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Nonlinear magneto-optical Kerr effect on a nickel surface
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Nonlinear surface optics is being developed as a useful new tool in surface science. In this work,
we calculate the second-order magneto-optical response function in order to determine the non-
linear magneto-optical Kerr effect. This is applied to the surface of ferromagnetic nickel. We take
into account the realistic spin-polarized nickel band structure and the spin-orbit coupling, but treat
the transition-matrix elements as constants in a first approximation. We calculate nonlinear Kerr
spectra which should be observable in surface second-harmonic-generation experiments. As a
check of our calculations we determine the linear magneto-optical Kerr effect (MOKE) spectra for
bulk nickel and find good agreement with experiment.

I. INTRODUCTION

Conventional techniques in surface science mostly use
emission, capture, adsorption, or scattering of massive
particles. But optical techniques are becoming increas-
ingly important, because they are nondestructive, capable
of in situ remote sensing with high spatial and temporal
resolution at any interface accessible by light. ' The main
drawback is the general lack of surface sensitivity. In
linear optical reAection, the bulk contributions dominate
by far. So it becomes necessary to use nonlinear-optical
probes for surface analysis.

Second-harmonic generation (SHG), which is forbid-
den in inversion-symmetric media within the electric-
dipole approximation, is surface sensitive as the three-
dimensional inversion symmetry is broken at the surface.
It depends on the specific surface whether it is still two-
dimensionally inversion symmetric. If not, the surface
contribution dominates in SHG.

Surface second-harmonic generation has already been
used to study a number of adsorbate systems such as rho-
damine on quartz substrate, 02/Si(111), CO/Cu(100),
CO/Rh(111), and 02/Rh(111). ' Recently, SHG has also
been used as a surface probe on alkaline-earth halides,
CO/Ag, pyridine/Ag, and quinquethienyle/quartz.
Furthermore, there is interest to study ferromagnetic
transition-metal surfaces with this technique.

Theoretically, the field of nonlinear optics was opened
by Goppert-Mayer in 1931. Already in the 1960s
Bloembergen, Pershan, and Kelley treated nonlinear
optics within the general framework of response theory,
Jha used Boltzmann's equation. Pershan calculated non-
linearities from the anharmonic-oscillator model and
solved nonlinear wave equations with the use of classica1
electrodynamics. ' But at that time theoretical research
concentrated on the prediction of new nonlinear effects.
Therefore, a large number of nonlinear tensors were dis-
cussed and group-theoretically classified. "' On the
basis of these theories the angular distributions of non-
linear light intensities, especially for dielectrics, could be
calculated in certain experimental situations at surfaces.
But it was not before 1986 that theorists became really in-

II. THEORY

In this paper we calculate the nonlinear magneto-
optical response function which is the basis for — the
description of the nonlinear magneto-optical Kerr effect.
Concerning the response theory we use the self-
consistent-field approach in the form proposed by Ehren-
reich and Cohen' and extend it to second order. The
linear optical dielectric function is defined by

e(q, to) =1— ((p(q, t );p( —q) ))
q

The linear dielectric po1arization is given by

P(q, co) =y'"(q, co)E(q, to),

and the second-order polarization by

P(2q, 2to)=y' '(2q, 2')E(q, ~o)E(q, co),

where

~(&)—~( &)

4

(2)

(4)

terested in surface second-harmonic generation and cal-
culated nonlinear intensities for "jellium" by means of
the hydrodynamic model' and within density-functional
theory. ' ' Furthermore, nonlinearities were included in
quasiparticle theories' for ferromagnetic insulators, but
only for bulk material ("magnetoexcitonic polaritons").

So far, however, there exists no microscopic theory
which could quantitatively connect electronic band struc-
tures of metals with experimental SHG spectra. Espe-
cially, no theory exists for the nonlinear magneto-optical
Kerr effect (rotation of the polarization plane of the
frequency-doubled light when rejected from a ferromag-
netic metal surface). This effect could become important
for the nanosecond and picosecond spectroscopy of fer-
romagnetic structures at transition-metal surfaces. This
is interesting for new applications in memory technology
and magneto-optical recording ("perpendicular record-
ing" ).
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and y' ' are tensors of rank 2 and 3, respectively. We
drop the tensor indices for notational simplicity.

Instead of a diagrammatic formulation we use an
equation-of-motion formalism. Therefore, we consider
Heisenberg's equation of motion,

ikp=[H, p],
where

tial is

V(r, t)=g V(q', t)e

This potential consists of the external plus the screening
potential. In second order only the screening potential is
present.

p denotes the density operator which we expand in the
form

H =Ho+ V(r, t )

is the Hamiltonian of the total system. Ho is the Hamil-
tonian of the unperturbed solid which satisfies
Schrodinger's equation,

p p(O) +p( i ) +p(2) + ~ ~ ~

where p' ' satisfies the eigenvalue equation

p"'lki&=f(z„, )lki& . (10)
(7)

where Ekr is the energy corresponding to the Bloch state
lkl & =(1/&Q)ukase' ' of wave vector k in the 1th band.
The Fourier transformation of the self-consistent poten-

Here, f is the Fermi function. By taking into account
only first-order terms and using Eqs. (7) and (10) we ob-
tain from the equation of motion for the matrix elements
of p between states l kl & and

l k+q, i'
&

i% &k/lp'"lk+q, i'& —= ( —iiico+ih'a)&kllp'"lk+q, i'&
dt

=
& ki

I [HO, p' "]lk+ q, i' &+ & ki
I [ V, p"'] lk+ q, i'

&

=(&gi —
&k+q, i )&kelp"'Ik+q, i'&+[f(&k+s, i ) —f(EkI)]V(q, t)&kile "'lk+q, i'& .

The time dependence of the matrix elements is assumed
to be e' '+ '. a corresponds to some finite lifetime or,
from the experimental point of view, instrumental resolu-
tion.

The polarization P(q, t ) is related to the induced
change in electron density in first order by

and in second order by

V P' '(2q, t ) =en ' '( 2q, t )

=-2iq P' '(2q, t ) =en' '(2q, t ) .

With the electrical field

(13)

V P'"(q, t)=en'"(q, t) E(q, t) = V(q, t),
e

(14)

=-—iq P"'(q, i)=en"'(q, i), (12) and Eqs. (11) and (12), it follows for the linear optical
dielectric response function

x"'(q, ~)=—e n"'(q, t)
q2 V(q, t)

2

g e 'i' g &k'+q, h'le''i'lk'i
& &k'ilp"'lk'+q, I'&

q k', 3, I'

V(q, t)
We assume the time dependence e' '+ ' for the external potential and therefore also for the screening potential (thus for
the total self-consistent potential) as we did in (11) for the matrix elements & kl lp'" lk+q, l' &. With this convention we
obtain for the optical dielectric function (for photons lql ((1/a, a is the lattice constant, and longitudinal and trans-
verse dielectric functions become identical' ) (co = cq )

4 2 «k+q, i )
— (Ekr)

y'"(q, ~)=—,' y l & kile-'"lk+q, i & l'Q, E,—E —Q~+ jQ(y
(16)

To express the tensor character, y'"(q, ~) would have to be multiplied by qeq/q . To calculate the second-order opti-
cal dielectric function, we extend this scheme in a straightforward manner, but note that V' '= V,' '(2q, t ) (s stands for
screening) because the external potential contributes to V only in first order. We assume the time dependence e '"'+
for the second-order matrix elements and the nonlinear screening potential and collect the second-order terms in the
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equation of motion for the matrix elements ( kl
I
p' 'I k+ 2q, 1"):

(kl Ip' '1k+ 2q, 1"
&
= (kl

I
[H„p"']~k+2q, 1") + (kl I [ V"', p"'] Ik+2q, 1")+ (kl I [ V,"',p"'] lk+2q, 1")

—( —2iitco+2i«)& kl lp'"lk+2q, 1"
&

=(Eki Ek+zq i )(kllp Ik+2q, 1")+&kll[V ~, p' ']lk+2q, 1"
&

+ [f(E„+zq, „) f(Ek—i ) ]v, (2q, t ) ( kl
I
e 'q'I k+ 2q, 1") .

By using Poisson's equation for the nonlinear screening potential

V'V'" = —4~e'n"'

(17)

if follows that

V,' '(2q, t)= g (k'+2q, 1"le 'q'lk'1) (k'lip' 'lk'+2q, 1") . (19)

Inserting Eqs. (3), (13), and (19), the first-order result for (kl lp"'lk+q, 1*), and summing over k, 1, 1', and 1", finally
leads to the nonlinear-optical dielectric function

~ 3

g' '(2q, 2') = ((k+2q, 1"le"q'Ikl ) (kl le
' 'lk+q, 1') (k+q, 1'le 'q'lk+2q, 1"))

X

f(Ek+2q, I" ) f(Ek+q, I' ) f( k+q, I' ) f(Ekl )

Ek+2q, 1" Ek+q, l' ~~+ ~ ~+ Ek+q, 1' Ekl ~~+ ~ ~+

Ek+ 2 ~ Ek~ 2%co +21 A(x

""Ik+ 2q, 1"
& I'

q ~k»„' Ek+2q i- Eki 2Aco+2ifia

(20)

To restrict our theory to the surface, we replace q by q~~
(parallel to the surface), the volume 0 by the surface A, and the

three-dimensional Fourier transformations by two-dimensional ones. This procedure corresponds to the result' for
the linear surface dielectric function g(q~~~, a~), first derived by Persson et al. by integrating the Poynting vector over the
metal surface,

2 2

& I&) C'&I) '&I'(fr —fr )&(s,—Er
—&~+i«),

qll A
(21)

where
I y ), ly') are the single-particle wave functions of

the solid, and

Etl q 'f
ii

Ilg
ii (22)

Now we want to consider the nonlinear magneto-optical
Kerr effect at ferromagnetic transition-metal surfaces.
Although Kerr observed the rotation of the polarization
plane of light rejected from ferromagnets already in
1877, the underlying mechanism was not found before
1955, when Argyres showed that the combination of the
exchange interaction and the spin-orbit coupling is re-
sponsible for the Kerr effect: As spin-orbit coupling acts
like an external magnetic field,

—iA'p=[H. .. p]=[AL S, p]=kpXS,
it rotates the polarization plane of linearly polarized
light. In nonferromagnetic materials the effects for left-
handed and right-handed circularly polarized light (the

superposition of which builds up the linear polarization)
cancel out so that no net effect occurs. But in ferromag-
nets the exchange interaction splits the band structure,
and consequently spin-up and spin-down states are not
equally occupied. This fact allows a net rotation of the
polarization plane of about 0.1' (in nickel). The sign and
absolute value of the Kerr angle show a pronounced fre-
quency dependence which has not yet been fuHy under-
stood. The theories of- the 1960s derived the magneto-
optical response functions for the linear Kerr (or Fara-
day) effect and discussed the diFerent intraband and in-
terband contributions. ' But, at that time, theorists did
not dare to compare with experimental spectra. Today
the situation is not better, maybe even worse than 25
years ago. Although now some spin-polarized ferromag-
netic band-structure calculations for bulk nickel2 '

(even at finite temperatures ) and for the Ni(001) sur-
face ' ' are available, only one attempt has so far been
made to connect them to the experimental Kerr spectra.
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The results are not completely satisfactory. On the other
hand, before having achieved good agreement of the
different measurements, experimental interest moved
from pure ferromagnetic materials to intermetallic alloys.
The search for large Kerr-angle materials became impor-
tant in the 1980s because of their application in
magneto-optical memories and data processing ("compo-
sitionally modulated films", "perpendicular recording").

We calculate the nonlinear magneto-optical response

function by taking into account exchange interaction and
spin-orbit coupling in (20). We denote the spin-polarized
band structure by the index o. (e.g. , Ez& ) and sum over
o.. Spin-orbit interaction is included within first-order
Heitler-Ma perturbation theory in the coupling constant
X according to the procedure proposed by Cohan and
Hameka for externally applied magnetic fields in gases
and liquids. If we apply this to the product of three ma-
trix elements,

(k+2q, l"o.le '~'lklcr)(klo le ' 'lk+q, l'o )(k+q, l'o e ' " k+2q, l"o ),
we use first-order perturbation theory for each of the six wave functions and dipole operators which come into play by
expanding the exponential and retaining only the q r interband terms. Then we collect all first-order terms, i.e., those
which are perturbed in one wave function or dipole operator and unperturbed in the other eight quantities (wave func-
tions or dipole operators). So we obtain the following nonlinear magneto optica-l surface response function:

e Ay"'(2ql, 2co)=, , g g g P
a k 1 I' I"

k&

Vg .g+p I k~ X(k+2q~~)(o')
(k&le " lklo ) (klo le " lk+q~~, l'o. )

Ek+ 2q I"o Ek
1

X &k+q, (,
l'o le

"' 'lk+
q(~, ,

l"o

+~[~~~ &+»~" kX k+2qll o )(klcrle " k+q

"+qii l'ol' " I"+
q~~i

l "o &]

X

~ +~+2~~~, ~" ~ +I +~~~,
I' ~(+~+9~~, I'o )

Ek+ 2 I Ek+ ~
Act) + i%(x Ek+ I Ekz %co + i'(x

qlI' qII'

Ek+2q (-~ —Ek(~ —2%co+ 2t Ao'
qII'

2 &«~+zq, I .) I"«~i. )—
(klole ' lk+2q~~, l"0 ) I

k, I, I" Ek+2
II'

I"cr Ekl~ —2%~+ 2iA'a

(24)

Here, P( ) denotes the sum of six permutations of first-
order terms (in spin-orbit coupling) with perturbed wave
functions (containing one extra energy denominator) and

Q[ ] means the sum of three terms (containing no extra
energy denominator) with one of the three dipole opera-
tors replaced by the spin-orbit operator (leaving the wave
functions unperturbed). All matrix elements have in

principle a z dependence defined by (22). This nonlinear
response function g' '(2q~~, 2') shows in a very obvious
manner the effects of frequency doubling, spin-orbit in-

teraction, exchange splitting, and the band structure it-
self. The tensor character is hidden in the r dependence
of the matrix elements. For a detailed discussion of the
group-theoretical aspects of the nonlinear surface
magneto-optical problem, we refer the reader to the re-
cent work of Pan, Wei, and Shen. Equation (24)
reduces to their result (23) if (1) the terms Q[ ] are

neglected, (2) nonlinear screening is neglected, and (3) the

qII dependence is neglected.
The main problem in the evaluation of (24) for nickel

results from the spin-polarized band structure and the
surface matrix elements. In this paper we treat the ma-
trix elements as constants neglecting intraband contribu-
tions which are exponentially small at energies larger
than 0.5 eV. It is

(k&le '~ lkz) =niq~~~ X 10 "m, n =1,2

where 10 " m is the extension of a hydrogenlike 3d
orbital of nickel (nuclear charge 28). We use the
semiempirical spin-polarized band structure of Weling
and Callaway which appears to describe photoemission
experiments quite well. Thus we use a weighted superpo-
sition (for the correct counting of the electronic states) of
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three spheres of the radii I"L„, E K, and I X, respectively,
to approximate the anisotropy of the first Brillouin zone
(truncated octahedron) corresponding to fcc nickel:

y"'(2qi, 2~) =ay'„" (2q~~, 2')
+&XL(2q~~~2~)+crrx(2q~~ 2~),

with a =1.220, b =1.000, and c=0.1064. These values
correspond to the best agreement of the linear magneto-
optical response function with magneto-optical Kerr
eff'ect (MOKE) data. yI-L), for instance, is the response
function which contains the sphere of radius I i.. The
main contributions to the magneto-optical yield should
come from the singularities in the joint density of states
which predominantly occur in the high-symmetry direc-
tions. The good reproduction of the linear Kerr spectra
clearly shows that our approximation contains all
relevant band-structure features (see Sec. III).

We take cia =0.35 X 10 ' J=0.218 eV for the quartz-
optical range (below E =5 eV) and Ra =0.7 X 10
J=0.437 eV otherwise. For the spin-orbit interaction we
use the value of 70 meV as calculated by Callaway's and
Freeman's groups. '

The nonlinear screening term in (24) is neglected in this
paper. Its effect could be estimated as follows: The
correction in the denominator of Eq. (24) is roughly of
the order of the linear response function y'"(2q, 2')
which is about unity for %~=0.5 eV and has decreased to
0.15 for Am=2 eV. So it becomes a minor correction for
not too small frequencies co. Furthermore, a detailed cal-
culation of the nonlinear screening term would be possi-
ble only on the basis of the knowledge of all the
transition-matrix elements, because of the tensor charac-
ter of this term:

[1—y" '(2qii, 2'�)] '
f 5;, —y';,"(2qii, 2') ]

In contrast to insulators, local-field eff'ects should be
negligible due to the extended character of the Bloch
wave functions in metallic nickel.

III. RESULTS AND DISCUSSION
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vertical scale indicates that the nonlinear susceptibility
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range where the electronic charge density falls off' from
its bulk value to zero (due to metallic screening).

Nevertheless, the nonlinear magneto-optical Kerr
eff'eet should be observable in experiment, as second-

Figure 1 shows the experimental results of Krinchik,
Yoshino, and Erskine [which are consistent with
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harmonic-generation experiments usually can cope with
even lower intensities such as in insulators like BaF2..
The lowest detectable value' for ~co y( '(2q1, 2')~ with
some MW/cm laser intensities is in the range from
5 X 10 to 5 X 10' s m/V. Even if the experiments
could not reach the theoretical effectiveness for the
frequency-doubling process and for the detection of the
2' photons, 'it would be possible to see the nonlinear
magneto-optical Kerr effect, as the nonlinear magneto-
optical (Kerr) susceptibility for nickel is larger than the
nonlinear optical susceptibility (for usual SHG) for insu-
lators like BaF2.

Therefore, this effect could become a new probe for the
analysis of the electronic (including relativistic), magnetic
(including magnetization anisotropy), and structural (by
varying polarization and incident angle) properties of
solid surfaces and surface states. Furthermore, one

might think about dynamical applications of this effect
(and surface second-harmonic generation in general) in
order to study adsorbate motion and chemical reactions
at surfaces. If one includes finite temperatures, the ex-
ploration of domain walls, surface magnons, and of the
critical behavior would be possible.

Concerning the linear MOKE, which comes out in a
natural way from our theory, we find good agreement be-
tween our results and the experiments. For a more de-
tailed comparison, see Erskine's original figure, where
the vertical axis is scaled as in Fig. 2. We are able to
reproduce the correct order of magnitude and the three
prominent peaks at 1.4, 3.5 (positive sign), and 4.5 eV
(negative sign) as well as approximately those at 6 (posi-
tive sign) and 7 eV (negative sign). They reAect the fact
that the imaginary part of the off-diagonal conductivity
0 zy is prop ort iona 1 to the joint density of states:

I(»le "'Ik+q, &'&I'
Pk, I;k+q, l'

4~ k( k+q 1' kl )
~ Ek+ (, Ek( Rco—=

(25)

This indicates that interband transitions are responsible
for the main features of the MOKE spectra. This good
reproduction of the linear Kerr effect gives us hope that
our nonlinear Kerr spectra are not too bad.

Of course, concerning the linear MOKE, the single-
particle band structure should in principle be refined by
many-body (self-energy) corrections. The exact structure
of —,', or, with spin-orbit coupling, —,', of the Brillouin zone
and the detailed form of the matrix elements should be
included. But even in the nonlinear case some improve-
ments over our first approximation are necessary and,
within the limits of computational time, possible. We are
presently investigating such improvements. Especially a

more detailed computation of the matrix elements (at the
surface) seems inevitable to us for establishing the non-
linear magneto-optical effect and the optical second-
harmonic generation in general as a new tool in surface
science.
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