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Semiempirical potentials. for silicon, germanium, and their alloys are derived with use of the
modified-embedded-atom-method formalism. Following Baskes [Phys. Rev. Lett: 59, 2666 (1987)],
it is found that the host electron density which is a linear superposition of atomic densities in the
embedded-atom method (EAM) must have an angular modification in order to properly describe the
bond-bending forces in the diamond-cubic structure.- The angular dependence of this host electron
density was found to be in qualitative agreement with the density of a first-principles calculation.
As in the EAM, the potential functions are determined by using the measured lattice constants, sub-
limation energies, elastic constants, and alloying energies of silicon and germanium. In addition,
first-principles calculations of structural energies are used. The potentials are used to calculate the
energetics and geometrics of point defects, surfaces, metastable structures, and small clusters. In all
cases, the calculations have been compared to first-principles calculations and experiment when
available. The calculations predict that the vacancy mechanism is the dominant diffusion mecha-
nism in both silicon and germanium. Surface energies and relaxations of the low-index faces of Si
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and Ge are compared with first-principles calculations.

I. INTRODUCTION

The past few years have resulted in a number of new
semiempirical and empirical models for covalent materi-
als.!”® Development of these models has occurred in
part because of the intense interest in development of
semiconductor devices. Investigators have realized that
simple pair-potential models or valence-force potentials
are not sufficiently accurate to predict structural proper-
ties far from the reference structure to which they were
fitted. In addition, they have found that ab initio
methods require too much computer time to calculate
large-scale structures or phenomena. Hence a large effort
has been expended in the development of computational-
ly efficient empirical models that have predictive value
away from the configuration space in which they were
fitted.

We have recently developed one of the above-
mentioned semiempirical models. Our motivation for de-
veloping yet again another model is twofold. First, we
feel it is important to have a model with some physical
basis so that extrapolation to untested geometries or al-
loys can be made with some confidence. Secondly, all of
the above models work well for some problems, but fail
miserably for others. Our hope is to develop a more
universal model capable of describing many phenomena.
In the development of this model, which we call the
modified embedded-atom method (MEAM), we have
extended our previously developed embedded-atom
method® (EAM) in an ad hoc manner to include the
differences between metallic and covalent bonding. The
EAM has been used quite successfully in predicting
numerous properties of metals and alloys, e.g., de-
fects,'®!! liquids,'? surface structure®'® and reconstruc-
tion,!* segregation'* and phase stability!’® in alloys,
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mechanical properties including dislocation mobility and
fracture,'® bulk and surface phonons,!” interface struc-
tures and strength,'® and hydrogen on surfaces. !’

In the EAM (Ref. 9) the energy of a cluster of atoms,
E., is given by the expression

Ew=2Filpyi)t3 3 ¢;(Ry), (0
l )

where p,, ; is the total electron density at atom i associat-
ed with the host (i.e., the rest of the atoms in the system),
F; is the energy to embed an atom { into this density, and
é;; is a pair-potential term representing electrostatic in-
teractions between atoms i/ and j separated by a distance
R;;.
jVVe have modified the EAM previously’ to include the
bond-bending forces inherent in a covalent material. As
discussed in detail below, the modification occurs in the
way in which the host electron density p, ; is calculated.
In the EAM the host electron density is given by a linear
superposition of spherically averaged atomic densities.
This ansatz has been found to work quite well for fcc
transition-metal elements. with almost full d shells. For
the case of materials with directional bonding, this pro-
cedure will be shown to lead to elastic constants that are
inconsistent with experiment. Thus we modify the ex-
pression for the host electron density by including angle-
dependent contributions.

The purpose of this paper is threefold: First, to expand
on the MEAM, giving more details about its implementa-
tion, correcting an error in Ref. 7 in the elastic-constant
calculation, and presenting the generalization of the
MEAM to multicomponent systems; second, to present a
set of functions that are applicable to Si and Ge, and
their alloys; and third, to apply these functions to
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numerous calculations that may be compared to experi-
ment and ab initio calculations. The format of the paper
follows this plan. Section II states the model, shows how
the functions are derived, and compares the model pre-
dictions to the data base to which it was fitted. Section
III presents the predictions of the energies and
geometries of point defects, metastable structural ener-
gies, geometries and elastic constants, surface structures
and energies, cluster stability, and electron-density
profiles. These results are compared to experiment and
ab initio calculations whenever possible. The final section
summarizes our results.

II. MODEL

A. First-neighbor model (FNEAM)

The motivation of the model has been given previous-
ly’ but will be repeated and expanded here for complete-
ness. Our objective is to obtain the energy of a
configuration of atoms as a function of their nuclear posi-
tions. Let us start with the formulation of the EAM for a
homogeneous monatomic solid in which only first-
neighbor interactions are considered. In this case, the en-
ergy of each atom in the solid is identical and, from Eq.
(1), depends upon the nearest-neighbor distance, r, by the
relationship

E(r)=F(np%r))+0.5n¢(r) , ()

where 7 is the number of first neighbors in the structure
under consideration, p“ the spherically averaged atomic
electron density at a distance r from the nucleus, ¢ the
pair interaction, and F the embedding function. Note
that the host atomic density to which each atom is sub-
jected is identical and assumed equal to np?, the superpo-
sition of the densities of its neighbors. This density is
used as the argument of the embedding function.

We now consider a reference structure, e.g., the
diamond-cubic structure where we have n, first nearest
neighbors. For the case of a uniform expansion or con-
traction, Rose et al.?° have shown that the energy per
atom may be described by a universal function, E,:

E(a*)=—Ey(1+a*)e ", 3)
where the scaled distance a * is given by
a*=B(r—r;), (4a)
9BQ, |'”2
B=|— ) (4b)
riEo

and E is the sublimination energy, r; is the equilibrium
first-neighbor distance, B is the bulk modulus, and Q,
[=(V'4/3r,)? for the diamond structure] is the equilibri-
um atomic volume. These quantities are for the reference
structure.

We now equate Egs. (2) and (3) applied to the reference
structure and solve for the pair potential ¢:

¢(r)=%[E,(a*(r))—F(nlp%r))] . (s)
1
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Hence, by using experimental quantities from a reference
structure, we have determined a pair potential that we
will now use in a general structure. That is, it is now pos-
sible to calculate the energy of a solid, E,, in various
crystal structures having n nearest neighbors. By insert-
ing Eq. (5) into Eq. (2) we obtain

E

n

=L E,(a*)+F(np*)—~=F(n,p) . (6)
ny ny

Note that this expression depends on both reference

structure properties as well as the coordination in the

structure of interest.

Previously,” we have shown that a specific form for the
embedding energy yields the same logarithmic relation-
ship between the bond length and number of bonds that
has been noted by Pauling.?! Using this form,

F(p)=E,Zm | £
p|p

@)

where p=n,p%r,) is the host density at equilibrium in

. the reference structure, i.e., the structure with n, neigh-

bors, Eq. (6) becomes

n

a
E,=-“E,(a*)+Ey "L 1n "
1

n, p

To find the equilibrium nearest-neighbor distance we set
the derivative of E, with respect to r equal to zero,

JoE E n(p°)
" —0=""E)(a* B+ -2
or n, P

(8)

, (9a)

n
1

and to first order in the difference in the number of
nearest neighbors,

_pa(r] )I

————n n
Bpi(ry)

n

(9b)

r—r s

The minimum energy for n neighbors, E,?, is obtained by
expanding Eq. (8) to second order in » —r; and inserting
Eq. (9b). This operation yields

E? —pr) |’
—E, Bp“(ry)

2
1

~ —

T2

In

(10)

Let us now compare the FNEAM model with the
structural energies and geometries from first-principles
calculations. In order to do this we need as input the ex-
perimental values of Ej, B, and r;. These numbers are
given in Table I. The remainder of Table I will be dis-
cussed below. In addition, we need the ratio
p%(ry) /p®(r;), which we take as a free parameter which
is used to fit the energy differences of the metastable
phases relative to the diamond structure from the first-
principles calculations.”>® The value obtained for this
parameteris —1.9 A L,

Figure 1 shows the predicted change in the equilibrium
first-neighbor distance for silicon as a function of coordi-
nation. The approximate solution, Eq. (9b), is shown as
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TABLE 1. Values of the parameters used in the EAM models. Units are eV for energy, eV/A>3 for

the elastic constant, and A for distance.

Experimental data MEAM
Si Ge Si Ge
E, 4.63* 3.85% a; 3.20 3.52
B 0.610° 0.469° m; 4 6
ry 2.351° 2.450° a} 0.60 0.73
a? 0.87 1.12
o? 1.0 0.91
i 0.986
r. 5.0 5.0
8 0.5 0.5

2Reference 22.
YReference 23.
‘Reference 24.

the solid line, while the exact solution to Eq. (9a) is
shown by the solid symbols. For comparison the local-
density-approximation (LDA) calculations of Yin and
Cohen?’ and the quantum-chemical (QC) calculations of
Ho et al. and Melius?® are shown. The relative coordina-
tion n/n, is given by the inverse of the bond order for
the QC calculations. For the case of the triple bond, a
linear HSi—SiH molecule is used. This configuration is
unstable, but best represents the bonding that would
occur in a triple bond. The agreement between the
FNEAM model and the first-principles calculations is
quite good. Also, the approximate Eq. (9b) adequately
represents the solution of Eq. (9a). In Fig. 2 the predict-
ed minimum energies versus coordination are shown.
The solid line denotes the approximate relationship of
Eq. (10), while the solid symbols are from the exact Eq.
(8). Again the approximation is shown to be good. Also

0.5

fcc

single bond simple cubic

24
- o
r T~ diamond
-0.6 - double bond
triple bond
14 T . T T )
-16 -1 -05 o 0.5 1 16
In(n/n,)

FIG. 1. First-neighbor equilibrium bond distance for silicon

(relative to the diamond structure) as a function of coordina-
tion. Open symbols indicate first-principles calculations, circles
the LDA (Ref. 24) calculations, and squares QC (Ref. 25) calcu-
lations, while the solid symbols represent the exact FNEAM
predictions. The solid line is the approximate solution for the
FNEAM model. The free parameter in the FNEAM model,

piry) /p®(ry), was used to fit the first-principles calculations
and resulted in a value of —1.9 A ~

shown in Fig. 2 are the energies calculated using LDA.?
The LDA energy has been shifted by a constant to agree
with the experimental silicon sublimation energy. The
agreement with the FNEAM model is not as good as for
bond distance, but certainly shows the correct decrease in
energy with increased coordination.

We show in Fig. 3 the pair potential which results us-
ing a density given ,by a simple exponential with

p%r) /p%ri)=—1.9 A ~! as above. We cut off the in-
teractlon discontinuously at 3 A to limit the range to first
neighbors. More informative is the effective pair poten-
tial discussed previously by Foiles,'? given to lowest order
by

YR =d(r)+2F (p* p%(r) . (11

The effective pair potential depends on environment

In( -E_/E )

-0.20 T T T 1

1
linv/n)]?

FIG. 2. Energy per atom for silicon (relative to the diamond
structure) as a function of coordination. Open symbols indicate
first-principles calculations, while the line represents the ap-
proximate FNEAM predictions. The solid symbols represent
the exact solution for the FNEAM model. The free parameter
in the FNEAM model, p%r,)' /p%(r,), was taken as —1.9 At
asin Fig. 1.
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FIG. 3. Pair-potential interactions used for silicon in the
FNEAM and MEAM models. The potentials are discussed in
the text.

through p*, the density that an atom ‘“sees.” For the
embedding function of Eq. (7) we get
a
WAL (12)
pa(rl )

-2 «y_ . LX)
Y= Eda®)—Eo £
for an atom at the equilibrium position in the diamond
structure, i.e., p*=p. Note that the effective pair poten-
tial has a minimum at the first-neighbor distance and is
qualitatively similar to the simple pair potentials previ-
ously used for metals.

The major problems with the FNEAM model as
presented above are related to the elastic shear constants.
(We incorrectly calculated C,, in Ref. 7. The details of
the correct method of calculation are given in Appendix
A.) The predicted shear constants for the FNEAM are
compared to the experimental values®® in Table II. Note
that the FNEAM does not agree at all with experiment.

|

Pni= 2 P?(Rin" > j
i J
k (=

j(#0) i)
i)

where we have specifically indicated that the atomic den-
sity p} depends on the type of atom j, 6 ik is the included
angle between atoms j, i, and k with atom i the central
atom, and the a"? are constants depending on the atom
type i. The product form for the a;*? is chosen arbitrarily
and this choice merits more study to assess whether or
not its form is important. Note that in the previous pa-
per, where we considered a monatomic solid, the con-
stant @ =(a?)? and a!=0. We will see below that a0
when we calculate C,, correctly (see Appendix A). In
Eq. (13) the first summation is the usual linear supposi-
tion of atomic densities, while the double summation is
the angular modification. Note that the j =k term (a
pair interaction) in this summation is included. The
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In fact, as expected for a first-neighbor central-potential
model, ¥'=0, in obvious disagreement with experiment.
This problem, however, is relatively simple to fix. By in-
clusion of more neighbors in the EAM, the experimental
values of C;; and C|, may be fitted exactly. We will
demonstrate this below.

A more serious problem occurs when we look at the
Cauchy discrepancy, AC=C;, —C,, (see Table II). The
experimental value for silicon as well as germanium is
negative. This negative value is a direct result of the
directionality of bonding in these semiconducting materi-
als, which strongly influences the bond bending forces.
In contrast, the metals which we have previously
modeled with the EAM all have positive Cauchy
discrepancies. This difference is critical, as the EAM for-
malism (see Ref. 9) predicts the sign of the Cauchy
discrepancy to be the same as the sign of the second
derivative of the embedding function (at p). The embed-
ding function we have chosen to use [Eq. (7)] has a posi-
tive curvature; hence it is impossible to fit the elastic con-
stants of Si or Ge with the EAM formalism presented
above. However, it is not difficult to include the effects of
bond-bending forces, as shown in the following section.

B. Modified EAM (MEAM)

The FNEAM has two flaws: interactions further than
first neighbors, and bond-bending forces need to be in-
cluded. Let us now recast the model to include these two
effects.

The total energy of the solid is given by the usual EAM
expression [Eq. (1)] with a modified host electron density,
Ppn,i- We include in the host electron density an angle-
dependent term that results in bond-bending forces. The
specific angular dependence chosen for this term vanishes
in ideal cubic structures. The angular dependence may
be considered as the first two terms in an expansion of
spherical harmonics as used by Biswas and Hamann, or
as an expansion in gradients of the density.?’” The
modified electron density is given by

[a}ajcos; —alaf(1—3cos’0, ) 1p% (R, )ph(Ry.) (13)

angle-dependent term must decrease in magnitude as ei-
ther bond length of the three atoms ij or ik increases.
The natural scaling for this decrease is the atomic elec-
tron density. By symmetry atoms j and k should be
treated equivalently; hence we postulate that the distance
dependence should be a function of the product of the
atomic densities of atoms j and k at atom i. The simplest
function is the one chosen in Eq. (13). [In the gradient
expansion, p’ rather than p should be used; however, for
the exponential density used below, p’ is approximately
proportional to p and Eq. (13) is still appropriate.]

We now calculate the like-atom pair-potential term in
the MEAM in a manner analogous to that used above in
the FNEAM. As above, the energy per atom of a mona-
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TABLE II. Elastic shear constants for Si and Ge (values in eV/A 3). Values were calculated in the

- FNEAM and fitted to experiment in the MEAM.

Si Ge
Expt.? FNEAM MEAM Expt.? MEAM
Y=Cyy 0.495 0.011 0.493 0.419 0.418
y'=(C,,—Cp)/2 0.315 0 0.312 0.253 0.252
AC=C;;,—Cy4 —0.095 0.610 —0.091 —0.119 —0.117

2Reference 23.

tomic homogeneous solid in our reference structure un-
der uniform expansion or contraction is given by

E(r)=E,(a*)=F(p;(r))+0.5n,D(r) , (14)
where the total pair-potential contribution is
nS
D(r)=3 71—¢,~,-(asr) (15)
s M
and
(16)

pi(r)=> n.pila,r) .

In Egs. (14)-(16), 7 is the first-neighbor distance and n, is
the number of neighbors at a disance a,7.’ Note that, by
construction, the angle-dependent term in Eq. (13) for the
background density sums to zero for cubic structures,
yielding the simple form in Eq. (16) independent of a;"2.
We may now solve Eq. (14) for &:
®(r)=-[E,(a*)~Fip,)], an
1
where E, is obtained from Eq. (3) and F from Eq. (7).
The arguments of these functions are given in Eqgs. (4)
and (16).

To obtain the pair potential ¢ from the total pair po-
tential ® requires a cutoff distance, r., beyond which E,
and p? are zero. In this case we may solve Eq. (15) to get
2

ng n, )
;i(r)=®(r)— 3 —D(a;r)+ |— | Plajr),
s (=1) M1 1
I
r>—— . (18
a,a;

This range (r> 1.6 A for r.=5 A) is sufficient for most
defect calculations. It is straightforward to include addi-
tional terms in Eq. (18) if one is interested in shorter dis-
tances. Alternatively, one may use a pair-interaction for-
malism to define ¢ at short distances, where the universal
behavior [Eq. (3)] breaks down.?®

We now have the basic equations for the MEAM. All
that remains is to choose an atomic density and fit the
elastic shear constants. We choose a density of the atom-
ic form

pir=p? (19)

where we choose m; from the appropriate atomic density
for an isolated atom, but we let a; be a free parameter

rather than using the value for the isolated atom. In the
formalism presented above, only density ratios appear for
a single-component system. Hence the constant p? is ar-
bitrary for a single-component system. When alloys are
considered, the ratios of p{ for different elements may be
determined. We arbitrarily set pd; for silicon to 1. By
fitting to the shear elastic constants and the LDA calcu-
lations of metastable structures,?’ we obtain the values
for a'? and a; shown in Table I. The cutoff distance is
chosen large enough (5 A) to be relatively unimportant.
The functions E, and p® are cut off by multiplying them
by the cutoff function, f,:

1, r=r.—5

fe=

(20)

where x =(r,—8/2—r)/(8/2). This function has van-
ishing first and second derivatives at » =r, and r =r, — 8.

The resultant elastic constants are compared to experi-
ment in Table II. The agreement is quite good. Note
that, in contrast to the FNEAM, the MEAM gives the
correct sign of the Cauchy discrepancy. We have calcu-
lated the internal-strain parameter § as defined by Klein-
man.” This parameter yields the relative sublattice dis-
placements under the C,, shear. For Si (Ge) we obtain a
value of £=0.74 (0.71), in excellent agreement with the
experimental values®*3! of 0.73 (0.72). LDA calcula-
tions*? yield values of 0.53 (0.44). The resulting pair po-
tential, total pair potential, and the effective pair poten-
tial for silicon as defined in Egs. (18), (17), and (11), re-
spectively, are shown in Fig. 3. Note that the pair poten-
tial ¢ becomes equal to the total pair potential ® at large
distances when only first neighbors are important. Note
also that the total pair potential is approximately equal to
the pair potential for the FNEAM at distances where the
FNEAM potential is defined, i.e., less than 3 A. We may
see why this is true by comparing Egs. (5) and (17). The
equations are identical if the arguments of the embedding
function (p/p) are equal. We have found that these func-
tions for the FNEAM and MEAM agree to better than
10% for 0.7=<r/r;<1.5 and, in fact, the derivative
(p;/p) for the MEAM is equal to —1.9 A ~! as in the
FNEAM. We have not required this agreement; it results
from our fitting of the first-principles geometries and en-
ergies. The parameters for germanium are given in Table
I and results in similar functions.

In order to perform alloy calculations, we need to
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TABLE III. Values (in eV) of the alloy properties used to
determine the MEAM parameters. AE,g is the energy of or-
dered zinc-blende structure (Siy sGey s) relative to the separated
bulk crystals, and AE, is the energy of the disordered 50-50 al-
loy relative to the separated bulk crystals. LDA calculations
(Ref. 35) find the ordered zinc-blende structure 0.002 eV lower
in energy than the disordered 50-50 alloy.

Expt. (LDA) MEAM
AE,, 0.011° 0.013
AE 0.0093% 0.011

*Reference 34.

®Reference 35.

determine p?/p, and ¢;;(R) for i#j. Previously,”'® w
have used a geometric mean of ¢; and ¢;; to determme
¢;;- This procedure only works for pair potentials that
do not change sign. Daw?’ has shown that an arlthmetlc
mean is also a feasible option, while Johnson® has pro-
posed a density-weighted form. This latter form is given
by

$u(R)  ¢;(R)

PURPUR) . (1)
PAR? " pUR)? /

¢, (R)= 2

This form (for 4,;=1) has been derived by requiring that
the total energy in an alloy calculation does not change if
a constant times density is added to either component’s
embedding function. Previously,’ it has been noted that
for a single component the addition of a constant times
density to the embedding function does not change the
total energy since the linear portion of the embedding
function is equivalent to a pair potential Note that Eq.
(21) does not depend on p? and p J 1nd1v1dua11y, but only
on their ratio. We determme pi /pj and 4;; by fitting to
the experimental value’* of the heat of formatlon of a
random Si-Ge alloy, AE,, (do denotes disordered), and
the LDA calculation® of the zinc-blende structure stabil-
ity, AE 5. The resulting parameters are given in Table I
and the comparison with experiment in Table III.

The model is now complete. To summarize, the total
energy is calculated from Eq. (1) with the embedding en-
ergy taken from Eq. (7) and the pair potential from Egs.
(18) and (21). The host density is calculated using Eq.
(13) with the atomic density taken from Eq. (19). All of
the required parameters are given in Table I.
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Before we proceed to use the model in the next section,
we note that Appendix B contains an important compu-
tational shortcut we use to evaluate the host density.
This shortcut is particularly important in the instance
when we need to know energy derivatives, e.g., in
energy-minimization or molecular-dynamics calculations.

ITII. RESULTS AND DISCUSSION

A. Point defects

The calculation of point-defect energies and geometries
is an excellent test of the MEAM as numerous LDA cal-
culations?®™3° of point defects are available for compar-
ison. Unfortunately, the LDA calculations are accurate
to only ~1 eV,33® 50 only qualitative comparisons can
be made. In addition, the LDA calculations show that
defect energies depend strongly on charge state and Fer-
mi level, neither of which is considered in the MEAM.
The results presented here use the MEAM as formulated
in Sec. II to calculate the energy and forces necessary in a
conjugate gradient-minimization scheme. The number of
atoms used in the simulations was increased until defect
energies converged to <0.01 eV. Typically ~250 atoms
for vacancy-type defects and ~ 1000 atoms (these calcula-
tions take only of the order of a minute on a Cray-13
computer) for interstitial-type defects were sufficient for
convergence. Only the converged energies and
geometries are quoted below. This energy convergence
yields atom positions to better than 0.01 A. The calculat-
ed point-defect energies and first-neighbor relaxations are
given in Table IV. :

All defect energies are given relative to a perfect lattice
with the same total number of atoms. The predicted for-
mation energy of a silicon vacancy, 3.19 eV, is somewhat
lower than the 5-6 eV reported in LDA calculations.*
The neutral vacancy is at the bottom of that range. The
relaxation of the nearest neighbors is towards the vacan-
cy, as in a metal, resulting in a lengthening of the silicon
bonds of the nearest neighbors of the vacancy by 0.12 A;
this result is in disagreement with the LDA calcula-
tions,3” which find that the nearest neighbors relax away
from the vacancy, similar to the inward-relaxation top-
layer atoms on the (111) Si surface. The interstitial-
formation energies reported here are for the sixfold- (hex)
coordinated position, the fourfold (T,) position, and the

TABLE IV. Calculated point-defect energies and relaxations.

Si Ge

Defect Energy? Relaxation® Energy? Relaxation®
vacancy 3.19 —0.51 5.07 —0.45
divacancy 6.00 —0.37 8.82 —0.48
vacancy SP 3.56 —0.30 5.36 —0.26
interstitial (hex) 7.07 0.33 7.14 0.34
interstitial (77) 4.81 0.22 5.74 0.23
interstitial (B) 5.88 1.39 7.72 1.43
interstitial (SP) 4.90 0.32 6.01 0.35
IneV.

°First-neighbor relaxation in A A positive sign indicates relaxation away from the defect.
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TABLE V. Cz%lculated geometry and elastic constants of metastable phases. (Distance in A, elastic
constants in eV /A 3, first-principles calculations in parentheses.)

Si Ge
Structure a B v v a B v’ Y

fcc 4.19 1.64 0.35 0.91 4.00 2.70 0.81 2.02
(3.89)* (4.20)*

bce 3.25 0.11 3.35 0.39 0.07 0.19
(3.09)* (3.30)*

sc 2.61 0.89 2.15 0.18 2.75 0.78 1.52 0.40
(2.53)* (2.67)*

*LDA calculation; Ref. 25.

twofold bond-centered (B) position. The relative order of
stability 7, B, hex for silicon is found to be in agreement
with that found in LDA calculations for the 2+ charge
state,3 but in disagreement with the order for the neutral
charge state (B, H, T,;). It is difficult to make an argu-
ment for which charge state the MEAM should be com-
pared with. The MEAM energy predictions are in
reasonable agreement with the LDA calculations,>®37 in
which the interstitial energy ranges from 5 to 7 eV de-
pending on charge state and Fermi level. The predicted
relaxations are in qualitative agreement with the LDA
calculatlons, which range from negligible for the T, site
to 0.1 A for the hex site to 1.2 A for the B site. Note that
for Ge the relative stability order changes to T,, hex, B.
The relaxations for Ge are quite similar to those for Si.

Table IV also contains the energy of the classical sad-

dle points (SP’s) for vacancy and interstitial migration.
The predicted vacancy-migration energy for Si (Ge) is
0.37 (0.29). This number agrees well with the experimen-
tal measurements of 0.33+0.03 eV for Si.** The self-
diffusion energy in Si (Ge) for the vacancy mechanism is
3.56 (5.36) eV and for the interstitial mechanism 4.90
(6.01) eV. These numbers show that the vacancy mecha-
nism is predicted to be the dominant self-diffusion pro-
cess. The predicted activation energy compares favor-
ably with the experimental value of 4.1-5.1 eV in sil-

TABLE VI. Calculated structural properties of the noncubic metastable phases.

icon,*! but poorly with the experimental value of ~3 eV
in germanium.*?

We have also calculated the activation energy for con-
certed exchange, i.e., a direct interchange of nearest
neighbors. For silicon this process has a calculated ener-
gy of 6.56 eV to be compared with the LDA calculation™’
of 4-5 eV depending on relaxation. At the exchange SP
the bond length between the two exchanging atoms is
0.03 A less than the equilibrium bond length. For ger-
manium this process has an activation energy of 8.32 eV
and the bond length is 0.11 A less than the equilibrium
Ge bond length. This process is not competitive with va-
cancy diffusion.

From the divacancy energies we calculate the divacan-
cy binding energy to be 0.38 (1.32) eV in Si (Ge). Note
the large divacancy binding in germanium, which is con-
sistent with the divacancy model used by Hirota*® to ex-
plain his radiation-damage-recovery measurements.
Hirota*’ found a value of 0.75 eV for the migration ener-
gy. For his mechanism to be operative, the divacancy
binding energy must be greater than the migration ener-
gy, as we find.

B. Metastable structures

This subsection presents the results of numerous calcu-
lations of metastable structural geometries, energies, and

(Distance in 1&,

elastic constant in eV/A 3, first- -principles calculations in parentheses.)

Si Ge

Structure a c/a B a c/a B

B-tin 4.83 0.62 1.11 4.83 0.63 0.81
(4.83) (0.55) (0.74)° (5.09) (0.55)2

hexagonal 2.75 0.95 0.90 2.81 0.95 1.24
(2.62)° (0.93)® (0.66)°

hep 2.96 1.64 1.64 2.82 1.68 1.93
(2.74)* (1.63)»° (2.96)* (1.63)*°

wurtzite 3.85 1.62 0.61 4.04 1.54 0.58
(3.86) (1.63)>¢ (4.04)* (1.63)>°

2LDA calculations; Ref. 25.
SLDA calculations; Ref. 44.

°c /a held fixed.
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energetics than the LDA calculations for the structures
other than diamond and wurtzite. Table V presents the
predicted lattice constant and elastic constants of the cu-
bic structures, and Table VI gives the lattice constant,
¢/a ratio, and bulk modulus for the noncubic phases.
The agreement with LDA calculations is acceptable, with
the major trends correctly predicted. Note that the shear
constants for bee Si are not given. This structure is pre-
dicted to be unstable with respect to either shear. It is in-
teresting to note that bcc Ge is stable; however, for both
bece Si and Ge, all of the elastic constants are quite small.
In Fig. 5 we present the energy of a few structures for
Si as a function of volume. In comparing the MEAM

We remind the reader that only

one parameter for each material, o, is used to fit all of the
The structural energies and relaxed

geometries are calculated using a three-dimensional (3D)

periodic array of unit cells of the structure of interest,
For Ge the EAM consistently predicts less stable

tions.2>* As above, the MEAM formulated in Sec. II is
In Fig. 4 we see a comparison of the energies of various
structures of Si and Ge compared to LDA calcula-

tions.?>* The agreement is good, usually within 0.2 eV

keeping the symmetry fixed. The elastic constants are
for Si.

elastic constants, and compares them to LDA calcula-

used for the calculations.
calculated by the procedure in Appendix A.

LDA data.

MEAM

LDA
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FIG. 4. Comparison of the energies of various metastable structures of (a) Si and (b) Ge with LDA calculations (Refs. 24 and 44).

We could not find any calculations on the hexagonal structure of Ge.
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calculations [Fig. 5(a)] with the LDA results® [Fig. 5(b)]
we see that qualitatively the results are quite similar. The
major disagreement occurs in the relative positions of the
fcc and bec curves.

We have calculated the energy of a relaxed intrinsic
stacking fault in silicon in the diamond-cubic structure to
be 0.077 eV/A 2. This value is considerably higher than
the LDA-calculated value*> of 0.003 eV/A % The fact
that this energy is so large may be one factor leading to
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problems in the surface calculations below. We plan to
fit to this energy in the next version of the silicon poten-
tials, as we have often done for the fcc metals.

C. Surface structure

The calculation of surface structure, like the point de-
fects, provides a good test for the MEAM since the bond-
ing is modified with the generation of dangling bonds. In
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FIG. 5. Comparison of (a) MEAM and (b) LDA calculations (Ref. 24) of the energies of various structures of Si as a function of

volume.
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this section the atomic geometries of the Si and Ge (100),
(110), and (111) surfaces will be presented. The unit cells
for the three surfaces were taken to be 20-30 layers
thick, which is large enough so that the surfaces are
noninteracting.

The (100) surface structure of Si has been studied with
a variety of empirical and first-principles interatomic po-
tentials. Khor and Das Sarma*® applied the empirical po-
tentials of Stillinger and Weber,? Tersoff,’> and Dodson.*
They found that all three of these potentials give sym-
metric dimers with a (2X1) reconstruction. Abraham
and Batra,*’ also using the Stillinger-Weber potential,
found a similar (2X 1) reconstruction with symmetric di-
mers. Pseudopotential calculations of Applebaum and
Hamann*® showed a (2X 1) symmetric dimer reconstruc-
tion with significant subsurface relaxations. By allowing
for asymmetric dimers, Chadi® showed that the surface
energy could be further lowered. Yin and Cohen®® found
a reconstruction similar to Chadi,* with the dimer bond
length shorter than the bulk bond length used by Chadi.*’
Northrup®' has proposed a c¢(4X2) structure in which
the second-layer atoms are dimerized and the top-layer
atoms form m-bonded chains, similar to the (2X 1) chain
structure suggested by Pandey®? for the (111) surface.
The scanning-tunneling-microscopy (STM) studies of
Tromp et al.>® showed that buckled and nonbuckled di-
mers appear to be present in roughly equal amounts.
They also observed a significant number of defects with
structure similar to the 7-bonded defect model of Pan-
dey.”? Both the experiments and the theoretical calcula-
tions suggest some sort of a (2X1) dimerized structure
for Si(100) reconstruction.

The symmetry of the Ge(100) surface reconstruction
seems to be well characterized experimentally. At low
temperatures the surface has a ¢(4X2) symmetry and a
(2X 1) symmetry at higher temperatures.”> ¢ The tran-
sition between these two phases occurs at about 150 K.
Needels et al.,’”®® using an ab initio total-energy
molecular-dynamics approach, found that the c(4X2)
structure with alternate buckled dimers is lowest in ener-
gy. The energy difference between the c(4X2) and
(2X 1) structures was found to be 0.05 eV/dimer.

The MEAM values for the (100) surface energies of Si
and Ge are given in Table VII. The (2X 1) symmetric di-
mer reconstruction is found to be the lowest-energy
structure for Si, but not for Ge, although the energy
difference between the (1X1) and (2X 1) Ge structures is
small. The Ge (2X 1) structure is found to be metastable.
Most of the relaxation energy for the LDA calculations®!
comes from the dimerization, and only a small amount of

TABLE VII. Si and Ge (100) surface energies. Energies are

in eV/(surface atom). The LDA results are given in
parentheses.
Si Ge
Ideal 2.21 (2.50)* 2.52
(1X1) 1.81 (2.47)* 1.98
2X1) 1.76 (1.72)* 2.00

#Reference 51.
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energy is gained by relaxation of the (1X1) surface. On
the other hand, since the MEAM does not directly in-
clude dimerization, most of the energy gain is associated
with relaxation of the (1X1) surface. Our calculations
are consistent with the previous empirical calculations
for the Si(100) surface that showed symmetric dimers.*
One can understand why our results and the results of the
other empirical calculations*® all predict symmetric di-
mers. Chadi* has suggested that the stability of asym-
metric dimers is a result of a charge transfer from the
“down” to the “up” atom in the dimer. A surface band
gap is produced by the lowering (raising) of the bonding
(antibonding) state as a consequence of the charge
transfer. The MEAM and empirical potentials do not al-
low for charge transfer, and therefore should always pre-
dict symmetric dimers. The atomic displacements (see
Fig. 6) and interlayer distances for the lowest-energy Si
and Ge (100) surfaces are given in Tables VIII and IX, re-
spectively. The relaxations we find for the Si surface are
similar to those found by Appelbaum and Hamann;*® the
main difference is the outward relaxation of the top layer
predicted by the MEAM. Previous empirical potential
calculations*®*’ showed an inward relaxation.

The MEAM does not give a reconstructed (110) sur-
face for either Si or Ge. The surface energies and atomic
relaxations are given in Tables X and XI, respectively.
Similar to the (100) surface, the first interlayer spacing is
found to be 0.24 A (0.29 A) larger than the bulk Si (Ge)
value. In addition, the neighboring first- and second-
layer chains move towards each other along the [100]

Si (100) 2x1

- & e

di,
+ o,
das

@
)

e

FIG. 6. Side view of the symmetric dimer reconstruction of
the Si(100)-(2X 1) surface as calculated with the MEAM. The
arrows indicate the displacement of the atoms from their bulk-
terminated positions. Atoms 1 and 1’ are in the surface layer, 2
and 2’ are second-layer atoms, etc. The values of the displace-
ments and interlayer distances are given in Table VII.
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direction by roughly 0.16 A for both Si and Ge. The
tight-binding calculations of Chadi®® showed a (1X1)
buckled surface. As mentioned above, the MEAM is not
expected to give rise to buckling. STM images of the
Si(110) surface® have indicated a (2 X 5) surface unit cell,
which we have not investigated here.

On the (111) surface we have considered several
different reconstructions: the (2X 1) buckled, the (2X1)
m-bonded chain,’? and the (n Xn) (for n=3,5,7,9) dimer
stacking-fault structure.®! The dimer-adatom stacking-
fault model of Takayanagi et al.? seems to be the ac-
cepted structure of the Si(111) (7X7) reconstruction. We
find that the relaxed (1X1) structure is lowest in energy
[0.72 eV /(surface atom)]. The first four interlayer spac-
ings for the (1X1) structures of Si and Ge are compared
to LDA calculations® in Table XII. Similar to the (100)
and (110) surfaces, the MEAM predicts an outward relax-
ation of the first interlayer separation for the (111) sur-
face, whereas the LDA results suggest a contraction.

In Fig. 7 the surface energies for the (nXn) (for
n=3,5,7,9) dimer stacking-fault structures are compared
to the (1X 1) surface energy. The surface energy is found
to decrease monotonically with increasing n, but does not
fall below the (1X 1) surface energy. Consequently, the
MEAM does not predict Si (7X7) to be the stable struc-
ture. As discussed above, the calculated intrinsic
stacking-fault energy is too large in the MEAM, leading
to this result. :

The outward relaxation of the top layer for all three
surfaces of Si and Ge is a somewhat unphysical result.
Further refinements of the Si and Ge MEAM functions
will need to be made in order to change the sign of the
first-layer interlayer relaxation. We feel that one possibli-
ty is the large value of our stacking-fault energy. The
value of the stacking-fault energy is an important part of
the energetics of the (111) surface. We should also note
that Wilson,%* using the old uncorrected form of the

0.12

0.104

0.08
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0.04

0.02 1 ]

Energy Relative to (1x1) (eV/Atom)
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FIG. 7. The surface energies of the relaxed (n Xn) dimer-
stacking-fault structures relative to the relaxed (1X 1) surface of
Si. As a consequence of the large calculated intrinsic stacking-
fault energy of Si (see text for more details), the (7X7) is not
predicted to be the stable structure.
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TABLE VIII. Surface interlayer distances and atomic dis-
placements of the Si(100) (2X 1) surface. Figure 6 shows the ac-
tual displacements and geometry. Negative z represents relaxa-
tion away from the bulk. The ideal Si interlayer distance is
1.357 A. The LDA values in parentheses are from Ref. 48.

Interlayer
y z distance
Layer A) (A) A)

1 0.438 (0.695) —0.298 (0.092) d;,=1.566
2 0.041 (0.119) —0.091 (—0.005) d,;=1.423
3 0.000 (0.000) 0.033 (—0.130) d;,=1.372
4 0.000 (0.000) 0.029 (—0.078) dss=1.359
5 —0.020 (—0.032) 0.004 (0.000)

TABLE IX. Surface interlayer distances and atomic displace-
ments of the S}e(IOO) (1X1) surface. The bulk Ge interlayer
value is 1.415 A.

Interlayer
z distance
Layer (A) A)

1 —0.372 d,=1.749
2 —0.037 d,;=1.433
3 —0.019 dy,=1.413
4 —0.020 dy;s=1.413
5 —0.004 dse=1.417

TABLE X. Surface energies for the Si and Ge (110) surfaces.
Energies are in eV /(surface atom).

Si Ge
Ideal 1.69 1.88
(1X1) 1.30 1.48

TABLE XI. Surface interlayer distances for the relaxed Si
and Ge (110) (1X 1) surfaces. The bulk interlayer spacings for Si
and Ge are 1.919 and 2.000 A, respectively.

Interlayer distance (A)

Si Ge
dy, 2.161 2.296
dy; 1.936 1.982
diy 1.924 2.022
dys 1.921 2.003

TABLE XII. Surface interlayer distances for the relaxed Si
and Ge (111) (1X1) surfaces. The bulk interlayer spacings for
the first two layers of Si are 0.79 and 2.35 A and, for Ge, 0.82
and 2.45 A. The LDA values in parentheses are from Ref. 63.

Interlayer distance (A)

Si Ge
dy, 1.084 (0.587) 1.109
dys 2.376 (2.360) 2.462
dy 0.791 (0.746) 0.788
dys 2.354 (2.339) 2.458
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MEAM,’ found Si-surface reconstructions similar to the
results presented here.

D. Clusters

There has been a significant amount of recent experi-
mental® and calculational®®®” work on the energetics and
structure of small silicon clusters. We report here the re-
sults of a few MEAM calculations of these small clusters
to see if the new method, which has been fitted to bulk
properties, gives a reasonable extrapolation to small clus-
ters where the energy and geometry are known -from
first-principles calculations. We let the total cluster ener-
gy, E,, be given by

E,=NE,+N?*3E,+E,)+ - - (22a)

or

E./N=E,+N YYE,+E,) -- (22b)

where E, ( <0) is the bulk energy per atom and E, (>0)
the surface energy of an average surface atom in the clus-
ter.

To facilitate extrapolation to the bulk, we now plot the
energy per atom, E, /N, versus N ~!/3, In Fig. 8 we com-
pare the results of the energy per atom for small clusters
of N atoms that we believe have the lowest energy, i.e.,
optimized geometry for a specific number of atoms.
Finding the appropriate geometry is a nonrivial task for
greater than four or so atoms, as there are many nearly
equivalent energetic configurations with large barriers
separating them. Many different initial geometries were
tried and each structure was relaxed. As discussed
below, we find a number of metastable cluster geometries
sometimes close in energy.

First, consider the curves for the smallest cluster

-1 LDA ——

ENERGY PER ATOM (eV)

-5 T T T 1

0.4
N -1/3

FIG. 8. Energy per atom of silicon clusters as a function of
cluster size N. The first-principles calculations—LDA (Ref. 50)
and QC (Ref. 51)—of small clusters are compared to MEAM
calculations. Energies of the cluster at a global minimum are
shown. Also shown are MEAM calculated energies of larger
clusters in both the diamond and fcc structures.
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(N~13>0.4). Note that the LDA calculations®® and the
QC calculations®’ differ by as much as +1 eV. The
MEAM calculations agree reasonably well (£0.2 eV)
with the QC calculations for the larger clusters, but
diverge significantly for the very small clusters. (The di-
mer energy is a factor of 2 too large in the MEAM com-
pared to experiment or the QC calculations.) The
MEAM does not show the oscillations of the QC calcula-
tions that are necessary to predict the experimentally ob-
served “‘magic number” cluster stability. % The MEAM
predicts a dimer bond length of 2.36 A, in comparison
with QC calculations of 2.246 A. For the trimer, the
MEAM predicts an equilateral triangle with a bond
length of 2.65 A as the minimum-energy structure. At
only 0.05 eV hlgher in energy, an isosceles triangle with
bond length 2.43 A and apex angle of 79° exists as a meta-
stable structure. The QC calculations yield an isosceles
trlangle with bond length 2.165 A and apex angle of 80°,
in reasonable agreement with the metastable structure.
For the four-atom cluster, the MEAM predicts a square
with a bond length of 2.58 A while the QC calculations
predlct a rhombus with bond length of 2.30 A. The
minimum-energy structure for the five-atom cluster is
predicted to be a square with the fifth atom centered
above the square. At only 0.03 eV above this structure, a
metastable structure of a triangle with atoms above and
below the plane of the triangle is found. The out-of-plane
bond lengths are calculated to be 2.45 A. The QC calcu-
lations yield this structure as the minimum-energy cluster
with a bond length of 2.338 A. The predicted geometries
of the MEAM are in reasonable qualitative agreement
with the QC and LDA calculations, but the bond lengths
and angles are certainly not in quantitative agreement
with the first-principles calculations.

Also shown in Fig. 8 is the MEAM energy of larger
clusters based on the diamond and fcc structures. Note
that the MEAM predicts the stability of diamond-based
packing down to a size of about N=16 (N~ 13=0.4).
We may estimate a surface energy of 1.3 eV/atom from
the slope of these curves [see Eq. 22(b)]. This agrees quite
well with the surface energies of 0.7—1.8 eV/atom report-
ed in the preceding subsection. The transition from pla-
nar to 3D clusters is predicted to be at N =4-5, in agree-
ment with the first-principles calculations.®”-

In summary, we would caution against the use of the
MEAM as presented to calculate details of small silicon
clusters. Even though the qualitative behavior is in
agreement with first-principles calculations, many details
are not. For example, in some cases a metastable cluster
is in agreement with QC calculations, while the lowest-
energy cluster is not. Further refinement of the method,
e.g., fitting to dimer properties, may allow quantitative
predictions of small-cluster behavior to be made. On the
other hand, the results for the larger clusters seem
reasonable and may be used, for example, in kinetic mod-
els of growth.

E. Electron-density profiles

In this subsection we compare the electron-density dis-
tributions in the Si diamond structure described by the
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MEAM expression given in.Eq. (13) and one obtained
from a first-principles self-consistent pseudopotential
(SCP) calculation. Even though in the spirit of the
MEAM the electron density is sampled only at the atom-
ic sites, it is nonetheless instructive to examine the spatial
features of the electron density described by Eq. (13). In
other words, we may consider Eq. (13) to give the atomic
density at site / whether or not an atom is present at this
site. The details of the SCP method can be found else-
where;®® here we will repeat only those details pertinent
to our discussion. The calculations are performed within
the local-density-functional theory applied in the
momentum-space formalism,%® using ab initio pseudopo-
tentials,* and the Wigner form of the exchange-
correlation potential.”® The wave functions were expand-
ed, in all cases, in a plane-wave basis set with a constant-
energy cutoff of |[K+G|>=11.5 Ry. During the self-
consistency iterations, the charge density was sampled at
ten special k points in the irreducible Brillouin zone;
self-consistency iterations were terminated when input
and output screening potentials converged to less than
1X10~* Ry. Convergence of our basis set and k-point
sampling can be assessed by calculating the total energy
and equilibrium lattice constant. The calculations pre-
dict a total energy of —7.912 Ry/atom and a lattice con-
stant of 5.45 A, in good agreement with the theoretical
calculations of Yin and Cohen?’ and experiment.?*

The main modification of the second term in Eq. (13) to
the original spherically averaged electron density is to in-
troduce some angular dependence, which can model the
covalent bonding or bond-bending forces present in the Si
diamond structure. A detailed comparison of the angular
dependence of the electron density predicted by the two
methods (MEAM and SCP) is obtained by sampling the
electron density at a constant distance from a reference
atom, along several crystallographic directions. One ex-
pects to see the largest charge density along the bonding
direction, [111], and the smallest away from the bonded
atom, [111]. Since the MEAM determines the host den-
sity of a given configuration of atoms by computing the
electron density of each atom due to its neighbors, we
have chosen to look at the angular dependence near a lat-
tice site at 0.5 A away from a reference atom. This dis-
tance is outside the core region where the pseudovalence
wave functions are well described.

In Fig. 9 the electron density along different crystallo-
graphic directions predicted by the MEAM and SCP
methods are compared. Also shown is the electron densi-
ty that would be obtained by neglecting the angle-
dependent term in Eq. (13). For comparison, the electron
density for all methods has been normalized to 1 along
the [111] direction. Note that for a single-component
system the absolute value of the density does not matter,
as discussed above in Sec. II. As can be seen in Fig. 9,
the trends in the angular variation of the electron density
of the MEAM expression [Eq. (13)] are in good agree-
ment with the SCP calculations, although the magnitude
of the angular effects is not quite the same. Note that the
spherically averaged EAM electron density exhibits
essentially no angular variations 0.5 A away from the
reference atom. The MEAM qualitatively reproduces the
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FIG. 9. The electron density along several crystallographic
directions in bulk Si calculated with the SCP method and the
MEAM [see Eq. (13)]. For both the SCP and MEAM the elec-
tron density was sampled at 0.5 A away from a reference atom,
and normalized to 1 along the [111] direction for comparison.
The angular variation of the electron density is similar for the
two materials.

electron density in bulk Si. With the correct angular
variation of the electron density, one would expect that
the bond-bending forces, which are obtained by
differentiation of Eq. (1) using Eq. (13), are well de-
scribed. As mentioned earlier, the angular term in Eq.
(13) was necessary to obtain the correct value of the Cau-
chy discrepancy (AC). The negative value of AC is relat-
ed to the bond-bending forces.

Another interesting comparison between the MEAM
and SCP methods can be made by considering the varia-
tion of the electron density at one point along the Si—Si
bond as a function of lattice constant. This comparison is
shown in Fig. 10. The electron density is sampled 0.5 A
away from a reference atom. With the electron density
sampled near the atom, the MEAM reasonably charac-
terizes the electron-density variations for compression of
the lattice, while the SCP results exhibit a minimum at
the equilibrium lattice constant, rather than a smooth de-
crease with expansion characterized by the MEAM. The
minimum seen in Fig. 10 for the SCP results is directly
related to the covalent nature of the Si—Si bond. At the
equilibrium lattice constant, the electron density in the
center of the bond is a maximum. As the lattice is dis-
torted from equilibrium value, the bond charge decreases,
resulting in a redistribution of the electron density out of
the center of the bond, back towards the atom. This is
the variation seen in Fig. 10 for the SCP results. The
MEAM does not allow for the charge redistribution and
hence cannot properly characterize this effect.

To better understand the relationship between the co-
valent bonding and the minimum in electron density in
Fig. 10, we have performed similar calculations for the
simple metal Na. The variations in the electron density
near the Na atom as a function of lattice constant is also
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FIG. 10. The variation of the electron density vs relative lat-
tice constant in bulk Si and Na. The electron density (arbitrary
units) is samples at 0.5 A away from a reference atom along the
[111] direction. For Si the minimum in the calculated electron
density for the SCP method reflects the maximum electron den-
sity at the center of the bond at the equilibrium lattice constant.
As the lattice constant is changed from the equilibrium value,
the charge transfers out of the bond back towards the atom.
Also shown is the electron-density variation (sampled at 0.5 A
away from a reference Na atom) vs lattice constant. The
difference between the Si and Na curves clearly shows the
different behavior for metallic and covalent-bonding systems.
Na exhibits no minimum in electron density near the atom at
the equilibrium lattice constant. Note that the electron density
for Si calculated using the MEAM (arbitrary units) agrees with
the SCP calculation for compressed lattices but not for expand-
ed lattices.

given in Fig. 10. For the simple metal Na, we find no
minimum in the electron density. A comparison between
the Si and Na results clearly points out the intrinsic
differences between covalent and metallic bonding. The
minimum in the electron density found for the SCP re-
sults suggests that the form of the electron density de-
scribed in Eq. (19) for the MEAM should be further
modified to include this effect.

IV. SUMMARY

We have developed the modified EAM, a semiempiri-
cal method based on the metallic EAM, to calculate the
energetics of covalently bonded silicon, germanium, and
their alloys. In order to include the bond-bending forces
that manifest themselves in the elastic constants, an
angle-dependent electron density has to be used. The
new method has been applied to the calculations of bulk
structural energies and geometries, point defects, sur-
faces, and small clusters. In general, there has been
reasonable agreement with experimental data and first-
principles calculations, but a number of exceptions have
been noted that indicate that further refinements of the
model are needed. As stated in the Introduction, we
wanted to develop a simple universal model for covalent
materials. To that end we have made a start, but it is
clear that the present model is not adequate to explain
quantitatively all of the known experimental and first-
principles calculations of Si and Ge. We are actively pur-
suing further refinements of this material to that end.
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APPENDIX A

In this appendix we discuss in detail how we calculate
the elastic shear constants. The procedure we use is as
follows: (1) calculate the energy of a perfect crystal, E,
periodic in three dimensions; (2) apply a specific strain
(discussed below); (3) relax the lattice, keeping the period-
ic vectors fixed at their strained values to get the relaxed
energy, E; (4) use the formulas below and the numerical-
ly calculated second derivatives of the energy to calculate
the elastic constants. [In our previous paper, we neglect-
ed the relaxation in step (3).] For the case of ¥ in dia-
mond this relaxation is nonzero and leads to an impor-
tant contribution to ¥. For ¥’ in the diamond structure
and both shears in structures with one atom per primitive
unit cell, there is no relaxation and our previous calcula-
tions are correct.

The strains are given by the following transformation:

x'=x-+tey, y'=y, z'=z fory,
x'=(1+e)x, y'=y/(1+e), z'=z fory'.

In either case the
=2(E,—E,) /%
The shear constants are given by

second energy derivative E"

Yy=E'"/V and y'=E"/4V ,

where V is the volume of the system.

APPENDIX B

The angular term in the host density [Eq. (13)] includes
a double summation over atoms. Daw?’ noted that this
summation could be replaced by a single summation over
atoms. The angular term is reproduced here for conveni-
ence:

. g») [a]aicost; —afai(1—3 cos?6,) p%(R; )pf (Ryy ) -
J i),
% (#i)

(B1)

The term not involving cosf can easily be rewritten as
follows:

2 ajzp;'(R,j) 2- (B2)
Jj (i)

In the first term,
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R2R 2
cosb ;= = -
Jik |R1j| ’Rikl IR,']! |Rikl
where R (a=x,y,z) is the a component of R;;.
The first term can now be rewritten:
s 3 a-‘a,ﬁp‘?(R-‘)pZ(R-k)——R—g—fk—
eI TR IRy
k (i)
RE |
=3 | 3 a/piR;)—~ (B4)
a =0 IRyl

In the last term,

6099
(R;;*R; )?
cosZBﬁk =———U2—lk—2
IR; 1% IRy |
{2 RiR }2 > RIRERGRE
a a,B
= (BS)
IR ;1% Ry I? IR IRy I?
The last term can now be rewritten:
2R B RERE
33 3 (R | adpi(Ry)
a,Bj}(((ﬁi), IR IR
i)

RERE )?
=33 | ¥ a/pi(R;)——— | . (B6)
J (i) ‘Rij|

Thus we have replaced the double summation in Eq. (A1)
‘with the single summations in Egs. (B2), (B4), and (B6).
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