
the nonreciprocal reAectivity of an antiferromagnet in an
applied field. In other words, in an applied field we find
that the difference in reAectivity between a beam incident
at +0 and a beam incident at —0, both of which couple
to the surface-polariton modes, is increased by the pres-
ence of random roughness. We also find the interesting

result that roughness allows coupling between an incident
beam and the Brewster-type modes of a damped antifer-
romagnet. The properties of these damped modes are
discussed in detail in paper I.

The outline of the present paper is as follows: in Sec.
II we derive the integral equation for the scattered fields
and solve for the power Aow inside and outside the ma-
terial. In Sec. III we study the effects of a small ampli-
tude periodic grating on coupling with surface polaritons
on MnF2. Finally, in Sec. IV we consider the case of ran-
dom surface roughness.

II. THEORY

E

H 0

incident

FIG. 1. Geometry for this paper. An electromagnetic wave
with its electric field along z and 0 field in the xy plane is in-
cident on an antiferromagnet with a rough surface. The materi-
al lies in the y )0 half space with the easy axis along z. An ap-
plied field is also set along the z axis. The angle of incidence 00
is defined between the incident wave vector and the outward
normal from the surface of the antiferromagnet.

The geometry is shown in Fig. 1. The material is in the
y & 0 half-space and the surface varies about the xz plane.
The antiferromagnet is assumed to be uniaxial and the
magnetizations of the two sublattices are taken along the
+z axes. The applied field is also set along z. The actual
surface height is some function g(x, z) which measures
the deviation of the actual surface above an ideal smooth
surface at y =0.

The dielectric properties of the material are deter-
mined by the dielectric tensor. For a uniaxial antifer-
romagnet this tensor is diagonal but anisotropic. The
magnetic susceptibility has off diagonal elements in the
presence of an applied field, and is also anisotropic. The
explicit forms are given in paper I by Eq. (2.1)—(2.7), and
in keeping with the notation of paper I, these are labeled
e and p.

The electric and magnetic susceptibilities are uniform
everywhere except near the surface of the material. The
only x and z dependence of the susceptibilities enters
through the profile function g(x, z). Assuming a wave-
length region where a step function behavior of the sus-
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ceptibilities at the surface is appropriate, we write the
dependence of the susceptibilities on the roughness
profile g(x, z) through the step function 6(g(x, z) —y ):

e,",(x)=e; +(5; —e;, )6(g(x, z) —y ),
~,"j(x)=l „+(5,, —~,, )6(g(x,z) —y) .

(2.1)

(2.2)

(2.4)

where the Hat surface susceptibilities e ~ and p
have components e,.j + ( 5,.j —e," )6( —y ) and p;j
+ (5;~ —p;j )6( —y), respectively.

Expressions of this form can be found by expanding
the susceptibilities in (2.1) and (2.2) in a Taylor s series
about g(x, z) =0. The first-order terms appearing in this
expansion are

5e,, =g(x, z)(5;, —ej )5( —y),
5p,, =g(x, z)(5;;—p;, )5( —y)

(2.5)

(2.6)

The electromagnetic fields are also written in a pertur-
bation expansion. We denote the unperturbed fields by
H and E with first-order corrections 8" and E'. We
assume a time dependence for the fields of the form
exp( i cot). Fro—m Maxwell's equations we obtain a wave
equation for H":

Here 5,- is the kronecker delta function which makes the
dielectric and magnetic susceptibility tensors equal to
unit matrices for the vacuum region. Note that we have
written the susceptibilities as tensor components. The r
superscripts denote the position-dependent functions for
the geometry of a rough surface and the unsubscripted e;
and p; are the components of e and p.

The roughness is treated as a small perturbation in the
susceptibilities. The position dependent rough surface
susceptibility tensors e" and p' are expanded to first or-
der in the perturbation as

(2.3)

Green's function method. The scattered field is deter-
mined by

H"= g Jdx'g k(x, x')Fk, (2.10)
k

where g;. is the E'jth component of the semi-infinite anti-
ferromagnetic Green's function tensor. The volume of
integration is over all of space. We refer the reader to pa-
per I for the derivation and explicit form of the g; .

We now limit ourselves, for reasons discussed in paper
I, to the simpler case of propagation in the xy plane with
the incident electric field in the z direction. In this case
none of the quantities in (2.8) depend on z and we can
Fourier transform in the x variable. The one-dimensional
Fourier expansion for g; is

ik (x —x')
g; (x,x')= e "

g, (k;y, y') . (2.11)
2K

The relevant quantities for the transform of F are H and
We restrict ourselves to surface irregularities that de-

pend only on the x coordinate and are independent of z.
This restriction allows a reasonable description of grat-
ings but is incapable of fully describing a randomly rough
surface. To see this, suppose the roughness varied in the
z direction. We would then expect some scattering into
propagation directions in the z direction (parallel to the
applied field). There would also be some scattering of the
incident wave into other polarization states, i.e., the pro-
duction of scattered waves with electric field components
normal to the surface. In our simplified theory, we only
consider incident and scattered waves which are polar-
ized with their electric fields parallel to the z axis and
which propagate in the xy plane. This theory can thus
describe a grating with a variable period in the x direc-
tion (one-dimensional roughness), but not two-dimen-
sional roughness.

The x-dependent surface proNe function has the one-
dimensional expansion

VXe 'VXH" —
conM H"=c005pHO —tcooV g(x)=J e "g(k ). (2.12)

(2.7)

For the rest of the paper, coo=co/c. An equivalent ex-
pression for (2.7) is

I . 1 82 1 a2

e BXJaxk l e Bx i

—co~~ 8- =I'kj j k

+k ~Oek g 5Pkj Hj l~oek X ekjl gJ j, l j
5@i

/ E, . (2.9)
E'I

Here ejkI is the Levi-Civita tensor.
We solve the perturbed wave equation (2.8) through a

(2.8)

The prime on the sum means that mWj, k, l. Since the
dielectric tensor is diagonal in this problem, we set

kk 6k
The vector F represents the driving terms and is given

by

H"(x)= I dk A(k„,y)g(k„—k„o)e (2.15)

where the components of the vector A are defined by

Finally, the unperturbed fields have only one Fourier
component:

H, (x)=e "'H;(k„o,y'), (2.13)

Eo(x)=e "' E, (k„o,y') . (2.14)

k„o is the wave vector of the unperturbed wave. In our
problem, the unperturbed field originates from a traveling
electromagnetic wave incident on the rough surface of
the antiferromagnet. The amplitude of the unperturbed
fields in (2.13) and (2.14) then depends on k„o and is
determined in each region of space by the appropriate
Fresnel relations. The pertinent formulas are presented
in the Appendix.

Using the transforms (2.11—2.14), the scattered field of
(2.10) can be written in the compact notation
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A„=f" dy 5( y ) ~p[(1 p2)Hx(kxp~y') 'p2Hy(kxp y')]+iE,' (1—e2) efgx„(kx;y, y')
oo &z Bg

+f dy'5( —y') cop[(1 p2—)H (k p,y')+i p2H„(k„p,y')]+iE, (1 —e2) efg (k;y,y')
oo

(2.16)

A~ =I dy'6( —y') cop[(1 —p2)H„(k p,y') —ip2H~(k„p, y')]+iE, (1—e2), e,g „(k,y,y')
oo &z Bg

+ I dy'5( —y') cop[(1 p2)H—(k„p,y')+ip2H„(k„p, y'))+iE, (1—e2), e,g (k;y, y') .
oo Ez By'

(2.17)

In deriving these formulas an integration by parts has been done, shifting the derivatives off of 5eE and onto the
Green's functions.

As noted by Mills and Maradudin' and others, ' the evaluation of the integrals in (2.16) and (2.17) is not obvious
since the discontinuity of the integrand allows for a number of possible solutions. Following Mills, we take a prescrip-
tion which is consistent with previous perturbative treatments. This prescription makes the source of the scattered
fields proportional to the amplitude of the unperturbed fields inside the material but located in vacuum just outside they
y =0 plane. Hence we use the Green's functions appropriate for sources in the y &0 space with the driving fields
(defined by 2.9) appropriate to the y )0 space.

These choices result in the following expressions for A:

Az =E'2 a)p[(1 pi)Hz(kzp, + ) ip2H&(k~p, +')]+iEz (1—e~)
E'2 By

g,„(k„;y,—)

+@2 cop[(1 —p, )H (k„p, +)+ip2H„(k p, +')]+iE, (1—e2)k„g„(k;y, —)
E2

(2.18)

and

A =a~ cop[(1 —p, )H (k„p, + ) ip2H—(k„p, + )]+iE, (1—e2) g „(k,y, —
)

+e2 cop2[(1 —p, )H (k p, +)+ip2Hp(k p, +)]+iE, (1 e2)k„—g (k„;y, —) .
E'2

(2.19)

S=(c/4m )8"XH"* (2.20)

We require one further notational device. So far in the
discussion it has not been necessary to introduce a
separate notation for fields in the material (y )0) and for
fields outside the material (y (0). Since the Green's
functions and wave vectors for y )0 are different than
those for y &0, the explicit forms for A, E", H", and S
will also differ depending on whether they are taken in
the material or outside of it. For the rest of the paper
then, the subscript ")"will indicate that an expression
is valid inside the material and "&"will indicate that an
expression is valid outside the material (in vacuum). To
reduce the number of equations which follow, we also
define e) =e and e &

= 1.

The fields and Green's functions are evaluated at the flat
surface, the + signs indicating to which side of y'=0 the
expressions belong. The derivatives, of course, are evalu-
ated before the limiting process.

We can now calculate the energy flow in the scattered
fields. The time-averaged Poynting vector is

Away from the rough surface, the perturbed fields
satisfy

pe&E& — k& X8&, (2.21)

Xg(k„—k„p)e (2.22)

The wave vector inside the material is given by

k) =xk +yk ), (2.23)

where the normal component, k, is found through the
dispersion relation

2 2Pi P2
ky ) —+ cop

Pi
(2.24)

where the "o" indicates that one must choose either the
expression appropriate to the y &0 or the y )0 region.
For the perturbed electric fields, we write

E"=— e) ' I dk„k) XA)(k„)
47T COp



GREEN's FUNCTIONS FOR. . . . II. 613

This relation is derived by Camley and Mills' and can
also be found by setting the determinant of the homo-
geneous equations of motions to zero. The vacuum wave
vector outside the material, k &, is defined by

k& =xk +yk &, (2.25)

with the normal component given by the free space
dispersion

k (=—(a)0—k„)' (2.26)

Note that in both (2.24) and (2.26) the signs on the radi-
cals have been chosen so as to represent waves decaying
exponentially away from the surface when the arguments
of the radicals are real and negative.

Taking the product E"XH"*, we define the related
quantities

P&(k„,y}= f dk' [e & 'k& X A&(k, y}]X A+(k~, y)g(k —k„o)g'(k„—k„'o )e
64m a)0

(2.27)

A&( k„,y) =A, &( k„)exp( ik &y) . (2.29)

A y independent portion of P~ is also of use and referred
to as p~. The specific form of p~ depends on the profile
function g(k ), and for the present we only note that P&
will consist of terms of the form

po(k }exp[ 2~y~lm[k &(k )1] . (2.30)

Only the real part of the Poynting vector of Eq. (2.28)
is useful in determining energy losses. Consequently, in
the calculations which follow, it is to be understood that
only the real part of p~ is used.

We now consider the question of how to represent the
power lost from the specularly reflected beam. First, we
normalize the Poynting vectors (2.28} to the illuminated
surface area by dividing p by

PO=L L,(cl4rr)H" cos80 . (2.31)

H" is the amplitude of the unperturbed incident field, L
is the width in x of the area illuminated by the incident
beam and L, is the width in z. 00 is the angle of incidence
defined in Fig. 1.

We integrate the normalized expressions over an ap-
propriate surface to obtain the net scattered energy flow
per unit surface area. First we consider the vacuum ener-

gy flows. We begin by separating the k integral into in-
tegrals over two different regions. In the region

~ k„~ ( ~k& ~
the integral describes the flow of energy in ra-

diative states. Defining this flow as I "&, we have

p((k )
I"& =fda. f dk„exp[ —2yIm(k»&)] .

(2.32)

The vector functions P&(k„,y) give the scattered power
flow per unit area with wave-vector component parallel
to the surface in a range k, k +dk, at a distance y
away from the surface of the material. The scattered
power flows are then given simply by

So(y) =f dk P&(k„,y) . (2.28)

Since the scattered fields and power flows depend on y
through a complex exponential term originating in the
Green's functions, for further calculations it is useful to
illustrate this dependence explicitly by writing

(2.34)

The energy flow in the evanescent fields is parallel to the
surface in the +x direction, so the surface integral is over
a strip of width L, that extends from y =0 to v = ~.
Since ky & is pure imaginary for all k„ in this wave-vector
region, the surface integral is easily performed with the
result

L, xpI' = dk
P [k„'[&[t, [

" 2)lm(k» & )[
(2.35)

In the material, k„& may be complex if damping exists.
For the half cylinder region within the material, the
imaginary part of k in the radiative integral is due solely
to damping and represents an exponential decay of the
wave into the material. If we assume that the width of
the illuminating beam, L, is much smaller than the de-
cay length then the surface integral in the material is
done exactly as in the vacuum case:

L„L,I &
= f dk yp&(k„) . (2.36)

The evanescent flows in the material are found in the
same manner as in the vacuum case (except with the lim-
its of integration over y from 0 to —~ ) with the result

L, x.p&(k„)I)= '
0 dkP [k„'[&[a [ "2)lm(k»&)[

(2.37)

Our ultimate goal is to calculate the change in
reflectance due to the surface roughness. First we define

The surface of integration for the radiative integral is a
cylinder of radius L„/2 and length L, whose axis coin-
cides with the z axis of our geometry. In the vacuum re-
gion, ky & is pure real for the radiated energy and the in-
tegral is straightforward:

L L,I "& = f, dk„y.p((k„) . (2.33)
ko& ~k

In the region ~k, ~) ~k&~ the integral describes the
blow of energy in evanescent states. Calling this I'&, we
have

p ((k„)I' =f da f dk„" exp[2yIm(k &)] .
x
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(I) +I& )„,=DR+6, T . (2.38)

Since we are interested in losses from the specular beams,
we include only the nonspecular portions of the scatter-
ing ratios in (2.38). This is emphasized by the subscript
ns.

We can approximate hR by first writing

bR =(I) +I& )„,/(1+6 T/bR) (2.39)

and assuming that the perturbing roughness does not
have an appreciable effect on the ratio of transmitted flux
to reflected flux. We then have the approximation

ATfhR = TfR, (2.40)

where T and R are the unperturbed transmittance and
reflectance. This approximation can be viewed as an ex-
pansion of b, T/b, R about /=0 where only the zeroth-
order term, T/R, is kept. The change in reflectance due
to surface roughness is then

hR =(I) +I& )„,/(1+ 5/R) . (2.41)

The ration T/R is calculated in the Appendix.
This argument can be stated another way. Suppose a

surface is illuminated by light of intensity I. Next, define
a transmitted energy t and a reflected energy r such that
T=t/I and R =r/I. When the surface is perfectly
smooth, all of the incident energy appears in transmitted
and reflected fields according to the ratios T and R. A
rough surface, however, takes some of the incident ener-

gy and redistributes it into scattered fields according to
the ratio (I& +I& )„,. Let 8 be the intensity of the non-
specular scattered light before being normalized to the in-
tensity of the incident light so that 6'/I =(I& +I& )„,.
Calling the change in reflectance b,R =b,r/I and the
change in transmittance AT =Et fI, conservation of en-
ergy requires

r Ar + t 5 t + 6' =I .— — (2.42)

As in (2.38) we write b,r+b, t=A'. Equation (2.42) can
then be written

the sums I =/I'& f+JI"
/

and I = II; I+II"
I

important to note that while I& and I & represent
scattering into states inside and outside the material re-
spectively, they do not by themselves determine the frac-
tion of power scattered out of the specularly reflected
beam. The most we can say is that if AR and hT
represent the changes in reflectance and transmittance
due to roughness induced scattering, then

r+t+6 =I+6' . (2.43)

We now normalize both sides of (2.43) to I+a. With 6
small compared to I, the resulting terms can be expanded
in 6'/I. Keeping first-order terms, we have

R (1—6'/I) + T (1—6'/I) +6 /I = 1 . (2.44)

In this approximation the reflectance and the transmit-
tance are both reduced by the fraction 6 /I, and we make
the identification

bR =RA/I . (2.45)

Using I =t+r, T=t/I, R =t/I, and (I&+I& )„,=6'/I,
this is equivalent to (2.41). The assumption that the sur-
face roughness does not significantly change the ratio
T/R is thus consistent with a first-order perturbation of
the reflected and transmitted energies.

III. THE ONE-DIMENSIONAL GRATING

g(x) =h [cos(sx) —1]/2 . (3.1)

The grating depth is given by h, which is assumed small
in comparison to the incident wave's wavelength. The
spatial period of the grating is 1/s. Note that the expres-
sion for the grating is such that g(x) (0, as required by
our evaluation of the integral in Eqs. (2.16) and (2.17).

Transforming, as per Eq. (2.12), we have

g(k) =h [5(k —s)+5(k +s)—
—,'5(k)] . (3.2)

When substituted into the expressions for S given by
(2.28), the delta functions pick out the Fourier
coefBcients of the scattered power flow corresponding to
k„o+s, k„o—s, and k 0 from the integrals over k and k'.
These terms correspond to the zero-order reflected beam
plus the first-order diffracted beams. When evaluating
the expressions for p~, however, one encounters terms
proportional to exp(2isx) and exp(isx) which represent
interference terms between the three beams. If we il-
luminate a large portion of the grating, we effectively
average the scattered beams over a large range of x. Per-
forming this spatial average, the interference terms van-
1sh.

Substituting the profile function (3.2) into Eq. (2.28) we
arrive at the following expressions for the power flow into
the material:

We now wish to evaluate the power scattered by a
periodic, sinusoidal grating ingrained upon the surface of
the antiferromagnet. The surface profile function for this
case takes the form

—A
(S& ) =

I [a&'k&(k 0+s) XA, &(k„o+s)]XA, &(k„o+s)exp[ —2y/Im(k+& )[]
64m coo

+[V 'k&(k, o
—s) XA, &(k„o—s)]XX,&(k,o

—s)exp[ —2y~Im(k & )~]

+ —,'[e 'k (k 0) XA, (k o)]XX,'o(k 0)exp[ —2ylIm(ky') )l]I . (3.3)

Here we have introduced the abbreviations k~~& =k~&(k, o+s) and k~ & =k~&(k„o). The functional form for k & is
given explicitly by Eq. (2.26).
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The brackets around S~ indicate that the expression is averaged over x with the assumption that L, is much larger
than 1/s. Outside the material, we have the expression

—h
(S& ) = j[k&(k o+s)XA. &(k„o+s)]XA((k„o+s)exp[2y~lm(k+& )~]

64m coo

+[k (k o
—s)X& (k o

—s)]XX,*(k„o—s)exp[2yllm(ky& )I]

+ —,'[k (k„o)XA, (k o)]XX,'(k„o)exp[2y~lm(k & )~]I . (3.4)

The k„dependence of k & is given by Eq. (2.28) and is
abbreviated in the same manner as in (3.3).

Several comments are in order. First, we interpret
these expressions as representing power Aow due to
sources originating in the surface grating. These sources
are driven by the incident fields. When the surface
roughness is "turned off," the scattered fields must van-
ish. This obviously holds for the scattered power Aows of
(3.3) and (3.4).

When the surface roughness is "turned on, " some of
the incident energy is scattered out of the specularly
reAected beam. This is clearly represented by the first
two terms in (3.3) and (3.4), which describe scattering
into the first-order diffracted beams. Inclusion of
higher-order perturbation terms in the wave equation
(2.7) for the scattered fields would result in the appear-
ance of higher-order difFracted beams in the power fiow
expressions.

The surface roughness does not necessarily scatter the
incident energy in nonspecular directions, however. The
third terms in Eqs. (3.3) and (3.4) represent scattering
into the zeroth-order diffracted beam. These describe
power Aow scattered in the direction of the unperturbed
specular beams.

For certain values of k&o+s ky( will be pure imagi-
nary and will thus describe fields exponentially decaying
away from the surface. These fields correspond to
evanescent waves traveling along the surface perpendicu-
lar to the easy axis. Whether k & is real or imaginary de-
pends on the magnitude of k„o (which depends on the an-
gle of incident wave with respect to the surface) and the
magnitude of the grating period 1/s.

When the grating induces evanescent waves traveling
along the surface, there exist frequencies where surface-
polariton modes can be excited. In this way the grating
allows for coupling between the incident electromagnetic
wave and surface antiferromagnetic polaritons. To illus-
trate this, in Fig. 2 we reproduce dispersion curves for
bulk and surface polaritons. ' In this example and the
rest that follow, the material is MnF2, a uniaxial antifer-
romagnet with the parameters H, =7.87 kG, H, =550
kG, 'M, =0.6 kG, and @2=5.5. The antiferromag-
netic resonance frequency 0 is given by Q
=y (2H, H, +H, )'~, where y is the gyromagnetic ratio.
Unless otherwise stated, damping is always present with
the value 1/0~=0. 0002. The unitless frequency and
wave vector are given by co/0 and kc /0, respectively.

These curves in Fig. 2 are for zero applied field. The
shaded areas represent bulk polariton modes and the
dashed lines rising out of the lower bulk band are

1.015

1.010

( 1.005

1.000

I I

II

0.995
3 2

ckJQ

FIG. 2. Dispersion curve for antiferromagnetic polaritons, in
MnF2, with no applied field. The shaded areas are bulk bands
and the dashed lines are surface modes. The solid lines are
leaky modes. The dark vertical lines are light lines, where
coo=k„. The dotted vertical lines are the grating induced lines,

q =k +s, for k e/A=0. 7 ands =0.5 c/Q.

surface-polariton modes. The solid lines inside the bulk
bands and above the surface modes are the leaky modes
described in paper I. The dark vertical line is the light
line where roo=k. The two dotted vertical lines corre-
spond to the grating induced wave numbers k„o+s for the
case k oc/0=0. 7 and s =0.5 c/Q. (In MnF2, with an
antiferromagnetic resonance frequency 0=268 GHz,
this s is approximately 0.5 mm. ) For these values, k~ & is
pure imaginary for the +s case and the corresponding
scattered fields decay exponentially away from the sur-
face. The light line does not intersect any of the surface
polariton modes, but for this choice of s, the grating in-
duced line of k o+s intersects a surface mode. The pres-
ence of the grating thus allows an incident electromagnet-
ic wave to couple with polariton modes inaccessible when
the surface is ideally smooth. Note that higher-order
terms in the power fiow expressions would result in more
grating induced lines being drawn, and hence couplings
to portions of the surface-polariton modes at even shorter
wavelengths.
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hIe
32L, IIm[k &(q)]IH" ~ coocos(0o)

X[k~&(q)A,, &(q) —qA, &(q)]A,*&(q) . (3.g)

Here q is understood as either k o, k o+s, or k o
—s. As

discussed earlier, the magnitude of q determines whether
the power Row is radiative or evanescent. Thus I"&

represents radiative scattering in the material when
I ql ( I

k & I
and I'& represents evanescent scattering

Iql & I&& I. Simi&arly, I "& and I'& represent radiative and
evanescent scattering in vacuum when

I q I
(

I
k & I

and
Iql&I& I.

Before proceeding, we note that in an applied field the
surface modes become highly nonreciprocal with respect
to propagation direction [i.e., co(+k„)%co(—k )]. For
future reference, the dispersion curves for the bulk and
surface polaritons in an applied field of 0.3 klan are
presented in Fig. 5 for 1/0~=0. 0002. The shaded areas
are again bulk polariton bands and the dashed lines are
surface-polariton modes. The solid lines are surface leaky
modes.

Now it is possible, for certain choices of grating period
s, to couple an incident wave whose parallel wave-vector
component is in the +x direction with surface modes
whose wave vectors are in the —x direction. For exam
pie, suppose a wave of frequency co incident on a grating
with period 1/s at some angle Oo couples to a surface
mode traveling in the —x direction with wave vector

k„o—s. It is also possible for an incident wave at another
frequency ~' to couple with a surface mode traveling in
the +x direction with wave vector k o'+s for the same
angle of incidence. Thus for fixed s and Oo, one can cou-
ple to both the +k and the —k polariton branches by
scanning the frequency of the incident wave. Placing the
material in applied field will increase the difference in fre-
quencies by exploiting the nonreciprocity of the surface
modes. An example is given in Fig. 6 where the evanes-
cent power Aows are plotted as functions of frequency for
s =3 c/0, and Oo= —45'. An external field of 0.3 kG is
applied. The quantities actually plotted are I'& L, /h .

To identify the peaks in this figure, refer to the disper-
sion curves of Fig. 5 where we have sketched lines
representing the grating induced wave vectors for s =3
c/0 and k„„c/0=—0.7. The peak nearest co/0=1 in
Fig. 6 corresponds to where the —s grating line crosses
the —k surface-polariton mode in Fig. 6. The peak at
co=1.006 0 in Fig. 6 corresponds to where the +s grat-
ing line crosses the +k surface polariton mode. The
power Row for both modes is largest in vacuum and in
the directions we would expect for the diferent modes:
I'& is positive for the +k mode and negative for the—k mode.

The two peaks labeled p are at the antiferromagnetic
resonance frequencies. At these frequencies p, and pz be-
come very large and change sign. Since the driving fields

1.015
8 x lO

1.010
in vacuum

(' 1.005-

// ~//////~ '/-~ D 4xIO

c5
from +k
surface modes

1.000:

/

I

I

l

'-r'
in material

0.995 '

-4 -3 -2 -1 0 1 2 3 4

from -k surface modes

-4x IO
4

u995 1.000 1.005 1.010 1.015

FIG. 5. Dispersion curve for antiferromagnetic polaritons, in
MnF~, with an applied field of 0.3 kG. The shaded areas are
bulk bands and the dashed lines are surface modes. The solid
lines are leaky surface modes. The dark vertical lines are the
light lines, where coo=k . The dotted vertical lines are the grat-
ing induced lines, q =k +s, for k c/0= —0.7 and s =3 c/O.
Note the strong nonreciprocity of the surface modes with
respect to propagation direction.

FIG. 6. Evanescent power Aows inside and outside the ma-
terial as functions of frequency on a periodic grating with s =3
c /A. The quantities shown are proportional to I' and I; . The
applied field is 0.3 kG, Oo = —45', and damping is
1/0~=0. 0002. For this s, we now pick up both the +k sur-
face mode and the —k surface mode. The peaks labeled p
occur at frequencies where the susceptibilities become very
large.
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of our perturbation expansion are proportional to p& and

pz, the theory breaks down at these frequencies. Thus
the magnitude of the energy Aow in the evanescent (and
radiative) fields at these frequencies may be exaggerated
with respect to the magnitude of the surface-polariton
peaks.

In Fig. 7 the reAectance of the smooth surface R and
the reflectance of the rough surface, R —bR, is plotted

I

FIG. 7. ReAectivity as a function of L90 for a smooth surface
(dashed lines) and a surface with a grating of period s =1 e/Q
(solid lines). There is no applied field and damping is
1/0~=0. 0002. The two frequencies couple with surface polari-
tons with different group velocities. The higher frequency po-
lariton has a smaller group velocity and consequently has a
greater density of k„states. Thus it produces a broader and
deeper reAectivity dip than the lower frequency mode.

versus 8& for two frequencies. There is no applied field
and s = 1 c/Q. The grating height is h =0.0002 c /0 (for
MnFz, this height is approximately 0.2 pm) and the width
of the illuminating beam L is set equal to 0/c for con-
venience. We see that the presence of the grating intro-
duces dips into the reflectance which are not seen for the
smooth surface. These dips are, as usual, due to the cou-
pling to surface polaritons, in this case the "true" surface
polaritons, not the surface resonances. The dips are re-
ciprocal in angle and are much further apart at the
higher frequency than at the lower. This is due to the
positive group velocity of the modes, as shown in Fig. 2,
where the higher frequency modes exist at larger wave
vectors. An interesting point is the increased width of
the dips at the higher frequency. This is due to the group
velocity, which decreases with increasing frequency, thus
creating a higher density of states at the higher frequen-
cy. Since damping allows the incident wave to excite sur-
face polaritons over a small range of frequency, a greater
density of states allows the incident wave to excite a
larger number of polariton states.

IV. RANDOM ROUGHNESS

The case of random roughness is somewhat simpler
algebraically than the one-dimensional grating. We begin
by calculating the average of S over the possible height
profiles g(x). We assume a Gaussian form for the corre-
lation function'

( g(x )g*(x +x ') ) =h 'e (4.1)

Here h corresponds to the mean square height (g (x))
and o is the correlation length for the distribution of
profiles. The Fourier transform is simply

(g(k)g'(k')) = h o exp( ko /4)o(k ——k') . (4.2)
1

4~

Using the profile correlation function of (4.2}, the
power ratio equations (2.33, 2.35, 2.36, and 2.37) are
given by

I 2 2 l~. I

I")=, , f dk„[k A, )(k„)—k )A,„)(k„)P,*)exp[ —(k k„o) cr /4], —
64H" m cooe2cos(8o)

(4.3)

I 2 2 lk, lf dk„[k A, (k„)—k 1,„ (k„)]A," exp[ —(k„—k, } o /4]
64H" ~ co cos(8o)

(4.4)

for the radiative fields, and

exp[ —(k —k o) o /4]I') =
... f„„dk„[k)A.„)(k„)—k„A, )(k„)]A,')(k„)

128L H" m cooe2cos(8o) Imk )
(4.5)

I 2 2 exp[ —(k„—k o) o /4]
f,„„,dk. [k„X„,(k„)—k„X„(k„)]X,*,(k„)128L„H" n. coocos(8o)
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for the evanescent fields.
The change in reAectivity is calculated by (2.41) as for

the periodic grating. The nonspecular portions of I "& and
I"& are calculated by excluding from the integration a
small region about k 0. This exclusion has a physical in-
terpretation if we relate the Fourier amplitudes at each
k to a scattering angle 0, via the geometrical relation

k„=~k ~sinO, . (4.7}

In a reAection experiment, the excluded region would be
the angular width of a detector. For our purposes we as-
sume that this width is one degree and exclude from the
integrations in Eqs. (4.3}-(4.6) the k„values in the range
~k ~sin(Oo+ —,') to ~k ~sin(Oo —

—,
' ).

With random roughness, we have an infinite collection
of grating periods which produce an e6'ective "width" in
wavelength analogous to the damping width in frequen-
cy. This width is measured by the correlation length o..
Smaller values of o. lead to a greater smearing in wave-
length while larger values indicate a smoother surface
and a narrower wavelength range.

The dependence of the scattering on o. is shown in
Figs. 8 and 9. In both figures I'& is plotted as a function
of frequency for 00= —45. There is an applied field of 0.3
kG. In Fig. 8, cr=0. 1 c/0 (for MnFz, this correlation
length is approximately 0.1 mm). The largest peak
represents coupling with the —k, surface mode of Fig. 5.

The largest coupling occurs where the density of states is
the greatest. In Fig. 5 this occurs where the surface
branches flatten out and the group velocity approaches
zero. Since this occurs at rather large wave vectors, a
fairly rough surface is required to allow coupling with an
incident wave. The p peaks discussed earlier are present,
but dwarfed in comparison to the surface mode peak. We
note that there is also a peak from the +k branch, but
this peak is very broad and its magnitude is small in com-
parison to the p and —k„peaks.

In Fig. 9, cr =0.5 c/Q (a correlation length of about 1

mm for MnF2) and we notice a distinctly difFerent profile
for the scattered energy. There are now two distinct sur-
face mode peaks and the smaller peak at the higher fre-
quency represents coupling with the +k surface mode.
The magnitude of both surface mode peaks is consider-
ably reduced in comparison to the IM peaks which are now
clearly visible at coo/0=0. 997 and coo/0=1. 003. The
surface mode peaks are also at lower frequencies than the
rougher surface case. The shift in frequency and the re-
duced amplitudes of these surface mode peaks are due to
lack of coupling to the higher (and denser) frequency por-
tions of the surface mode dispersion curves. The strong-
est coupling for this smoother surface now occurs nearer
to the light line.

from +k
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surface modes
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FIG. 8. Evanescent power Rows outside the material as func-
tions of frequency on a rough surface with o.=0.1 c/Q. The
quantity shown in proportional to I' . The applied field is 0.3
kG, Oo= —45, and damping is 1/0~=0. 0002. For this o., we
pick up both the +k surface mode and the —k„surface mode
near their limiting frequencies where the density of states is
largest.

FIG. 9. Evanescent power Aows outside the material as func-
tions of frequency on a rough surface with o.=0.5 c/A. The
quantity shown is proportional to I'&. The applied field is 0.3
kG, Oo= —45, and damping is 1/0~=0. 0002. For this o., we
pick up contributions from the surface polaritons nearer the
light line. These polaritons have relatively large group veloci-
ties and small state densities, hence they are not as strong
scatters as the shorter wavelength polaritons. Note the prom-
inence of the "p" peaks compared to the surface-polariton
peaks.
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FIG. 10. Reflectivity as a function of Oo for a smooth surface,
a rough surface with o.=0.01 c/0, and a rough surface with
o.=0.005 c/Q. There is an applied field of 0.3 kG and damping
is 1/0~=0. 0002. The root mean square height is h =0.003
c/A. The frequency of the incident wave is 0.9989 kG which al-
lows coupling to both the +k and the —k„surface polariton.
With the applied field, these modes have difFerent group veloci-
ties. The largest dip is due to the +k surface polariton which
has the greatest density of states nearest the light line. As
roughness is increased, the nonreciprocal reflection losses be-
come more pronounced.

En Fig. 10 we explore the erat'ect of o. on a reAection
measurement. Here we plot the reAectance of the smooth
surface R and the reAectance of the rough surface
R —hR as functions of Oo in an applied field of 0.3 kG.
The frequency in 0.9989 0 and so the incident wave can
couple with both the +k and the —k„surface mode
branches of Fig. 5. The root-mean-square height is
h =0.003 c/0 (a height of 30 pm for MnF2) and the
cases o.=0.005 c/0 and o. =0.01 c/0 are presented.
First, we note that with this small damping value, the
reflectance from the smooth surface is fairly reciprocal
with respect to OQ. The rough surface, however, induces
nonreciprocity by coupling the incident wave more
strongly with the surface-polariton modes.

The greatest losses occur for couplings with the —k
branch. This is because the —k branch is Aatter than
the +k branch, and thus has a greater density of states
nearer the light line than the +k„branch. We also see
that not only has the change in reAectivity increased with
the slightly rougher surface, as expected by the o. depen-
dence of AR, but the + and —peaks are also more pro-
nounced.

ment of scattering from two types of surface roughness:
a periodic grating and a surface with random roughness
in one dimension. For certain choices of grating periods
and incident angles, a periodic grating can induce cou-
pling between incident electromagnetic waves and surface
polaritons by creating evanescent fields that travel paral-
lel to the surface of the material. The surface polaritons
have a greater density of states at short wave1engths, and
large grating periods can lead to stronger couplings by al-
lowing the incident wave to interact with short wave-
length surface polaritons.

When damping is present in the material, a grating can
allow coupling to the leaky Brewster-type modes that
may exist in frequency and wavelength regions forbidden
to surface polaritons.

Random roughness creates a "width*' in wavelength
analogous to the width in frequency created by material
damping. As the surface becomes rougher, the incident
wave couples strongly to surface modes over a greater
range of wavelengths. In a reAection experiment in-
creased roughness may enhance nonreciprocal reAectivity
changes by increasi. ng the range of wavelengths over
which the incident beam can couple with one of the sur-
face mode branches.
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APPENDIX: FRKSNKL RELATIONS

V. SUMMARY

We have applied the electromagnetic Green's functions
for a semi-infinite antiferromagnet to a perturbative treat-
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