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The Fermi-surface density of states X(0) and Drude-plasma-frequency tensor (A~ ) &
=4vre N(0)(u Ue) are calculated for 14 metallic elements with hcp structures. By comparison
with measured anisotropic resistivity components p~ and pI~, electron-phonon coupling constants are
extracted. The resulting values of k„compare reasonably well with A, from T, for the ten supercon-
ducting elements and provide new information on electron-phonon coupling for the four that are
not. In particular, A,„for Mg is sufficiently low as to discourage a further search for superconduc-
tivity, whereas A,,„ for Sc and Y is sufBciently high (0.5—0.6) to require spin-fluctuation suppression
of T, and motivate a low-T search for exotic superconductivity. Co is found to have very weak
electron-phonon coupling in the majority-spin band and much stronger specific-heat enhancement
in the minority-spin band. The anisotropy p„/p „=p~~/p~ is moderately well accounted for by the
anisotropy of the Drude plasma frequency (fl~ )„„/(Qr )„=(U„') /(U, ), except for the sp elements,
which have significant scattering anisotropy (A.„/k„„&1).A systematic onset of resistivity satura-

0tion" (signifying a breakdown of Boltzmann theory) is found when the mean free path l (10 A.
The onset occurs at a variable value 40 &p & 160 pO cm.

I. INTRODUCTION

Transport properties of hexagonal-close-packed (hcp)
metals are interesting because the noncubic symmetry of
this structure requires that quantities such as resistivity
be anisotropic. Angular correlations may be possible
which are not seen in the scalar quantities associated with
materials of cubic symmetry. Also, deviation of the hcp
lattice constants from the ideal c!a ratio of (—',)' is
reAected in nonspherical charge densities at atomic
sites, ' which could afFect the scattering properties of
these centers in significant ways. The additional con-
siderations necessary to account for the anisotropic na-
ture of transport in these materials may be viewed as a
test for methods which have proved to be successful for
analyzing the dc resistivity of cubic metals.

One useful method for understanding the room-
temperature dc resistivity of metals was proposed by
Chakraborty, Pickett, and Allen and has been carried
out for 25 cubic metals. This approach makes use of the
fact that the electron-phonon interaction determines both
conventional (BCS-type) superconductivity and normal-
state resistivity at high temperature. The electrical resis-
tivity p of a crystalline metal is related to the quasiparti-
cle transport scattering rate 1/r of the material and the
Drude plasma frequency 0 according to the relation

p=4z/0 ~ .

Consider p in Eq. (1) to stand for the resistivity of a metal
after the residual resistivity due to impurities is subtract-
ed off. 1/~ is then related to A,„, the electron-phonon

coupling parameter for transport properties, through the
high-temperature expansion of the lowest-order varia-
tional solution to the Bloch-Boltzmann equation:

fi/r=2~A, „ktiT(l fi (to )„,/12k—ii& + ' ' ), (2)

OD l. 04( 1+A, )
T, = exp

1 45 A,
—p*(1+0.62k, )

Here, OD denotes the Debye temperature of the material
and p* represents a repulsive electron-electron interac-
tion.

The validity of this empirical method for finding a
value for k„has been confirmed by detailed microscopic
calculations (using the rigid muffin-tin model) of A,„for
Cu, Nb, Ta, and Pd. The close agreement between k;, "
and A,,"suggests that the role of the electron-phonon in-
teraction in the dc resistivity of these metals is well un-

where ( co2 )„is a weighted mean-square phonon frequen-

cy of the metal. The electron-phonon mass enhancement
A, , which determines the transition temperature of con-
ventional superconductors, is closely related to k„. How-
ever, they are not necessarily equal, and it is one of our
goals to study their relative magnitudes. The approach
of Ref. 3 is to calculate 0 from energy-band theory and
to combine this result with an experimental value for p
according to Eqs. (1) and (2) to obtain an empirical value
for k„. If the metal is superconducting, this number may
then be compared to a value for A, obtained from an ex-
perimental value for T, according to the McMillan equa-
tion,
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derstood and demonstrates the accuracy of the empirical
method of finding k„. In contrast, the empirical values of
A, found for Nb and Ta from the McMillan equation show
greater differences from the values obtained through
theoretical calculations. (A,„„—A,M,M)/A, „i, is 27% for
Nb and 26% for Ta. Also, from these calculations one
finds that

~
A,„i,—A,„,„i,~

/A, „&,( 10% for Cu, Pd, and Nb,
whereas for Ta the value is 35%. We know of no pub-
lished theoretical calculations of transport properties for
hcp transition metals. There have been calculations for
hcp metals like Mg, Zn, and Cd with only s or p electrons
at c„. Of these, the most complete is by Tomlinson ' for
Zn.

Another value for A, may be obtained from an experi-
mental value for the electronic specific-heat coeKcient y
and a band-theoretical value for the quasiparticle density
of states at the Fermi energy, N(0). y is proportional to
the true quasiparticle density of states at the Fermi ener-
gy, N~(0):

y=a. ksNy(0)/3,

and many-body effects make Nr(0) larger than N(0):

1+Ar—:N~ (0) /N (0) .

(4)

is equal to A, provided N(0) is calculated from an ex-
act quasiparticle band structure which includes all
many-body effects except electron-phonon interaction.
The estimated reliability of the empirical values for I,„
and 1+A,r is about 10—20%, so that, for small k, A, r is a
much less accurate number.

In this paper we report empirical values of k„and kz
for 14 hcp metals calculated by means of the method of
Ref. 3 generalized for noncubic materials. There are
three reasons for extending the calculation to these ma-
terials. First, an exact calculation of the Drude plasma
frequency 0 for any metal requires true quasiparticle
(QP) energy bands, whereas only density-functional (DF)
bands are available. Therefore, we may learn whether
low-lying QP excitation energies differ from DF eigenval-
ues by examining transport properties using values of Q
calculated with the DF bands an'd comparing with exper-
iment. Second, many of the hcp elements are transition
metals, among which there is evidence for interesting
differences between A,„, k from T„and Xz, especially in
the case of elements at the ends of this series where spin
fluctuations may be important in suppressing T, . ' Final-
ly, hcp metals provide an opportunity to study anisotrop-
ic transport. For noncubic materials, the conductivity o.
is an invertible second-rank tensor,

o. p=Bj /dEp=(Qpr) p/4~ . (6)

=4m.e N(0)(vk vkp), (7)

where uk is the group velocity Bek/B(A'k ) of the QP
state k, and the label k is short for wave vector k and

A~ is also an invertible second-rank tensor in this case
and is defined by the relation

(Q~) &—= (4me /V„»)g vk vkg(sk)

band index n. The symmetry properties of the hcp struc-
ture require that cr and A be diagonal in the Cartesian
basis when the z axis coincides with the c axis of the crys-
tal. Therefore, ~ must have the form of a diagonal
second-rank tensor in this basis:

(1/i) =(Q~) ~ /4' . (8)

rt (uk uk' ) ~kk'~(Ek @(Ek')
k, k'

rf (uk uk'a) ~(Ek @(Ek')
k, k'

Akk, =N(0)~M(k, k')~ (ficok k )

(10)

where M(k, k') is the electron-phonon matrix element.
The mass enhancement A, has a similar definition, except
that the weight factors (vk —v«) in Eq. (10) are re-
placed by 1. Note that if the velocity differences
(u« —vk.~) vary with k, k' in a way uncorrelated with
the k, k' variation of Xkk, then k, k««, and A,««will all
be equal. In order for A,«~„ to differ from A,««, the x
components of Uk must have a different correlation with
A, kk than the z components. It is a reasonable guess that

and A,„«should not differ much, and both should
be similar to A, .

II. DESCRIPTION OF THE CALCULATION

In order to calculate N(0) and (Q~ ),we used Slater-
Koster fits' ' to first-principles band-structure calcula-
tions. One of us' has calculated the hcp energy bands
using augmented-plane-wave (APW) codes and self-
consistent scalar-relativistic (without spin-orbit) poten-
tials. Only muon-tin terms were included in the poten-
tials. Blaha et ah. found that non-mufrin-tin corrections
had only a small effect on energy bands or densities of
states of most hcp metals.

Slater-Koster parameters for nonorthogonal s, p, and d
orbitals were fitted using 67 adjustable matrix elements to
the lowest 12 bands on a uniform mesh of 23 k points in
the irreducible ( —,

'
) Brillouin zone. The two-center ap-

proximation was used and interactions out to third neigh-

Similarly, Eqs. (1) and (2) are generalized and combined
to find an expression for A.„with its Cartesian decomposi-
tion made explicit:

„=A'(A~) ~ F/8m kiiT,
F =[1—(0.680D) /12T ]

The mean-square phonon energy fi (co )„has been ap-
proximated by (0.68k' Oi, ) . We have determined values
of A,„with this expression using experimental values
for p„along with values of (0 ) calculated according
to Eq. (7). In this work, p„(p„)denotes the resistivity
measured in the direction perpendicular (parallel) to the c
axis. hcp symmetry requires that pzx pyy If the anisot-
ropy in the resistivity of hcp metals was fully accounted
for by the anisotropy in 0, we should find that A,„
does not differ from I,„«. From the lowest-order varia-
tional calculation" for p at high temperature, the for-
mula for ktr aa is obtained:
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F(e)=g A(k)5(c, —Ek) .
k

(12)

For F(E)=N(E), A (k)=1. For F(e)=N(e)(vk )„
A (k)=vk . We used a mesh of 3078 k points in the —,',

wedge of the Brillouin zone for all of the elements studied
except Cd and Zn. Because of the convergence
difficulties discussed below, we used 7200 k points for the
latter two cases. The integration region was divided into
space-filling tetrahedra with corners at the mesh points.
The functions Uk and c.k were approximated within each
tetrahedron by linear interpolation from the corner-point
values, and the integrals represented in Eq. (12) were tab-
ulated at energy intervals of 0.001 Ry. For illustration,
in Fig. 1 we show N(E), N(e)(uk ), and N(c)(uk, ) plot-

bor were included. Typical rms error for the first six
bands of hcp transition metals is 3—4 mRy. The higher
bands, seventh through ninth, do not fit as well because
these bands contain f character, which was not included
in the basis set.

We used the tetrahedron method' to calculate N(E)
and N(E)(v ), from the Slater-Koster eigenvalues ek
and the group-velocity components Uk . Here the nota-
tion ( ), means an average over the surface of energy E.
This method is used to compute energy surface integrals
of the form

ted as a function of energy for the case of scandium. The
Fermi energy was found by integrating the density of
states. The values found for N(0) by this method differ
in some cases from the ones shown in Ref. 13 since, in the
latter case, a less accurate histogram method was used on
the Slater-Koster (SK) eigenvalues to find N(0).

In order to judge the degree of convergence of the re-
sults, we tried the calculations for various numbers, N, of
k points in the irreducible Brillouin zone ranging from
405 to 3078. Good convergence [no more than 6% devia-
tion of N(0) from the final value as N increased from
405] was seen for all cases except Zr and Zn. The reason
for the difficulty in converging N(0) for these two metals
is that N (E) varies sharply at the Fermi level. Generally,
(0 ) converges more smoothly than N(0), even for the
problem cases.

To find empirical values of X„ from our calculated
(fl ) values, we used experimental single-crystal resis-
tivity data compiled by Bass. ' Our computed values of
N(0) and (A~) and extracted values of A,„are tabu-
lated for 14 elements in Table I, which gives isotropic
properties, and in Table II, which gives anisotropic prop-
erties. Be is omitted because a suSciently accurate SK fit
has not been obtained. Also shown in Table I are values
of N(0) found by Blaha et al. The generally good agree-
ment between these independent calculations confirms
the accuracy of our procedures.
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FIG. 1. Lower curve: density of states 1V(c.) vs energy for
scandium. Upper curves: Drude plasma frequencies for E fields
in the xy plane (solid curve) and along the z axis (dashed curve).

III. DISCUSSION

A. Ti, Zr, and Hf

These elements are low-T, superconductors (T, =0.4,
0.5, and 0.1 K). McMillan deduced values of A, (0.4, 0.4,
and 0.3) assuming p'=0. 13. Our values of A,„(Table I)
are somewhat higher (0.5, 0.5, and 0.45) than the A,

values. Some of this discrepancy can be assigned to un-
certainties in A, ; for low-T, materials, McMillan s A, is
especially sensitive to the choice of p and OD. Even al-
lowing for this, it seems likely that A,„is larger than A. for
these metals, implying that Xkk varies significantly
around the Fermi surface. This permits (but does not re-
quire) A,„„and A,„„to differ. We find (Table II) that
(Q~ ) and A,„are quite isotropic. There are no
single-crystal measurements of p for Zr, but Hf and Ti
have isotropic values of p . For Ti, experimental
single-crystal measurements have yielded contradictory
results for the sign of the (small) resistivity anisotropy,
p„—p, . ' We have listed values derived from both sets
of measurements in our tables. The specific-heat values
A, z for Ti and Hf agree well with A,«. In Zr it is impossi-
ble to derive a reliable kz because the Fermi level lies in
an almost vertical step of N (e), making N (0) highly un-
certain. However, Q~(E) is less singular and Q~(0) was
relatively stable as the samphng mesh changed. A
theoretical calculation of g for Zr was carried out by
Chatterjee' from non-self-consistent energy bands, yield-
ing an estimate of A, =i)/M(co )-0.37, which is closer
to McMillan's k value than to our value of A,„.For Hf, q
was calculated by John et a/. ' They give an estimate of
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TABLE I. Calculated and derived isotropic properties of hcp metals.

a
pexpt

(pQ cm)
(273.2 K)

AQp

(eV)

X(0)
N (0) (states/atom Ry)

(states/atom Ry) (both spins)
(both spins) (Ref. 2)

(u')'"
(Ref. 5) (10 cm/s) (A)

Sc
Y

50.5 3.7
53.6 3.8

30.5
30.4

29.5
27.35

1.02
0.94

0.51
0.62

0.24
0.29

18
21

Ti 44.7, 46.1' 3.6
Zr 38.6 3.8—3.9
Hf 32.2 4.0

12.0
12.1-15.3
8.6

11.9
13.0

0.61 0.53, 0.54' 0.38
0.05-0.33 0.48-0.50 0.41
0.46 0.45 0.34

0.32
0.35—0.38
0.47

25
29-34

46

Tc
Re
Ru
Os

Co~
Cog

16.7 8.0
16.0 7.4
6.12 8.9
7.9 8.7

6.4 5.1g

3.7g

12.7
10.0
11.0
8.4

2.2h

9 9h

12.3

11.0

2.2h

10 4h

0.96
0.33
0.73
0.66

—12

0.99
0.76
0.45
0.54

0.15

0.68 0.61
0.46 0.65
0.38 0.71
0.39 0.81

0.82
0.28

25
37
65
64

245

Mg
Zn
Cd
Tl

3.95 7.6
5.46 9.4—10.3
6.80 7.9

= 15 9.1

5.7
2.8—5.0
5.7
5.3

5.9
2.7
3.05

0.31
—0.26—0.34
—0.31

0.60

0.20
0.42 —0.50
0.37
1.11

0.38
0.38
0.71'

1.11
1.30-1.62
1.10
1.53

231
117-171

138
63

p pt 3 (p„+2p x ), where values for p„=p~~
and pxx =

p& were obtained from Ref. 15 ~ For Zr and Tc, values for p„and p „were
not available and polycrystalline measurements of p were used in these cases.
b~ —(~2)l/2 [1(~2) + 2(rl2) ] 1/2

Values for y are from C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1976), except in the case of Tc the
value is from R. J. Trainor and M. B.Brodsky, Phys. Rev. B 12, 4867 (1975).

A,„—:
3 (2A,„„„+A,„„),except in the cases of Zr and Tc, where we use A,„='p „„(hF//S—rr ke T)[(2Q )„„+(0)„].

'First entry assumes values for p~, p~j given by Darnell, whereas the second entry assumes those of Wasilewski. See Ref. 16.
'A. F. Guillermet and G. Grimvall, J. Less-Common Met. 147, 195 (1989).
sWe define for each spin species Q~ =4rre'X (0)(u ), so that Q~ =fl~t+A~), contrary to Ref. 4.
"Value for X(0) is for single spin.
'Tunneling gives a value 0.78 (see Ref. 27).
'I = (2 ( u„)r, + ( u,2 )r, )', except in the cases of Zr and Tc, where I =—( ( u ) )

'/ r since no information on p„„and p„ is available for
these elements.

TABLE II. Calculated and derived anisotropic properties of hcp metals.

Sc
Y

T1
Zr
Hf

Tc
Re
Ru
Os

Co

Mg
Zn
Cd
Tl

(c /a) /(c /a);d„&

0.976
0.962

0.972
0.975
0.969

0.983
0.989
0.970
0.967

0.994

0.994
1.14
1 ~ 15
0.979

p-/p
0.37
0.47

0.90, 1.05'

1.02

0.72
0.78
0.63

1.84

0.83
1.04
1.24

—1.3

(&~ ) /(~ )zz

0.39
0.63

1.08
1.01-1.10
1.01

0.76
0.78
0.87
0.85

1.18

0.74
0.60—0.64
0.69
0.66

~tr zz /~tr xx

0.95
0.75

0.84, 0.97'

1.02

0.92
0.90
0.74

1.56

1.12
1.63- 1.72
1.79
1.95

'See footnote e of Table I.
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A, -0.47, which agrees well with our A,„and I, , but
exceeds McMillan's A, .

B. Tc, Re, Ru, and Gs

These metals are also superconducting, with higher
values of T, (7.8, 1.4, 0.5, and 0.7 K). Again, the A,„
values are larger than McMillan's values of k. The exper-
imental resistivities are anisotropic (p„/p -0.7), while
A,„seems to be more isotropic (A,„„/A,„-0.9). Much
of the anisotropy of p is accounted for as anisotropy in
0 . The value of I,

&
for Re is anomalously small, but our

value of N(0) agrees well with Mattheiss. ' For Ru and
Os, Xz is larger than A,«, while, for Tc, A, z and A.„agree.
Theoretical estimates of A, (from g) for Re and Os were
made by John et al. ,

' who find A, -0.58 for Re and 0.21
for Os. The latter value seems too small.

For Tc, g was calculated from non-self-consistent ener-
gy levels by Asokamani and Iyakutti and by Chatter-
jee. ' The latter calculation gives an estimated
I,-0.60—0.87, which agrees better with McMillan's
value 0.68 than does our empirical A,„. However,
Chatterjee's value of N(0) does not agree closely with
ours or that of Blaha et al. , so we do not feel this calcu-
lation adds much support to McMillan's.

C. Sc and Y

Sc and Y have the highest values for the density of
states at the Fermi energy, N(0), and the highest average
resistivities p= —,'p„+—', p „of all the materials studied,
yet lack any sign of superconductivity at atmospheric
pressure. This is believed' to be the result of long-lived
spin fluctuations which suppress Cooper pairing. The
magnetic susceptibility of Sc and Y is also strongly
enhanced, and has almost a Curie-law increase as T de-
creases. These observations apply equally to Pd, and it
is commonly accepted' that spin Auctuations are most
important at both ends of the transition-metal series,
where the correlation between T, and y found in the
transition metals breaks down. The resistivity of Sc and
Y has an ordinary Bloch-Boltzmann —like T dependence
up to 300 K, and gives fairly large values of
A,„=(0.51,0.62 ) for (Sc,Y) (larger, for example, than for
Pd). Thus superconducting T, 's would have been higher
than 2 K if spin Auctuations had not suppressed super-
conductivity. Further experimental searches for phase
transitions in higher-purity material at lower T would be
valuable. Very little information about A, has previously
been available in these materials. Knapp and Jones
found A, -0.3 by comparing electronic specific heat at
low T and at high T. The accuracy of this procedure is
limited by the lack of a clean separation between elec-
tronic and lattice (anharmonic) specific heat at high T.

D. Co

Co is the only ferromagnetic hcp transition element.
The Stoner picture of ferromagnetism in the band model
is incomplete at best, so there is less reason to trust the
ingredients like N (0) and Q than in nonmagnetic met-
als. The majority-spin d band is filled, giving a low

N&(0) =2.2 states/spin atom Ry, while the minority-spin
Fermi level lies well within the d bands, giving
N&(0) =9.9. These agree nicely with the values of Blaha
et al. , and are also close to the values N&(0)=2. 3 and
N&(0)=9.0 found by Jarlborg and Peter. There is no
way to extract. both up- and down-spin electron-phonon
coupling constants A, „ from the measured o. =p=(0 &r&+II ~r&)/4m. . Our calculated Drude plasma
frequencies are Qp „&

=5.2 eV, Qp &
3 3 Ap &

4 8,
and 0 „&=4.3. Notice the 1-spin band dominates o. ,
both because 0

&
is larger by about 2 than Q &, and be-

cause we expect ~& to exceed ~& based on the much larger
density of states N&(0) for down spins to scatter into.
Therefore we assume that only t spins contribute
(o =Q~&r&/4m) and Tables I and II show the up-spin
values of I,«. Our value A,«& =0.15 should be considered
an upper limit, because the p( T) data for Co show an up-
ward curvature at 300 K, suggesting that additional
scattering is coming from spin waves. Similarly, the
down-spin contribution to specific heat y exceeds the up-
spin contribution; thus in a first approximation, A, in
Table I is associated with down spins. The electron-
phonon coupling for 1 spins is weak (A,„-O.15, similar to
Cu), while down spins have A,~-1.2. No doubt, this
large value contains other many-body e6'ects besides
electron-phonon interactions. Our analysis agrees quali-
tatively with Jarlborg and Peter, who find k& =0.07 and
A, &=0.44 from g calculations. They also find evidence
for additional enhancement in y. The resistivity of cobalt
is quite anisotropic, whereas 0 for f spins is less aniso-
tropic, requiring a large anisotropy 1,„„/A,„—1.6.

E. Mg, Zn, Cd, and Tl

These are the only non-transition-metal elements we
studied. Zn, Cd, and Tl are superconducting (T, =0.9,
0.6, and 2.4 K), whereas Mg has not been observed to su-
perconduct above 0.002 K. We find a value of 180 pK
for the T, of Mg from the McMillan equation using
p* =0. 1 and our empirical k„value of 0.20 for A, , contra-
dicting an earlier theoretical result by one of us which
indicated that Mg should superconduct at temperatures
as high as 0.012 K. However, our value of 0.31 for A, of
Mg agrees well with the earlier result of A, =0.33. For
Cd, N(0) values were fairly well converged and not far
from those of Ref. 13, but yielded unphysical negative A, z
values. The value given by Blaha et al. yields a much
more realistic value of X.=0.30. They suggest that the
non-muffin-tin terms which they include in their potential
(but we do not) may be important for obtaining the
correct band structure for Cd. Another possible source
of discrepancy derives from small difFerences between the
true local-density-approximation (LDA) bands and the
SK fits. The rms fitting error is small for most transition
elements, but larger for the non-transition-metal ele-
ments. Our A,„value for Cd agrees well with McMillan's
value. On the other hand, our A,„values exceed
McMillan's I, values for Zn and especially Tl, following
the trend seen in the transition metals. For Tl, Dynes
has obtained a value of A,,„„=0.78 from the measured
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tunneling density of states, which agrees more closely
with McMillan's k than our A,„.Our A, z value of 0.60 for
Tl seems low. Ament and Vroom and Holtham et al. 9

have carried out non-self-consistent band-structure calcu-
lations for Tl and determined values for A,

&
of 0.70 and

0.67, respectively. Spin-orbit —interaction effects, which
were not included in the band structures we used, might
be significant for Tl, which is the heaviest element we
studied. For Zn, our computed values of X(0) did not
converge, as the number of sampled k points was in-
creased. As in the case of Zr, the Fermi level of Zn lies in
a steep section of the X(E)-versus-s curve, making X(0)
and k~ dificult to determine. Our range of k„values for
Zn compares well with Auluck's A, of 0.40 and A,„
(from cyclotron resonance) of 0.51, which he obtained by
comparing pseudopotential band masses averaged over
cyclotron orbits with experimentally determined cyclo-
tron masses. Tomlinson and Swihart calculated A,„from
first principles and obtained a value of 0.41. Yanson '

has measured the nonlinear current-voltage characteris-
tics of point contacts to determine A, values of 0.13 for
both Cd and Zn. These metals show greater discrepan-
cies between X values and A, , A,„,or A, values than for
other simple metals studied with point-contact spectros-
copy. Several theoretical calculations of both isotropic
and anisotropic effects of the electron-phonon interaction
have been carried out for the nontransition hcp metals.
Truant and Carbotte " calculated a value of A, =0.425 for
zinc using realistic phonon spectra and electron-phonon
interactions, but neglecting any departure from free-
electron behavior of the conduction electrons. Tomlin-
son and Swihart did a more complete calculation of k,
taking into account all important sources of anisotropy,
obtaining 0.36 for A, . We find that Zn, Cd, and Tl have
the most anisotropic A,„values of all the metals stud-
ied. For Zn and Cd this anisotropy may be correlated
with their large deviations from the ideal c/a ratio, their
highly nonspherical charge densities, and their extreme-
ly large electric-field-gradient values. ' However, a more
detailed calculation than we have attempted would be
necessary to understand how these properties are related
to A,„„/A,„„„.Tomlinson studied the anisotropic trans-
port properties of zinc by solving the Boltzmann equation
by the variational method. He found that p is very iso-
tropic at high temperatures, in agreement with experi-
ment. This is a remarkable result since he calculated
driving-force and scattering-operator terms for the
Boltzmann equation which, separately, are quite aniso-
tropic. This result agrees with our finding that band-
theoretical (Q )~ values and empirical A,„values are
both highly anisotropic, each in opposite directions.

IV. CONCLUSIONS

0"

Pb
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-15
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from experiment and LDA bands with A, extracted from
superconductivity. This is graphically illustrated in Fig.
2. The vertical axis, according to McMillan's equation
[Eq. (3)] is —0.37—1.04( 1+A, ) /[1, —p' (1+0.62k )],
which is plotted as the hatched region for values of p* in
the interval (0.10,0.15). The experimental points would
all lie in this region if standard McMillan theory worked
perfectly and if A,„were identical to k. Instead, we see a
tendency for A,„to exceed A, . Three types of explanations
are possible.

(a) The intrinsic difFerence between A, „and A, may be
the cause. This seems unlikely, since of the four metals
in which we have good simultaneous calculations of A,

and A.„, the only one with a ~A,„—k~ exceeding 10%%uo was
Ta, and there k„was smaller than A, . We know of no in-
trinsic reason why A,„should exceed A, .

(b) The LDA values of Qz are systematically high,
compared to QP theory. This seems reasonable, since
there is indeed evidence, both from experiment and
theory, that the LDA bandwidth exceeds the QP values.
If the LDA bands were stretched uniformly relative to
QP's, then the ratio of Q~ in the two theories would equal
the bandwidth ratio. It is easy to believe that a systemat-
ic effect of ~ 10%%uo exists. The extreme case of Ni is some-
times cited as evidence for a large disagreement between
LDA and QP theories in transition metals. Williams and
Von Barth argue that Ni is "the exception rather than
the rule. "

(c) Of equal or larger significance are two problems in

applying McMillan theory. First, the "prefactor" OD in
McMillan's equation should be iiinii, /ks and can only
be found by quasiparticle tunneling or a detailed micro-
scopic theory. In particular, values of 8D from elastic
constants or low-T specific heat tend to overestimate co&,

and thus yield overly small values of A, . We have used
values of OD fitted to high-T specific heat in estimating
the correction factor F of Eq. (9) and in plotting Fig. 2.

The two principal issues addressed in this paper are (1)
whether values of 0 from LDA band structures are
close enough to the true QP values of Q to permit the
coupling constant A,„to be extracted, and (2) whether an-
isotropy in o can be accounted for by anisotropy in

(Q~) . Unambiguous answers are not possible. The
main test of question (1) is by comparison by A,„extracted

FIG. 2. Empirical T, /OD (using the high-T OD values of
Ref. 39) plotted logarithmically against the semiempirical A,„ex-
tracted from resistivity. The values of A,„for 10 hcp elements
are from the present paper, while nine cubic elements come
from Ref. 4. The McMillan equation [Eq. (3)] predicts the
hatched range provided A, =A,„and 0. 10&p* &0.15.
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Tunneling experiments have confirmed a systematic trend
for A, to exceed the values extracted by McMillan from
T, . Second, the Coulomb interaction parameter p* may
be outside the range (0.10,0.15). When spin-fluctuation
effects are important, for example, this is approximately
equivalent to an enhanced value of p*, which will
suppress T„or else require a compensating increase in A, .
Rietschel and Winter have argued that this effect is
more widespread than has been "commonly assumed. "
Perhaps it is not a coincidence that the two transition
metals Mo and W, which do not have k„&I, in Fig. 2,
have the lowest values of N(0) and, thus, the least phase
space for Coulomb scattering of all transition elements.
Therefore, it is not possible to be sure that 0 has been
overestimated by LDA theory. We can surely say that
the LDA value of 0 provides a good guide to reality, in
the absence of a value from QP theory.

On the issue of anisotropy of o., Table II shows that for
all transition elements, especially Sc and Y (which have
the largest anisotropy in o), a significant part of the an-
isotropy of o. comes from anisotropy of Q . Neverthe-
less, we are left with some ambiguity about how complete
the effect is, largely because we do not know what accura-
cy to assign to the experimental p„/p . Therefore, we
do not know how much error to assign to the extracted
value of „„/~„. The largest anisotropies of A,„ in
Table II occur for nontransition metals. There is rela-
tively little direct experimental evidence about the rela-
tive anisotropies of different metals. Allen and Mitro-
vic ' estimated the rms anisotropy of A, k in Zn to be
-20%, whereas in most metals there is no evidence for
an effect this large. The evidence suggests that the
electron-phonon interaction is more isotropic in transi-
tion elements than in sp elements.

Finally, our work enables us to make a comment on
the validity of the Boltzmann equation. The last column
of Table I shows extracted values of the mean free path
(MFP) I =Uzr at 273 K. The criterion for validity is usu-
ally stated as kFl »1, or, equivalently, ezra/A'«1, al-
though we prefer I »a, or else N(0)A'/r «1 since k~
and cz are not well defined for transition metals. Consid-
er, first, Ru, Os, Mg, Zn, Cd, and Tl, which all have
I &60 A, implying that Boltzmann theory is completely
safe. All except Os show a small upward curvature
(d p/dT & 0) at T & 300 K, while Os has a small down-
ward curvature. The simple Bloch-Gruneisen theory
predicts a small downward curvature that disappears rap-
idly as T increases, but this neglects thermal expansion
and anharmonicity, which normally cause phonon fre-

quencies to diminish and X and p to increase as T in-
creases. Thus a small upward curvature, more pro-
nounced at high T, is characteristic of most good
Boltzmann metals. Next, consider Sc and Y with the
smallest values, l-20 A. These materials show typical
Boltzmann behavior for T & 300 K. [A good signature is
that the tangent to p(T) at 300 K intersects the residual
resistivity p(0) at T=0.] However, for T &600 K, there
is very noticeable downward curvature (more pronounced
than in Os). This is the signature of resistivity "satura-
tion, " a familiar phenomenon ' in d-band compounds
with p ~ 100 pQ cm and I & 10 A. This behavior lies out-
side Boltzmann theory and its interpretation is still con-
troversial. However, it is remarkably regular, and occurs
almost without fail at T ~ 300 K if l ~ 10 A. To estimate
where the onset of saturation should occur, we calculate
the temperature at which Boltzmann theory predicts
I =10 A. This is easily done using the values of l at 273
K from Table I and the Boltzmann result that I ~ T
For Sc and Y, onset is predicted to happen at -500 and
-600 K, respectively, agreeing completely with the mea-
sured onset temperature, where p has become —110 and
140 pQ cm, respectively. Table I then allows us to pre-
dict 700 K as the onset of saturation in Ti and Tc, 900 K
for Zr, 1000 K for Re, and 1300 K for Hf. The actual on-
sets [determined with the help of a ruler from the p(T)
curves in Ref. 15] are (T =700 K, p= 135 pQ cm) in Ti,
(T =700 K, p =40 pQ cm) in Tc, (T =900 K, p = 130
pQcm) in Zr, (T =900 K, p=60 pQcm) in Re, and
(T =1400 K, p=160 pQcm) in Hf. The value of p at
which onset is first seen is surprisingly variable, with 40
pQ cm in Tc being remarkably low (comparable to Pd).
Extrapolating to very high temperatures gives 80
~p,„~100 pA cm as the fully saturated value of p for
Tc. In summary, the criterion l =10 A is a remarkably
accurate predictor (using our procedure to extract r).
These results support the argument of Gurvitch and
Fiory, who associate the linear resistivity of high-T, su-
perconductors with a mean free path I & 10 A.
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