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Scanning tunneling microscope as a probe of the local transport field
in mesoscopic systems
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A theoretical analysis of the local electric field associated with dc conduction in mesoscopic sys-
tems is presented, and the possibility of probing this field with the scanning tunneling microscope
(STM} as in the measurements of Kirtley et al. is theoretically investigated. The theory is based on
a Landauer-type analysis in which a given distribution of electrons is incident upon a disordered
mesoscopic system. Results are presented for a thin film containing grain boundaries within the jel-
lium model. In the case of an ultrathin film with only one occupied transverse subband and in the
case of a random distribution of parallel grain boundaries modeled as semiclassical barriers, the
voltage drop measured by the STM (5V»~) does equal the voltage drop in the local transport field
(5V„»}across a grain boundary. In the more general case, 5V»~ does not equal 5VL», but they
are of the same order of magnitude. It is also found that 5 Vs&~ exhibits larger quantum-size effects
than 5 VLyF.

When an electron current passes through a conductor
that contains defects, a local electric field is set up in the
vicinity of each of the defects. As shown by Landauer, '

the origin of this local transport field (LTF) is the charge
pileup of carriers incident upon and scattered by the de-
fect. For a macroscopic system, the total LTF for all the
defects results in a macroscopic voltage drop along the
sample, and this is the voltage associated with the residu-
al resistivity due to the defects. ' Clearly, a complete
description of electron transport in macrosopic or meso-
scopic systems requires a correct picture of the LTF. In
this regard, a direct experimental measurement of the
LTF in the immediate vicinity of an individual defect
would be of fundamental value.

Recently, efforts have been made to measure the LTF
across a grain boundary in a current-carrying conductor
by means of the scanning tunneling microscope
(STM). In these experiments, the STM tip is held at a
fixed distance above the sample surface as the tip is
scanned over the sample. The local potential in the sam-
ple is then identified with the bias potential between the
STM tip and the sample under the condition of zero tun-
neling current. The experimentally determined STM
voltage appears to show a local potential drop in the im-
mediate vicinity of a grain boundary, just as might be
qualitatively expected for the LTF on the basis of
Landauer's picture. ' The obvious question arises: Does
the STM really measure the LTF? We address this ques-
tion in the present paper.

Although it may seem natural to associate the LTF
with the measured STM voltage, one can argue that they
can indeed be very different. After all, the LTF is essen-
tially proportional to the local pileup of electron density
associated with the electron scattering states, ' ' ' while
the STM does not directly measure this electron pileup.
Rather, the STM is most sensitive to those electron wave
functions that extend farthest outside the surface, and
these electron states are not necessarily representative of

the total set of electron states involved in the LTF. Thus,
we do not expect the STM voltage to measure the LTF.
Our detailed analysis for the grain-boundary problem
corroborates this view, but we do find two important
cases where the STM does measure the LTF. We also
find that the STM voltage is often not very different from
the LTF for the models investigated here.

We consider a grain boundary in a thin metal Alm. For
a given incident electron distribution, the drop in the
LTF across the grain boundary is to be compared with
the drop in the measured STM voltage across the grain
boundary. The incident electron distribution is taken to
be of a general form, with a reservoir-type distribution in-
cluded as a special case. The problem is a three-probe
configuration and the analysis is similar to that of
Buttiker' except that the third probe is a STM tip,
effectively probing only one point on the film surface at
one time. The metallic thin film is taken to confine an
electron gas by finite potential barriers. The confining
potential U, (z) is given by

U, (z)= '

where S'is the width of the film. The unperturbed elec-
tron states P„z in the film have the form

where A is the. area of the film, k=(k„,k ), and p=(x, y).
Here n is the subband index and P„(z) satisfies the equa-
tion

8 + U, (z) P„(z)=E„p„(z),
2m Bz
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0, x&0 or x)A
U~= '

fEF~, 0&x &b, (3)

where m* is the effective mass. The energy of the state
g„k is E„k=E„+Pik /2m ". Since we are interested only
in the scattering of electrons at the Fermi level E~, the
magnitude of the wave vector k for an occupied subband
(n) becomes kF„. A grain boundary lies parallel to y
direction in the film and its potential Uz is modeled as

Now we bring in the STM tip to probe the left-hand re-
gion of the grain boundary (see Fig. 1). We assume that
the STM tip is only weakly coupled to the electrons in
the film so that there is no coherent scattering of the elec-
tron between the tip and the film. We also neglect the
Friedel osciHations arising from the coherence between
the incident electron states and their rejected waves from
the grain boundary. ' For a state 1(j„k incident from the
left-hand side of the grain boundary (k„)0), the charge
current tunneling into state v in the STM tip is

where 6 is the width of the grain boundary, and the bar-
rier height is expressed in units of E~~, the bulk Fermi
energy for a given electron density, with f a dimension-
less parameter. In modeling the grain boundary as a po-
tential barrier within the jellium model, we are of course
neglecting the details of the lattice structure and the lat-
tice mismatch at the grain boundary. Nonetheless, the
model has been shown to be useful, "if only very approxi-
mate. In writing Eq. (3), we have neglected the z depen-
dence of U~ and this effectively eliminates interchannel
scattering. This schould be a good approximation for
strong confining potentials, as is the case for metal films.

In the following analysis, we consider the case where
the electron transport current is perpendicular to the
grain boundary. We describe the incident electron distri-
bution by the channel-dependent quantities p, L and pz,
where a is the channel index defined by a= (n, k~). T—he
incident electron states in a given channel o. on the left-
hand side of the grain boundary (the negative-x region)
are taken to be occupied up to an energy pL, while the
incident electron states on the right-hand side of the
grain boundary are taken to be occupied up to an energy
pz . Since we shaH assume the linear-response regime
throughout, the quantities pL and p~ differ only slight-
ly from the chemical potential p for the equilibrium sys-
tem, i.e., for the system in the absence of current Aow.

~, (n~;v) = [I+R(k„)]lM(nk;v)l'&(E„„—E, )

(k. & 0), (4)

where e is the electron charge, R (k ) is the reliection
probability from the grain boundary, and M(nk;v) is the
tunneling matrix element. For our model potential, the
reAection probability R (k„) is given by

fkzs sinh(K b, )
R(k„)= (5)

2iKk, cosh(K b, ) + ( k —K )sinh(E b, )

where K=(fk~~ —k )', k~s is the bulk Fermi wave
vector, and the convention ( —I)'~ =+1 is implied
throughout. For a state g„z incident from the right-hand
side of the grain boundary (k &0), the current tunneling
into state v in the STM tip is given by

I,(nk;v)= T(k )lM(nk;v)l &(E„k—E )

(k & 0), (6)

where T(k, ) =1—R(k, ) is the transmission probability.
By symmetry, both R (k, ) and T(k„) are even functions
ofk .

The tunneling matrix element is of the form

IM(nk; v) i'= C, l@„(z,)I',

W

FICi. 1. A schematic diagram of STM measurements in the
vicinity of a grain boundary in a metallic film. The transport in
the film is set up by an incident electron distribution pL and

p& on each side of the grain boundary. The STM tip is placed
at location A and then location B. The film thickness is 8'and
the thickness of the grain boundary is A.

where Co is a constant dependent only on the tip's prop-
erties and zo is the z component of the position of the
STM tip's center of curvature. Expression (7) was de-
rived by Tersoff and Hamann in the spherical-tip ap-
proximation in which the wave functions for electrons in
the tip are approximated by their s-wave component. We
point out that zo is outside the film, and so P„(zo) is the
exponential tail of the wave function of subband n in the
STM tip region. Thus each occupied subband will con-
tribute differently to the tunneling current, and, in fact,
the higher occupied subband, having a longer exponential
tail in wave function outside the film, will contribute
more.

We now calculate the tunneling current using the gen-
eral approach of Buttiker. ' lf p& is the chemical poten-
tial in the STM tip, the total tunneling current Iz into
the STM tip is then given by
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I„=g g I, (n k; v)5(E„„p—)(pL p—g )

akx
(k, &0)

rf I (nk v)5(+ k I )(PA I R
v ak

(k„&0)

(8)

The first germ in Eq. (8) corresponds to the net tunneling
current into the STM tip due to excess electrons incident
from the left-hand side of the tip. The second term corre-
sponds to the net tunneling current out of the STM tip
due to deficit electrons from the right-hand side of the
barrier.

By setting I~ =0, we can determine the measured p~
from Eq. (8). The result is

—g~P„(z o)~ f dO[R(k~„cos6)(p —p, )+p +p ]
0

gl(t„(z. )
'

where k =kF„sinO. The STM tip is now moved to the right-hand side of the grain boundary. The new chemical poten-
tial in the STM tip is denoted by p~. Following the procedure used in obtaining Eq. (8), we can obtain an expression for
the total tunneling current Iz into the STM tip at its new position. Again we set I& =0, and we obtain an expression for

p~ like the right-hand side of Eq. (9) except that L and R are interchanged. It follows that the potential drop (from left
to right ) across the grain boundary as measured by the STM tip is

y y„(z, )~'f d8R(kF„cos8)(p, p, )—
Pw Pa 2 n

pig„(z, )l'

In the following, we derive the local transport field drop
across a grain boundary in terms of pL and pz . The
approach closely follows that described by Biittiker et
al. ' The incident electron distribution, defined by pl
and pz, is scattered by the grain boundary and as a re-

sult the chemical potential of the electrons becomes

p„(p~ ) on the left- (right-) hand side of the grain bound-

ary. The chemical potential p„(p~) is determined such
that the total number of scattered electrons in a given
spatial region is equal to the total number of states with
energies between p~(p~) and the equilibrium chemical
potential p in the same spatial region. ' It is simpler to
express this condition by reckoning the excess number of
electrons with respect to pz rather than p. According-
ly, on the left-hand side of the grain boundary we have

Pw Pa
LTF

g f d 0 R (kF„cos8)(pl —p~ )
2 n (13)

where X is the total number of occupied subbands, and
the integral over 9 arises from the generalized sum (in-

tegration) over k . (We have also made use of the even

symmetry with respect to k . ) The potential drop 5V„T„
occurs over distances on the order of a screening length
from the grain boundary. ' (The same is true of 5VsTM
for our grain-boundary model. )

By comparing Eqs. (10) and (13), we see that 5VsTM
and 6VLT„are not equal in general. Higher occupied
subbands carry greater weight in 5VsTM through the
weighting factor ~P„(zo)~, as we have mentioned earlier.
However, there are exceptions. The obvious one is the
ultrathin-film case when there is only one occupied sub-
band and consequently 5VsTM does indeed equal 5VLTF.
There is another case where 6 VsTM equals 6 VLTF, and
this will be discussed later.

The analysis thus far has not specified the form of pL
and p~ . In the following we consider three different sit-
uations and use the corresponding form of pL and pz
to calculate 5VsTM and 5VLTF. In the first situation pL
and pz are independent of the channel index a. All the
incident channels on the left-hand side of the grain
boundary now have the same chemical potential, and
similarly for the right-hand side of the grain boundary.
This situation corresponds to the reservoir case in which
the grain boundary is connected through perfect film con-
ductors to two incoherent reservoirs, one on each side of

[1+R(k )](I L,~ I R~)=g (Pa Pz~)~
1 2

a aX a ax

where k, the effective Fermi wave vector along the x
direction for channel a, equals (kF„—kz )' . The factors
1/k in the summations come from the density of states.
Similarly, on the right-hand side of the grain boundary
we have

The local transport field drop across the grain boundary
is then found to be

1 2
X„T(k..)(Vi.—V~. ) =X k (I a S~.) . —

ax ax
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5vsTM and 5VLTF are of the same order of magnitude is a
rather surprising result which allows the STM to probe
the LTF, at least qualitatively. We have also found that
in the reservoir case and the background-~ case 5VsTM
exhibits larger quantum size effects than 5VLTF, and this

suggests that the STM can be an effective probe of quan-
tum size effects.
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