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Green's functions for antiferromagnetic polaritons. I. Surface modes and resonances
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We calculate the classical electromagnetic Green's functions for antiferromagnetic polaritons on
a semi-infinite geometry. With damping present in the material, surface resonances are found that
exist in frequency and wavelength regions forbidden to surface-polariton modes. - These resonances
are identified as magnetic analogs of the evanescent arid Brewster modes found in plasmon-polariton
studies. These antiferromagnetic surface resonances have finite path lengths and large penetration
depths into the material which are very sensitive to material damping and externally applied fields.

I. INTRODUCTION

The coupling between electromagnetic waves and the
fundamental excitations in a material (plasmons, pho-
nons, etc. ) produces what is known as a polariton. Polar-
itons in dielectrics and metals have been extensively stud-
ied both theoretically and experimentally. Surface polari-
tons in dielectrics and metals, where the amplitude of the
excitation is confined to the region near the surface, have
also received a great deal of attention' and are now used
as a tool in studying the vibrational spectra of very thin
films.

In contrast, magnetic polaritons, coupled electromag-
netic waves and spin waves, and magnetic surface polari-
tons have received less attention. One reason for this is
that in ferromagnets the frequency of the magnetic polar-
iton is typically lower (I —20 GHz for metallic ferromag-
nets) than the frequency for a phonon-polariton. This
means wavelengths for ferromagnetic polaritons are gen-
erally much larger than for phonon-polaritons and it is
dif5cult to realistically obtain an effectively infinite or
semi-infinite sample size or to obtain information about
the region close to the surface.

Recently the properties of bulk and surface polaritons
on a semi-infinite uniaxial antiferromagnet were discussed
theoretically and measured by Remer et al. on MnF2 us-

ing reAectivity measurements. These excitations possess
several intriguing features. First, and in contrast to the
ferrornagnet, antiferromagnetic polaritons have frequen-
cies in the infrared with typical values ranging from 250
GHz to a few THz. The wavelengths (and penetration
depths) thus range from millimeters to a few hundred mi-
crometers. Second, and in contrast to phonon-polaritons,
antiferromagnetic surface polaritons are nonreciprocal,
i.e., co(+k)%co( —k). For nonreciprocal surface waves,
reversing the direction of propagation or reversing the
direction of an applied magnetic field generally leads to a
surface polariton of a different frequency. The degree of
nonreciprocity can be controlled by varying the strength
of the applied field and disappears when the applied field
is turned off.

To date, theoretical discussions of the properties of an-
tiferromagnetic polaritons have focused on dispersion re-
lations calculated from the electromagnetic wave equa-
tion for anisotropic magnetic media. Dispersion curves
describe the possible allowed modes of the magnetic sys-
tem, but do not describe how these modes may be excit-
ed. It is often useful, however, to know the response of
the magnetic system to some external probe —such as the
response of an antiferromagnet to an incident light wave.
Green's functions are a primary tool for dealing with
these types of questions.

The main objective of this paper is to calculate the
electromagnetic Green s functions for a semi-infinite anti-
ferromagnet. As usual, Green's functions can be used to
obtain a variety of information about the allowed modes
of a system. Dispersion relations, spectral densities, and
the effective lifetime or attenuation length can all be ob-
tained from the Green's functions. In addition, Green's
functions can be used in a variety of applications. Exam-
ples include the calculation of Raman and Brillouin
scattering spectra, nonlinear interactions of surface po-
laritons, and thermodynamic properties. ' ' In the fol-
lowing paper (hereafter referred to as paper II) we will
use these Green's functions to study the reAectivity from
an antiferromagnet with a slightly rough surface.

Our second major goal is to discuss the effects of damp-
ing on polariton modes in antiferromagnets. There are
several reasons for this. Damping often plays a critical
role in the interaction of external probes with polaritons.
For example, in the reAection experiment mentioned ear-
lier, damping is necessary for a coupling of the external
electromagnetic radiation to the surface polariton modes.
As we will see in this paper, damping not only has a
significant impact on the surface polariton modes dis-
cussed in earlier works, but the inclusion of damping also
leads to the existence of new "leaky" surface modes.

The leaky surface modes we find in this magnetic sys-
tem are analogous to the Brewster surface-polariton
modes found in dielectric materials. As is well known,
for a wave incident on a nonabsorbing dielectric and E
field polarized in the plane of incidence, there exists an
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angle of incidence for which there is no reAected wave.
Since the Brewster angle depends on the frequency cu, it
provides a relationship between co and k, the component
of the wave vector parallel to the surface. With damping
included, one can find a solution of Maxwell's equations
for a weakly bound surface wave which decays as it prop-
agates parallel to the surface. This surface mode has a
dispersion relation co as a function of Re(k„) which is
very similar to the relationship in the Brewster case and
is known as a Brewster mode. ' In our antiferromagnetic
system, we find a very equivalent result. Here a Brewster
angle occurs for a geometry where the magnetic field lies
in the plane of incidence. Again when damping is
present, a magnetic Brewster surface mode can exist with
a dispersion relation similar to that provided by the rela-
tionship of the magnetic Brewster's angle and the fre-
quency.

The paper begins with a study of the effects of damping
on the semi-infinite antiferromagnetic polariton curves
and discusses the properties of the magnetic Brewster
mode. Next we calculate the Green's functions appropri-
ate to a semi-infinite antiferromagnet. Due to the com-
plexity of the algebra, we restrict ourselves to incident
and scattered fields which are polarized with electric
fields parallel to the easy axis. Finally we study the mag-
netic Brewster mode through the behavior of the Green's
functions and show a correspondence between the peaks
of the Green's functions and the solutions to the damped
dispersion relations for frequencies near the antiferro-
magnetic resonance frequencies.

z, V

e, 0 0
e= 0 e, 0

0 0 ez

(2.1)

We will assume the dielectric susceptibilities are constant
over the frequency ranges we are interested in for this pa-
per, although it is a simple matter to substitute the ap-
propriate frequency dependent functions for e, and E2.
The magnetic. susceptibility tensor for a uniaxial antifer-
romagnet is

pi lp2 0

FIG. 1. Geometry for this paper. The material lies in the

y &0 half space with the easy axis along z. An applied field is
also set along the z axis. Propagation is in the +x directions
with the E field parallel to the z axis and H field in the xy plane.

II. SURFACE POLARITONS WITH DAMPING P — &P2 P& (2.2)

A more realistic description of surface polaritons is ob-
tained by including a damping mechanism in the equa-
tions of motion. In general, damping affects the degree of
localization of the wave to the surface and causes the
wave to lose energy as it propagates. Although damping
and its effects on surface polaritons has been studied for
plasmon polaritons and magnetoelastic polaritons on fer-
romagnets, antiferromagnetic surface polariton studies
have only considered the idealized case of zero damping.
In this section damping is included in the description,
and the resulting effects on the surface polariton's disper-
sion curve, path length, and penetration depth are exam-
ined.

In addition to modifying the properties of the "true"
antiferromagnetic surface polaritons, the inclusion of
damping shows the existence of new surface resonances,
or "leaky" surface modes. These are very different in
character from the modes found without damping. The
"true" surface modes and the leaky modes are investigat-
ed by numerically examining the surface-polariton disper-
sion relation for the material MnF2.

The geometry is shown in Fig. 1. The material is in the
y) 0 half-space with the surface at y =0. The antifer-
romagnet is uniaxial and the magnetizations of the two
sublattices lie along the +z axis. The applied field also
lies along z. The dielectric properties are determined by
the diagonal, though anisotropic, dielectric tensor:

0 0 1

The magnetic susceptibilities are frequency dependent
and are found, for the long wavelength limit, by solving
Bloch's equations of motion for the two sublattice system
of spins. ' The results can be written in the form

4ay MH,
p)=1

Q
(X+Y),

4my MH,
@2= (Y —X) .

(2.3)

(2.4)

Here M is the magnitude of the sublattice magnetiza-
tions, H, is the magnitude of the anisotropy field direct-
ing the spins along their respective sublattices, and 0 is
the antiferromagnetic resonance field given by

A =H, y (H, +2H, ), (2.5)

X = [(ci)/0+Hay IQ+i /fir) 1]—
Y = [(co/0 —

Hoy /0+i /0r) —1]

(2 6)

(2.7)

The applied field is Ho and ~ is a phenomenological spin
relaxation time. y is the gyromagnetic ratio. Outside the
material, where y & 0, the susceptibilities are uniform and

where H, is the exchange field. The quantities X and F
are defined as
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describe a vacuum:

E J 5 J

PlJ 1J

(2.8)

(2.9)

The wave equation for propagation in media described by
the susceptibilities (2.1) and (2.2) has the form

e„g' e —5k peBX BXk I ()~I

—cooPk H- =0 .

(2.10)

inside the material and

exp[i (k x cot)]exp—(Py)

outside the material. The fields inside and outside the
material are then matched according to Maxwell's
boundary conditions on tangential H and normal B. The
resulting implicit expression was derived by Camley and
Mills:

The prime on the sum means that m &j,k, l. Here and
throughout the rest of the paper, coo=co/c. Since the
dielectric tensor is diagonal in this problem, we set
~kk ~k

The dispersion relation for surface polaritons is ob-
tained by assuming plane-wave solutions of the form

exp[i(k x —cot)]exp( —ay)

vector and frequency solutions. The dispersion relation
can be satisfied, however, for real frequencies and com-
plex wave vectors. With complex a, P, and k„, these
solutions represent dissipative waves that have finite path
lengths.

To illustrate the properties of these dissipative waves,
Eq. (2.11) was solved numerically for MnF2 both with
and without damping. The relevant parameters are
H~ 550 kG~ Hg 7e 87 kG~ M Oe 6 kG~ and E'2 5 ~ 5 ~

The quantities plotted below are unitless with reduced
frequencies co/0 and reduced wave vector k„c/0 (the
component parallel to the surface).

In Fig. 2 the dispersion relations for bulk and surface
polaritons are reproduced for the case of Hp=O. The
shaded areas represent the bulk modes and the dashed
lines between the two bulk bands are surface modes for
the case of zero damping. Note that these surface modes
stop abruptly at the top of the lower bulk band where
k, =co/c. As the wavelength decreases, co/k goes to zero
and the surface polaritons asymptotically approach the
zero-field magnetostatic surface wave' frequency given
by

co, =y[H, (2H, +H, +4mM)]'i

In Fig. 2 the surface polariton solutions to (2.11) when
I/~r=0 0002 ar. e also included. These solutions are
plotted as functions of reduced frequency and the real
part of the reduced parallel wave vector. These dissipa-
tive waves lie very near the I/Or=0 surface polaritons in

&+(i ia+V2k. )/(i i
—V2) =0 (2.11)

k„ is the wave vector parallel to the surface, and decay in
the y direction is governed by a and P. These are given
by

1.015

k GAP &2
2 2 Pi P2

P&

1/2

(2.12)

I3 (k2 2)1/2 (2.13)

When there is no damping in the material, Eq. (2.12)
can be satisfied by appropriate choices of real frequencies
and real wave vectors. In this case both a and P are posi-
tive and real. These modes represent excitations that are
bound to the surface, with infinite lifetimes. Also, when
Hp=0 the modes are reciprocal in k. This means the
solutions obey co(k)=co( —k). In the presence of an ap-
plied field the modes are not reciprocal and the solutions
obey co(k)&co( —k).

Bulk modes, on the other hand, exist in frequency
ranges where a is pure imaginary. One sees from (2.12)
that these ranges exist for those ~,k„such that a (0. In
an infinite geometry, all values of a are allowed and so
the number of bulk modes is infinite in each bulk band.
Also, the bulk modes are reciprocal in k both with and
without an applied field.

When damping is present in the magnetic system
[through r in the susceptibilities of (2.3) and (2.4)], the
dispersion Eq. (2.11) no longer possesses pure real wave-

C'
1.005

1.000

(0
r

r
4

0 995 " i s i ~ . i i ~

-4 -3 -2 -1 0 1 2 3 4

ckJQ

FIG. 2. Dispersion curves for antiferromagnetic polaritons,
in MnFz, with no applied field. The shaded areas are bulk
bands and the dashed lines are the surface modes when there is
no damping present. The solid lines show how damping
modifies the surface mode frequencies. These solid lines are the
real parts of the complex solutions to the dispersion relation
(2.11),with damping 1/0~=0. 0002.
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the frequency region above the lower bulk band and
below the rnagnetostatic frequency. Outside this region,
new solutions appear and are represented by solid lines.

Above co, the dissipative waves exhibit a curious
"backbending" property where the group velocity
changes sign and the modes curve inward in k toward
the upper bulk band. This backbending effect is reminis-
cent of a similar behavior found for surface plasmon-
polaritons where the Fano ("true") surface modes bend
back with increasing frequency into what are sometimes
called evanescent modes. ' The evanescent modes are
tightly bound to the surface and the real and imaginary
parts of the wave-vector component normal to the sur-
face have roughly the same magnitude. It is interesting
to note that since the point of backbending occurs near
~„ the corresponding k„can be used to measure the
damping parameter. As the frequency increases above
co„ the real parts of P and a become small so that the
evanescent modes are less tightly bound to the surface.
Near the lower limit of the upper bulk band, the real
parts of P and a tend to zero and the evanescent modes
become ill-defined.

With damping present, the polariton mode continues
into the lower bulk band below the lower bulk band fre-
quency limit, as seen in Fig. 2. This is a region forbidden
to true surface polaritons. In this frequency region
modes can exist, with damping present, at an co and k
for which a wave incident on the material from vacuum
would be completely transmitted. We thus identify the
I/Or=0. 0002 mode as the magnetic analogue of the
Brewster mode found in dielectric materials.

Typically, one thinks of the Brewster angle as the angle
of incidence where there is no rejected wave from a sur-
face illuminated by a wave polarized with its electric Geld
in the plane of incidence. A similar angle occurs for a
wave incident on a magnetic material and polarized with

I
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0.0 0.2

ckxi'Q

0.4

its magnetic field in the plane of incidence. This angle (or
rather the corresponding component of the incident wave
vector, k„) can be found by setting to zero the amplitude
of the magnetic field of the refiected wave (see the appen-
dix of the companion paper for the appropriate Fresnel
relations). Doing so, one arrives at the magnetic Brew-
ster condition:

FIG. 3. Real part of the complex dispersion solutions com-
pared to the Brewster angle {in terms of k„rather than Oo). The
upper curves are for Ho=0 and the lower curves are for the
—k„branch of the surface-polariton dispersion with Ho=0. 3
kG. In the Ho=0 case, the curves are identical at higher fre-
quencies.

(2.14)

In Fig. 3 the co and k„ that satisfy Eq. (2.14) are plotted
along with the solutions to the dispersion relation (2.11)
for 1/Or=0. 0002. The real part of the complex wave-
vector solutions are plotted against the frequency both
with an applied field and without. When there is no ap-
plied field there is a very close correspondence between
the two curves. When HO=0. 3 kG, however, the two
curves begin to differ for frequencies well within the
lower bulk band.

Since Re(a) determines how tightly the surface wave is
bound to the surface and Im(k„) governs the attenuation
of the wave as it propagates parallel to the surface, it is
interesting to plot these quantities as functions of fre-
quency. In Fig. 4, ~lm(ck /Q)~ is shown as determined
from the dispersion (2.11), and the corresponding
Re(ca/0) for zero applied field and I/Or=0. 0002. The
solid line is ~lm(k„)~ and the dashed line is Re(a).
Iin(k ) becomes large only in the bulk band and near co, .
In the surface mode region, Im(k„) is small so the wave

has a long path length. Re(a) is very large for frequen-
cies below co, and above the bulk band, thus indicating a
strong localization to the surface. The localization is
strongest near the bulk band limit, co/II =1. In the bulk
band, however, Re(a) is sinall and so the mode in this re-
gion is weakly bound to the surface.

Damping allows the surface mode to lose energy into
the material. In Fig. 5, the +k„branch of the dispersion
curve plus the decay parameters Im(k„) and Re(a) are
plotted for 1/cow=0. 0008. The solid line is ~Im(k )

~
and

the dashed line is Re(a). Ho is still zero. With greater
damping the surface mode is not as tightly bound to the
surface as before and penetrates further into the material.
This increases the rate of energy loss into the material
and thus the surface mode has a shorter path length. In
this way damping allows the modes to "leak" energy into
the interior of the material.

In an applied field, the surface modes outside the bulk
bands are highly nonreciprocal. The resonances in the
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FIG. 4. Decay parameter ~lm(ck„/Q)~ and localization pa-
rameter Re(ca/Q) for the +k branch of the 1/0~=0. 0002
dispersion curve of Fig. 2. Only the magnitudes are shown.
The solid line is Im(k ) and the dashed line is Re(ca/0). Note
the strong localization to the surface just above co/0=1. The
localization is greatest in the surface mode region near the
lower bulk band frequency limit.

bulk bands are also nonreciprocal in applied field, al-
though the nonreciprocity disappears at frequencies
below the lower bulk band limit. This is seen in Fig. 6
where the real part of k is plotted against frequency for
Ho=0. 3 kG. The dashed lines are the 1/Qr=O modes
and the solid lines are the dissipative waves for
I/Q~=0. 0002. The I/Q~=O modes coincide with the
I/Qv =0.0002 modes except near the magnetostatic limit
frequency. Again there is a close correspondence be-
tween the 1/Qr=O modes and the modes with damping
in the surface mode region between the bulk band and the
magnetostatic limit.

With the applied field, there are two regions where the
real parts of y and a become very small and the leaky
modes become ill-defined. One region is above
co/Q=1. 0075, near the upper limit of the middle bulk
band. The leaky modes do not seem to exist for frequen-
cies above 1.0075. The second region occurs for the +k
branch near co/Q=0. 998. Here y becomes very small
and the Brewster mode is ill-defined for frequencies be-
tween 0.998 and the top of the lower bulk band.

In Fig. 7, frequency versus ~lm(k„)~ and Re(a) are
again shown, this time for the case of an applied field of
0.3 kG and I/Qr=0. 0002. The solid lines are ~lm(k )~

and the dashed lines are Re(a). Values for the —k
branch are shown in the top plot and values for the +k„
branch are shown in the lower plot. Although signs are
now shown, Im(k ) is negative for the —k branch so
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FIG. 5. Decay parameter ~im(ck„/Q)~ and localization pa-
rameter Re{ca/0) for the +k„branch of dispersion curves
with 1/Qv=0. 0008. The solid line is Im{k ) and the dashed
line is Re(ca/0). There is no applied field and only the magni-
tudes are shown. Here the increased damping decreases the lo-
calization of the modes to the surface at all frequencies.

FIG. 6. Dispersion curves for antiferromagnetic polaritons,
in MnF2, with an applied field of 0.3 kG. The shaded areas are
bulk bands and the dashed lines are the surface modes when
there is no damping present in the material. The solid lines
show how damping modifies the surface mode frequencies.
These solid lines are the real parts of the complex solutions to
the dispersion relation (3.1) with damping 1/0~=0. 0002. Note
that the modes with damping present are reciprocal at low fre-
quencies in the lower bulk band and become highly nonrecipro-
cal at higher frequencies.
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that the wave attenuates in the —x direction. Again
there is strong localization to the surface in regions below
co, and above the bulk band for both branches. Also note
the strong localization of the surface modes where they
begin near the light line (see Fig. 6) and the lack of locali-

th enter the upper bulk band. Both branches
lkare strongly bound to the surface near the lower bu

band limit and near co, . In between, however, the loca i-
zation decreases. In both the +k and —k branches,
the path length is large except in the lower bulk band and
above co, . The path length is also large above the midd e
bulk band.

The power flows in surface excitations with damping
present help clarify the nature of the leaky modes. Using
the results of Camley and Mills, it is a simple matter to
calculate the amplitudes of the electric and magnetic
fields of the surface polaritons inside and outside the ma-
teria1. From these one can calculate the Poynting*s vec-
tor inside and outside the material. The total power flow

llel to the surface in the material is found by in-
tegrating the material Poynting's vector over a rec gtan u-

the total power flow parallel to the surface in the vacuum
is found by integrating the vacuum Poynting's vector

1.015 .

1.010.

over a rectangular surface of width L, from y =0 to
00.

Defining power flows per unit length as U I. for the
power fiow in the material and U /l. , for the power
flow in the vacuum, one obtains the expressions

U = Re1 C E,k.
2Re(P) 4moo

(2.15)

and

a — k) 1 c 2 P2a IJi x
U = Re E,2Re(a) 4m.coo

'
p&a —p2k„

Here E, is the amplitude of the electric Geld of the polari-
tons at the surface.

The parallel power fiows U and U are plotted in
Fig. 8 for the frequency and complex wave-vector so u-
tions of (2.11) for —k„with no applied field and
1/0&=0. 0002. In the bulk band (co/0&1) the power
flows inside and outside the material are both in the
direction of propagation. At lower frequencies, most of
the energy is carried by fields in the material. Near the
bulk band limit, however, most of the energy is carried in
the fields outside the material, and at the antiferromag-
netic resonance frequency, ,. =1 aB of the elec-
tromagnetic energy is carried in the vacuum.

In the surface mode region above the bulk band and
below co„ the energy in the material flows opposite to t e
direction of propagation. This is typical of sur ace
plasmon an magnon po1 d on polaritons. Note that in the surface

1.005.
Re(co/0)

1.000.
' /

0.995
0 4

kx
in material

1.010

i.oos-t

(

1.000
Re(ca/Q)

~Im(ck„ia)[
V

co —4-
A

-6

0.995 '
0

(Im(ckz/Q) [

2 4

+kx

1/Qt = 0.0002

Im(ckx/Q) and Re(ca/0) —10
0.995 1.000 1.005

FIVE&. 7. Decay parameter ~lm(ck„/Q)~ and localization pa-

1/0~=0. 0002 dispersion curves of Fig. 6. Again, only the mag-
nitudes are shown. The solid lines are Im(k„) and the dashed
lines are Re(ca/Q). The decay parameters for the —k„branch
are shown in the upper plot and those of the +k branch in t e
lower plot. Note again the strong localization to the surface
just above the lowest bulk band limit.

FICx. 8. Parallel power flows U and U ofor the —k„
branch of 1/0~=0. 0002 modes in zero applied field. Note that
in the surface mode region between co, an thhe lower bulk band
limit (m/0=1) the energy Bow inside the material is opposite
the direction of propagation.
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dampings, energy Row in the material is opposite the
direction of propagation for frequencies near co, . Near
the bulk band, however, the energy How in the material is
in the direction of propagation. Furthermore, cornpar-
ison of the upper and lower plots shows that increasing
the damping decreases the frequency range for energy
Qow in the material that opposes the direction of propa-
gation.

The direction of energy How in the material is
governed by the sign and magnitude of the magnetic sus-
ceptibilities. A negative p& usually leads to energy Aows

opposite the direction of propagation. This occurs in the
surface mode region when there is no applied field. Also
with no applied field, p, is positive in the bulk band and
the energy Aow is in the direction of propagation. In an
applied field, however, the nonvanishing pz can lead to
positive energy Aows in the surface region and negative
energy Aows in the bulk, near the bulk band limits. This
is because near the limit frequencies 0+@Ho, a, p„and
pz are extremely sensitive to frequency. Consequently,
near 0 the direction of the power How is very sensitive to
the introduction of an applied field. In addition, damping
also plays an important role near the bulk band limits, as
seen by comparing the two plots of Fig. 9.

III. GREEN'S FUNCTIONS

FIG. 9. Parallel power fiows U' and U for the —k
branches of 1/0~=0. 0002 modes with a 0.3 kG applied field.
The upper plot is for the case of 1/0~=0. 0002 and the lower
plot is for the case 1/0~=0. 0005. Note that the direction of
power Aow inside the material is strongly influenced through
the nonzero p& term.

wave region, most of the energy is carried by the fields in
vacuum and so the net energy Aow is in the direction of
propagation except near the magnetostatic frequency. At
m, the electromagnetic energy carried by the fields in vac-
uurn is nearly equal to the energy carried in the opposite
direction by the fields in the material and the net energy
Aow is very small. Above co„ the energy Aow is in the
direction of propagation both in the material and outside.

The power Aows U and U are plotted in Fig. 9 for
the frequency and complex wave-vector solutions of
(2.11) with an applied field Ho =0.3 kG. The damping is
1/Or=0. 0002 in the upper plot and 0.0005 in the lower
plot. Here only the —k solutions are shown. For both

In this section the Green's functions appropriate to a
semi-infinite antiferromagnet are calculated. To simplify
the algebra, only Green's functions with the electric field
parallel to the easy axis are calculated explicitly. Finally,
the surface-polariton modes and leaky modes discussed in
Sec. II are shown also to be represented by the Green's
functions.

The driven magnetic wave equation for the propaga-
tion of electromagnetic waves in media described by the
susceptibilities (2.3) and (2.8) has the form

~kX em
~ ~ o&k Rem q ~oPkj. ~& Fk.
8 8 (j

(3.1)

Here F is the driving field. Note that both the magnetic
fields H and the driving fields F are assumed to have time
dependance e

The Green's functions satisfy the associated wave
equation given by

&kX ~m
XJ Xk

—&k X&
Bxl

—co~& g (x,x') =4m5k 5(x—x') . (3.2)

The solutions to (3.1) are then given by

HJ =g Jdx'gjk(x, x')Fk . (3.3)

The volume of integration is over all of space.
Equation (3.2) must be translationally invariant in both x and z. This invariance can be exploited through the use of

Fourier expansions:



GREEN'S FUNCTIONS FOR. . . . I. 603

and

%21

g k(x, x ) e gjk(k[~yyyy )—~ 4m

2

P(x —x')=P(y —y') f—a) 4~2

(3.4)

(3.5)

Here we have made the definitions kt~ =xk +xk, for the wave vector parallel to the plane t =0 and x~~
=xx +zz for the

position vector in that plane.
Applying these transformations to the Green s function equation (3.2), and writing the result in explicit matrix form,

D —k—2
1 ~oP2&i —k~D

E2

E)
l coPE')P2+ kx D —k +k2 2

x 1
E'2

—ik, D

ik,D —g = —4m l 5(y —y'),

D k2—
(3.6)

with the definitions

D B/By

k 2
—k COpE'2

2= 2 2

(3.7)

(3.g)

(3.9)

[ iP2gxm +Pigym ]y =0+ =
[gym ]y =O-

Similarly, continuity of tangential H results in

(3.10)

The electric and magnetic fields must satisfy the usual
homogeneous electromagnetic boundary conditions at the
surface y =0 (assuming that the sources of the driving
fields are not located at the surface y =0 so that the
boundary conditions are homogeneous). The condition
that the normal component of B be continuous across
y =0 is first applied. Using the H field given by Eq. (3.3)
to calculate 8, applying the boundary condition and
equating coefficients of Fk results in the condition

I

set up. In addition, the nonreciprocity is often a max-
imum in this geometry. The Voigt geometry uncouples
the K, field from the H and H fields, as can be seen by
examining the equation of motion matrix (3.6). This
greatly facilitates the separation and solution of the
differential equations of motion and the application of the
boundary conditions.

Note that in the special case of the electric field along
z, g has no z dependence and thus its Fourier expansion is
in one dimension only. Accordingly, the wave equation
(3.2) is transformed with the one-dimensional counter-
parts of the transforms (3.4) and (3.5).

Green's functions for sources outside of the material

The Green's functions differ depending on whether the
source point y' lies in the material or outside in vacuum.
Beginning with the case where y lies outside the materi-
al, the matrix equation for g becomes

] =0+ =[g ] =0-

[g ] =o+=[g ] =o—

(3.11)

(3.12)
D +~oe2iui i(cooe2P2 k, D) '—

—i (oioe2i22+ k D) i (k a)oe2Ii, , )— —
Finally, relating E to H via Maxwell s relations, continui-
ty of tangential E requires that

[1Dgzm + kzgym ]y =0+ 62[/Dgzm + kzgym ]y =0— (3.13)

[k gy +'Dgx ]y =0+ =&2[kxgy +'Dg ]y =0— (3 14)

Combining Eqs. (3.11) and (3.12) gives an equation identi-
cal to that which arises by requiring continuity of normal
0 across y =0, and thus provides no new information.

The complexity of the algebra makes an analytical
solution for the case of general propagation directions
difficult. The main features of interest, however, can be
had by considering the simples' case where the electric
field is constrained to lie along the z axis and the incident
electromagnetic wave propagates in the xy plane. This is
called the Voigt geometry and is a common experimental

(3.15)

gh C& —ay
lJ lJ (3.16)

where a represents the decay constant in the y direction
and is given by (2.12). Note that the positive root is
specified to insure'proper decay in the y direction. The
coefficients C," in (3.16) will be determined later through
the boundary conditions.

For fields outside the material, the appropriate Careen's
functions satisfy the inhomogeneous equations

for y )0 and y'(0 (source outside the material and ob-
servation point inside the material). In this polarization
there is no z component of the H field so g is now a 2 X2
matrix. The homogeneous set of Eqs. (3.15) have the
solutions
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D +co —ik D
g ( k„;y,y ') = 4—m I5(y —y ') (3.17)

fory &0 andy'(0.
The solutions to this set of equations will be a linear

combination of a particular solution, which solves the in-
homogeneous equation, and a solution to the associated
homogeneous equation. Thus,

(3.18)

where g,. is the homogeneous solution and g~ is the par-
ticular solution.

The particular solutions obey

Pl)——r'igx= e
COp

2~ik„
gz = — "sgn(y —y')e

Xy
COp

(3.25)

(3.26)

The homogeneous solutions to the equation set (3.17) are
given by

h C( Py
lJ IJ (3.27)

not, for example. We will see that in order to get the
maximum information from the Green's functions we will
have to slightly relax our boundary conditions.

The particular solutions to Eqs. (3.19) and (3.20) are

and

4 2
(D' —P')g„'„=—,&(y —y')

p

4mk„(D' P')g~—=—,D5(y —y') .
Cop

(3.19)

(3.20)

The next task is to derive and apply boundary condi-
tions to determine the coe@cients C; . First, the homo-
geneous equations of motion (3.15) are examined. These
provide a relationship between g x and g „valid as y ap-
proaches 0 from the positive side:

[i (cooe~~+ kxD)g~~ + ( k~ cooe~] )gy~']y —o+ =0 . (3.28)

and

e -any -y'f
(D a)—

2
=&(y —y') (3.21)

(D~ —a~)—'sgn(y —y')e lz —~'I —DQ(y y') (3 22)

Here p is the decay constant in the y direction outside the
material given by (2.13).

The solutions to Eqs. (3.19) and (3.20) must either van-
ish at + ~ or must represent outgoing waves in order to
be physical solutions. The solutions which vanish at ~
are given by

Similarly, the equations of motions in (3.17) provide a re-
lationship valid when y approaches 0 from the negative:

[ik Dg„„+(k,—coo)g „] o =0 . (3.29)

Together with the continuity condition on normal 8
from Eq. (3.10), these relations result in a boundary con-
dition on g „:
[(~omni k )Dg~~ ly =o—= [ P (p2kx+p &D)g ]y =o+ .

(3.30)

with the condition that Re(a) is positive.
Our Green's functions will thus contain terms of the

form exp( —
P~y

—y'~) and exp( —a~y —y'~). If one is
working in a region of the (co,k„) space where y and a
are purely real, there are no problems in choosing the
correct sign for p and a.

In contrast, if P and a are purely imaginary, then one
must choose the signs of P and a so that the Green's
functions represent outgoing waves. With the forms
above, one normally would expect the conditions 4mp

XX
COp

Py' —o,y
A —B (3.31)

(3.23)Im(P) (0,
Im(a) (0 (3 24) and fory' (0 andy (0,

The continuity condition of tangential H given in (3.11)
provides a second boundary condition on g

For y )0, the solution g is given by Eq. (3.16). For
y (0, g also includes the particular solution (3.25) in
addition to the homogeneous part (3.27). Application of
the boundary conditions (3.11) and (3.30) determine the
coe%cients C from the homogeneous parts of the solu-
tions and result in the following expressions for the solu-
tions in each region. For y' (0 and y )0,

to be correct. However, it is not irnrnediately obvious
that this is the correct choice since it is the group veloci-
ty, and not the phase velocity, which has physical mean-
ing. An explicit example of such considerations can be
found in Ref. 16.

Finally, we consider the case where a and p are com-
plex. Such a situation occurs, for example, when damp-
i.ng is present in both media. In principle, one might
want to specify both exponential decay and outgoing
waves for physical sense. However, one cannot generally
choose the sign on both the real and imaginary parts of a
and p independently. The sign of ~ determines whether
the imaginary and real parts of o, have the same sign or

The quantities A and B are defined as

—CO()E'~ ( kx

B =P(p, a —p, 2k„) .

(3.32)

(3.33)

(3.34)

The poles of the Green's functions occur when
=0. This condition can be shown to give the antiferro-
magnetic surface polariton dispersion relation derived by
Camley and Mills.

2nP A sgn(y —y')+B
p~ + '~ pl- —

gxx 2 A BCOp
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(3.35)

while fory' &0 andy &0,

The relationships between g«and g„x given in the
equations of motion (3.15) and (3.17) can be used to easily
determine g „ from Eqs. (3.31) and (3.32). The result for
y'&0 andy &0 is

2
4mip. ~oeWz ~kx p ~

600

4mik
gxy

COp

A py' —~y

A —B (3.40)

and the expression

Application of these conditions on the solutions given
by (3.16) for y &0 and the sum of (3.26) and (3.27) for
y &0 determine C . The resulting expression for g „ for
y'&Oandy &Ois

2m.ik
gyx

6)p

A sgn(y —y')+8 &i~+~ )e
A —B

—sgn(y —y'}e (3.36)

gxy
= A +sgn(y —y')8 &i~+~ )

CO0 A —B

—sgn(y —y')e (3.41)

The remaining Green's functions are found in much
the same manner. The particular solution for g ~ is given
by (3.26), , but boundary conditions are still required to
find C y and C for the homogeneous solutions given by
(3.16) and (3.27). Note that in this problem the source
terms do not lie at y'=0, so only the homogeneous coun-
terparts of the inhomogeneous equations belonging to
(3.17) are used to uncouple the boundary conditions for
g„. In particular, from (3.17) a relationship valid at
y =0—is obtained:

4 k co @~2—uk„
A —BCOp

(3.42)

For y' (0 and y &0 the inhomogeneous term from (3.17)
must be included:

is for y
' & 0 and y & 0.

Finally, the equations of motion in (3.15) and (3.17) are
used to determine g~ from the g of Eqs. (3.40) and
(3.41). The result for y

' (0 and y & 0 is

[Pg +ik Dg ] p =0.
The corresponding relation in (3.15) is:

(3.37)

[i (cope2ii, 2+ k„D)g„y+(cope~) —k )gyy]y =p+ =0 ~ (3.38)

gyy
= 2+kx A +sgn(y y )8 p(y+y )+ p~y y ~

A —8

+ 5(y —y') .4m

p2
(3.43)

As before, this is combined with the continuity equation
on normal B (3.10}to derive the boundary condition

[—P'() ~k. +) )D}g.,],=o+ =[(~oem') —k.'}Dg., ],=o- .

(3.39)

Again, the continuity of tangential H (3.11) provides a
second boundary condition.

The above Green's functions reduce to those of Mills and
Maradudin' in the nonmagnetic limit p& =1, p2=0, and
E') =6'2.

Green's functions for sources inside the material

When the source points are in the material (y' & 0), the
Green's functions satisfy inhomogeneous equations for
y & 0 (in the material) given by

D +copezp, , i (pipezp, 2 k„D)—
g«;y, y')=-

i (co(~)e~, +—k„D) —(k„'—p)pe2)u, )

4m@2
1&(y —y')

CEi
(3.44)

and homogeneous equations for y & 0 (outside the material) given by

D +cop —ik D

C00k D 2 k2 g(k .yy )=0 (3.45)

These equations can be uncoupled and solved for the homogeneous and particular solutions g;, just as in the case
where y & 0. Also, one can derive boundary conditions in the same manner as before that are identical to those of Eqs.
(3.30) and (3.31}. With the definition

C = —p[)M, asgn(y —y')+pzk ],

2m A
gxx

CXCO06')P )

this prescription results in the following Green's functions for y & 0 and y & 0:

A C —~[y+y'~ —~ly —y'I

A —B '

(3.46)

(3.47)

2+A
gxy

=
CXCO06)P i

e ' ~ ' —e ~ ~ ~

[cop)M2e2
—ak sgn(y —y')], (3.48)
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gyy
= 2ni[.cooIJzez —ak„sgn(y —y

'
) ]

CXCOQE'1p1 A2 6)QE~2 e ~ly —y'l

—ak sgn(y —y')e

A —C (y+y )e
A —B

4m.e2
e

—a(y+y')
y

E1
(3.49)

27Tl
gyX

CXQ)OE 1P 1

2
COPE~2 e ' + ' —e '~ ~ +ak sgn(y —y')e

A —B
C — (y +y ) (3 50)

A —B

For y &0 and y') 0,

4m AB 1 py y

CXCOQE' 1P 1

(3.51)

—4miB
gzy

=
~pe1P i

—4mBk

/3a~oeipi2

1
0 2 x(co e~ +ak )e@'e

(3.53)

(cooe~~+ ak„)e ~~e ~, (3.52)

care must be taken in choosing the appropriate signs on
the real parts of y and a in order to satisfy the exponen-
tial decay boundary condition at y =+~. When these
conditions are strictly obeyed, the surface-polariton peak
at oi/0= 1.002 exists but the peak at co/II =0.9989 does
not. The peak at co/0=0. 9989 was produced by choos-
ing the sign of a to represent a wave with a large radia-
tive part but with a small exponential increase as y goes
to + ~. The rate of increase depends on the damping.
The sign on y was still chosen for exponential decay for
y &0.—4~i ABk

gy
aPcooe i)M

1 e~ye
—ay

A —B (3.54)

Surface-polariton and leaky mode excitations

When the g;. are considered as functions of k for an co

fixed in the surface-polariton region, the g;~ have sharp
peaks at those k„ that satisfy the surface-polariton rela-
tion. To illustrate this, in Fig. 10 g„(evaluated at the
surface just inside the material) is plotted versus the unit-
less wave vector ck /0 for co/0 = 1.002 and co/0
=0.9989. For simplicity, there is no applied field and a
damping of 1/Or=0. 0002 so that the peaks have finite
width.

The 1.002 peak occurs at a k where a surface polari-
ton exists. In this plot, the signs of a and y were chosen
for exponential decay inside and outside the material. By
using an appropriate branch cut definition, this sign con-
vention can be represented symbolically through a com-
plex frequency as the limit of g„(co+i') as g goes to
zero from the positive side. The spectral density is pro-
portional to i Im[g; (co+—i')], so the negative peak in

Im[g ((o+iri)) insures a positive spectral density.
In contrast, the curve for co/0=0. 9989 cannot be un-

derstood as representing a spectral density. It represents
a different excitation in a frequency region forbidden to
surface polaritons. This excitation is unlike the "true"
surface polaritons in that it has a significantly large radia-
tive part in directions normal to the surface. Also,
Im(g „) is zero at the wave vector of the excitation and
has opposite signs on either side of the excitation's wave
vector. The peak, as shown in Fig. 10, occurs instead in
the real part of g

As discussed in the derivation of the Careen's functions,

0

C

-100

-200

-300
0

eo/Q=1. 002

200

~ I+K

C

100

OQ

m/Q= 0.9989

0
0

I

2 3

ckx/Q

FIG. 10. Poles of g „at co/0=1. 002 and co/Q=0. 9989 as
functions of ck /Q. There is no applied field and
1/co~=0. 0002. The e/0=1. 002 peak occurs at the +k„sur-
face polariton of Fig. 2. Note the existence of an excitation in
the m/A=0. 9989 curve that lies in a frequency region forbid-
den to surface polaritons.
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The dependence on "nonphysical" boundary condi-
tions at ~ is a characteristic of the leaky modes and has
received a great deal of attention in the literature. '

Leaky modes are not eigenmodes of the system, and their
existence is strongly dependent on the geometry of the
sample and the driving electromagnetic fields. Leaky
modes are typically represented as exponentially increas-
ing into the material, with the understanding that absorp-
tion by the material prevents unbounded growth. The
use of these Green's functions to show their existence is
only an approximation and is justified mainly by the fact
that leaky modes are observed in experiment and account
for significant losses from the radiation fields. '

An approximation that relaxes the boundary condi-
tions at ~ allows the Green's functions with damping to
show excitations at real frequencies and real wave vectors
that represent magnetic Brewster modes. A dispersion
relation can be obtained from the Green's functions in
the following way. Fix a value of co and plot g (k, co) as a
function of k„. The value of k for which there is a peak
and the initial value of m provide one point of a disper-
sion curve. By repeating the process for di6'erent co

values, one can trace out the entire dispersion curve.
Figure 11 presents the comparison between the Green's

function results and the results from Eq. (2.11) with zero
applied field. Here I/Or=0. 0001, and only the region
near the resonance inside the bulk band is examined. The
two curves represent the results from (2.11) for co versus

Re(k ) and the Green's function results for co versus k .
The Green's function and the Re(k ) curves are in
reasonable agreement at smaller frequencies and they ap-
proach one another as the frequency increases. The be-
havior of the imaginary part of the k as a function of
frequency explains this. Im(k ) is large at the lower fre-
quencies, while at higher frequencies Im(k ) is much
smaller. Since the peaks in the Green's function occur at
real wave vectors, good agreement with the dispersion re-
lation results when k is not expected to have a large
imaginary part.

We emphasize that even without the boundary condi-
tion approximation for leaky waves, the Green's func-
tions and the dispersion curves obtained by solving (2.11)
are fundamentally diff'erent things. Equation (2.11) de-
scribes possible excitations that may exist on the materi-
al, and the Green's functions describe the propagation of
waves, originating from some source, through the materi-
al. In the dispersion description, the wave attenuates ac-
cording to the imaginary part of the wave-vector solu-
tion. The response function, in contrast, has peaks at real
frequencies and wave-vectors, and it is the width of the
peaks that can be related to the attenuation of the wave.
In paper II, we will use the Green's functions calculated
here to discuss the scattering of electromagnetic waves
from an antiferromagnet with rough surfaces.

IV. SUMMARY

1.000
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A study of the antiferromagnetic surface-polariton
dispersion curves revealed that with damping present in
the material, there exist surface resonances in frequency
regions forbidden to "true" antiferromagnetic surface po-
laritons. These surface resonances are the magnetic ana-

log of the Brewster and evanescent modes found in
plasmon-polariton studies. They have finite path lengths
and can be highly dissipative with large penetration
depths into the material. Like the surface-polariton
modes, the surface waves with damping present are re-
ciprocal when there is no applied field. In an applied
field, they are nearly reciprocal at low frequencies within
the lowest bulk band and become nonreciprocal at higher
frequencies. The direction of the energy Aow of leaky
modes inside the material is extremely sensitive to damp-
ing and applied fields near the antiferromagnetic reso-
nance frequencies.

The Green s functions for a semi-infinite antiferromag-
net were calculated and used to approximate the
material's response to a leaky mode. In the Green's func-
tion representation, the leaky modes are found to have
characteristics consistent with previous studies: Largely
radiative in character, the leaky modes have an ampli-
tude that increases slowly with distance away from the
surface into the material, representing energy "leaking"
away from the surface into the bulk.

FIG. 11. The surface resonance poles of g as functions of
real co and real k, with damping 1/ms=0. 0001. There is no ap-
plied field. Also plotted is the dispersion curve of the surface
resonance obtained by solving the damped dispersion relation
(2.11) with real frequency and complex k . The g„poles ap-
proach the dispersion curve at higher frequencies where
Im(ck„ /0) becomes small.

ACKNOWLEDGMENTS

The work of R.L.S. was supported by the Air Force
OSce of Scientific Research, Boiling Air Force Base,
Washington D.C. The work of R.E.C. was supported by
the Army Research Office under Contract No.
DAAL03-88-88-K-0061.



608 R. L. STAMPS AND R. E. CAMLEY

~See the book, Electromagnetic Surface Modes, edited by A. D.
Boardman (Wiley, New York, 1982).

~G. N. Zhihin, M. A. Moskalova, A. A. Sigarev, and V. A.
Yakovelev, Opt. Commun. 43, 32 (1982).

See the review article by E. F. Sarmento and D. R. Tilley in

Ref. 1.
4A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R.

F. Wallis, J. Phys. C 6, 1266 (1973).
~L. Remer, B. Luthi, H. Sauer, R. Beick, and R. E. Camley,

Phys. Rev. Lett. 56, 2752 (1986). There is some earlier work
on bulk polaritons in antiferromagnets —see, for example, R.
W. Sanders, R. M. Belanger, M. Motokawa, and V. Jaccari-
no, Phys. Rev. B 23, 1190 (1981).

A review of nonreciprocal surface waves is given by R. E.
Camley, Surf. Sci. Rep. 7, 103 (1987).

7R. E. Camley and D. L. Mills, Phys. Rev. B 26, 1280 (1982); C.
Shu and A. Caille, Solid State Commun. 42, 233 (1982).

8M. G. Cottatn and A. A. Maradndin, in Surface Excitations,
edited by V. M. Agranovich and R. Louden (Elsevier Science,

New York, 1984},p. 1-194.
D. L. Mills, Phys. Rev. B 12, 4036 (1975).

' A. A. Maradudin and D. L. Mills, Phys. Rev. B j.1, 1892
(1975).

~ A. A. Maradudin and W. Zierau, Phys. Rev. B 14, 484 (1976).
A. A. Maradudin and R. F. Wallis, J. Raman Spectrosc. 10, 85

(1981).
'3P. Halevi, in Electric Surface Modes, edited by A. D. Board-

man (Wiley, New York, 1982), p. 249.
' D. L. Mills and E. Burstein, Rep. Prog. Phys. 37, 817 (1974).
~R. E. Camley, Phys. Rev. Lett. 45, 283 (1980).

' N. Raj, R. E. Camley, and D. R. Tilley, J. Phys. C 20, 5208
(1987).

Cz. I. Stegeman, J. J. Burke, and D. G. Hall, Opt. Lett. 8, 383
(1983).
C. W. Hsue and T. Tamir, J. Opt. Soc. Am. A1, 923 (1984}.

9T. Tamir and A. A. Oliner, Proc. Inst. Electr. Eng. 110, 310
(1963).


