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A theoretical analysis of the local electric field associated with dc conduction in mesoscopic sys-
tems is presented, and the possibility of probing this field with the scanning tunneling microscope
(STM) as in the measurements of Kirtley et al. is theoretically investigated. The theory is based on
a Landauer-type analysis in which a given distribution of electrons is incident upon a disordered
mesoscopic system. Results are presented for a thin film containing grain boundaries within the jel-
lium model. In the case of an ultrathin film with only one occupied transverse subband and in the
case of a random distribution of parallel grain boundaries modeled as semiclassical barriers, the
voltage drop measured by the STM (8 Vsry) does equal the voltage drop in the local transport field
(8¥L1F) across a grain boundary. In the more general case, 8 Vsry does not equal 8V f, but they
are of the same order of magnitude. It is also found that 8 Vs exhibits larger quantum-size effects

than 8V rg.

When an electron current passes through a conductor
that contains defects, a local electric field is set up in the
vicinity of each of the defects. As shown by Landauer,!
the origin of this local transport field (LTF) is the charge
pileup of carriers incident upon and scattered by the de-
fect. For a macroscopic system, the total LTF for all the
defects results in a macroscopic voltage drop along the
sample, and this is the voltage associated with the residu-
al resistivity due to the defects."? Clearly, a complete
description of electron transport in macrosopic or meso-
scopic systems requires a correct picture of the LTF. In
this regard, a direct experimental measurement of the
LTF in the immediate vicinity of an individual defect
would be of fundamental value.

Recently, efforts have been made to measure the LTF
across a grain boundary in a current-carrying conductor
by means of the scanning tunneling microscope
(STM).>~% In these experiments, the STM tip is held at a
fixed distance above the sample surface as the tip is
scanned over the sample. The local potential in the sam-
ple is then identified with the bias potential between the
STM tip and the sample under the condition of zero tun-
neling current. The experimentally determined STM
voltage appears to show a local potential drop in the im-
mediate vicinity of a grain boundary,* just as might be
qualitatively expected for the LTF on the basis of
Landauer’s picture."® The obvious question arises: Does
the STM really measure the LTF? We address this ques-
tion in the present paper.

Although it may seem natural to associate the LTF
with the measured STM voltage, one can argue that they
can indeed be very different. After all, the LTF is essen-
tially proportional to the local pileup of electron density
associated with the electron scattering states,’*7® while
the STM does not directly measure this electron pileup.
Rather, the STM is most sensitive to those electron wave
functions that extend farthest outside the surface,” and
these electron states are not necessarily representative of
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the total set of electron states involved in the LTF. Thus,
we do not expect the STM voltage to measure the LTF.
Our detailed analysis for the grain-boundary problem
corroborates this view, but we do find two important
cases where the STM does measure the LTF. We also
find that the STM voltage is often not very different from
the LTF for the models investigated here.

‘We consider a grain boundary in a thin metal film. For
a given incident electron distribution, the drop in the
LTF across the grain boundary is to be compared with
the drop in the measured STM voltage across the grain
boundary. The incident electron distribution is taken to
be of a general form, with a reservoir-type distribution in-
cluded as a special case. The problem is a three-probe
configuration and the analysis is similar to that of
Biittiker'® except that the third probe is a STM tip,
effectively probing only one point on the film surface at
one time. The metallic thin film is taken to confine an
electron gas by finite potential barriers. The confining
potential U,(z) is given by

0 :’Z<Z<K
U.(z) S22 g (1)
z:
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where W is the width of the film. The unperturbed elec-
tron states /2, in the film have the form

Poulr)=—=2¢,(2) , 2)

where A is the area of the film, k=(k,,k,), and p=(x,y).
Here n is the subband index and ¢,(z) satisfies the equa-
tion

7 _
— S s UM [$,(=E,,(2)

5950 © 1989 The American Physical Society



40 SCANNING TUNNELING MICROSCOPE AS A PROBE OF THE . . ..

where m* is the effective mass. The energy of the state
Y2 is E, =E, +#k?/2m*. Since we are interested only
in the scattering of electrons at the Fermi level E, the
magnitude of the wave vector k for an occupied subband
(n) becomes kp,. A grain boundary lies parallel to y
direction in the film and its potential Uy is modeled as

0, x<0orx>A

Us=\fE;5, O<x<A ° (3)

where A is the width of the grain boundary, and the bar-
rier height is expressed in units of Epp, the bulk Fermi
energy for a given electron density, with f a dimension-
less parameter. In modeling the grain boundary as a po-
tential barrier within the jellium model, we are of course
neglecting the details of the lattice structure and the lat-
tice mismatch at the grain boundary. Nonetheless, the
model has been shown to be useful,!! if only very approxi-
mate. In writing Eq. (3), we have neglected the z depen-
dence of Uy and this effectively eliminates interchannel
scattering. This schould be a good approximation for
strong confining potentials, as is the case for metal films.
In the following analysis, we consider the case where
the electron transport current is perpendicular to the
grain boundary. We describe the incident electron distri-
bution by the channel-dependent quantities p;, and pg,,
where a is the channel index defined by a=(n,k,). The
incident electron states in a given channel a on the left-
hand side of the grain boundary (the negative-x region)
are taken to be occupied up to an energy p;,, while the
incident electron states on the right-hand side of the
grain boundary are taken to be occupied up to an energy
URre Since we shall assume the linear-response regime
throughout, the quantities p; , and pp,, differ only slight-
ly from the chemical potential u for the equilibrium sys-
tem, i.e., for the system in the absence of current flow.
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FIG. 1. A schematic diagram of STM measurements in the
vicinity of a grain boundary in a metallic film. The transport in
the film is set up by an incident electron distribution u;, and
Ur, on each side of the grain boundary. The STM tip is placed
at location A4 and then location B. The film thickness is W and
the thickness of the grain boundary is A.
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Now we bring in the STM tip to probe the left-hand re-
gion of the grain boundary (see Fig. 1). We assume that
the STM tip is only weakly coupled to the electrons in
the film so that there is no coherent scattering of the elec-
tron between the tip and the film. We also neglect the
Friedel oscillations arising from the coherence between
the incident electron states and their reflected waves from
the grain boundary.'> For a state 99, incident from the
left-hand side of the grain boundary (k, >0), the charge
current tunneling into state v in the STM tip is

1(nksv) = 2ZE[14 R ()1 M(nk; ) BBy~ E,)

(ky>0), (4

where e is the electron charge, R (k,) is the reflection
probability from the grain boundary, and M(nk;v) is the
tunneling matrix element. For our model potential, the
reflection probability R (k, ) is given by

SfkEgsinh(KA)
2iKk,cosh(K A)+(k}—K?)sinh(KA)

R(k,)= (5)

where K =(fk2p —k2)'?, kpp is the bulk Fermi wave
vector, and the convention (—1)?=+1 is implied
throughout. For a state 2, incident from the right-hand
side of the grain boundary (k, <0), the current tunneling
into state v in the STM tip is given by

I,(nk;v)=%QT(kx)|M(nk;V)|25(Enk*Ev)

(k,<0), (6)

where T'(k,)=1—R(k,) is the transmission probability.
By symmetry, both R (k, ) and T (k, ) are even functions
of k.

The tunneling matrix element is of the form®

IM(nk;v)|>=Cyld,(z0)?, @

where C, is a constant dependent only on the tip’s prop-
erties and z, is the z component of the position of the
STM tip’s center of curvature. Expression (7) was de-
rived by Tersoff and Hamann® in the spherical-tip ap-
proximation in which the wave functions for electrons in
the tip are approximated by their s-wave component. We
point out that z, is outside the film, and so ¢,(z,) is the -
exponential tail of the wave function of subband # in the
STM tip region. Thus each occupied subband will con-
tribute differently to the tunneling current, and, in fact,
the higher occupied subband, having a longer exponential
tail in wave function outside the film, will contribute
more.

We now calculate the tunneling current using the gen-
eral approach of Biittiker.!® If u , is the chemical poten-
tial in the STM tip, the total tunneling current I, into
the STM tip is then given by
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I,=3 3 Lnkv)O(E,  —u)pp,—y) The first term in Eq. (8) corresponds to the net tunneling
v ak, current into the STM tip due to excess electrons incident

(k,>0) from the left-hand side of the tip. The second term corre-
sponds to the net tunneling current out of the STM tip
due to deficit electrons from the right-hand side of the

=3 3 L(nk;v)S(E,, —u)p 4 —try) - (8)  barrier.

v (kakzo) By setting I , =0, we can determine the measured u 4

from Eq. (8). The result is
J

1 T/
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where k, =kp,sinf. The STM tip is now moved to the right-hand side of the grain boundary. The new chemical poten-
tial in the STM tip is denoted by uz. Following the procedure used in obtaining Eq. (8), we can obtain an expression for
the total tunneling current I into the STM tip at its new position. Again we set Iz =0, and we obtain an expression for
g like the right-hand side of Eq. (9) except that L and R are interchanged. It follows that the potential drop (from left

to right ) across the grain boundary as measured by the STM tip is

Ha—HUp

2|¢n(zo)lzfowdeR(k,.-,,cos@)(,uLa‘"uRa)

SVSTM: B :—ﬂ; 2|¢n(20)|2

n

In the following, we derive the local transport field drop
across a grain boundary in terms of u;, and pg,. The
approach closely follows that described by Biittiker et
al.’® The incident electron distribution, defined by u;,
and pg,, is scattered by the grain boundary and as a re-
sult the chemical potential of the electrons becomes
u 4(pg) on the left- (right-) hand side of the grain bound-
ary. The chemical potential p 4(up) is determined such
that the total number of scattered electrons in a given
spatial region is equal to the total number of states with
energies between u 4(up) and the equilibrium chemical
potential p in the same spatial region.!3 It is simpler to
express this condition by reckoning the excess number of
electrons with respect to ug, rather than p. According-
ly, on the left-hand side of the grain boundary we have

1 2
S Rk ue—pra) =27 (4 ~Hra):

(11)

where k,,, the effective Fermi wave vector along the x
direction for channel a, equals (k#, —k2)'/?. The factors
1/k,, in the summations come from the density of states.
Similarly, on the right-hand side of the grain boundary
we have

1 2
Ek T(kax)(nu’La_:u’Ra)zzk——(:u‘B “HRa) -

(12)

The local transport field drop across the grain boundary
is then found to be

(10)

f

Ha—HMp
e

zfo””deR(ancose))(pLa—pRa)
2 n

e N ’ (13
where N is the total number of occupied subbands, and
the integral over 6 arises from the generalized sum (in-
tegration) over k,. (We have also made use of the even
symmetry with respect to k,.) The potential drop 8V g
occurs over distances on the order of a screening length
from the grain boundary.! (The same is true of 8§Vgry
for our grain-boundary model.)

By comparing Egs. (10) and (13), we see that 8V g1y
and 8V rr are not equal in general. Higher occupied
subbands carry greater weight in 8V, through the
weighting factor |¢,(z,)|% as we have mentioned earlier.
However, there are exceptions. The obvious one is the
ultrathin-film case when there is only one occupied sub-
band and consequently 8V ¢y does indeed equal 8V rg.
There is another case where 8V equals 8V g, and
this will be discussed later.

The analysis thus far has not specified the form of u, ,
and pug, In the following we consider three different sit-
uations and use the corresponding form of u;, and ug,
to calculate 8 Vgpy and 8V pg. In the first situation w,,
and pg, are independent of the channel index a. All the
incident channels on the left-hand side of the grain
boundary now have the same chemical potential, and
similarly for the right-hand side of the grain boundary.
This situation corresponds to the reservoir case in which
the grain boundary is connected through perfect film con-
ductors to two incoherent reservoirs, one on each side of

SVirr=
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the grain boundary. If Ay is the chemical potential
difference between the two reservoirs, then we have for
this reservoir case

Hra—Hra=A . (14)

In the second situation, we consider the conducting
film on either side of the grain boundary to contain back-
ground scatterers which can be characterized by a col-
lision time 7. Supposing that the background 7 in the
film dominates the scattering, it follows that p; ,=u
+Ap, and pup,=p—Au,, where

ethT
Apa=—
m

_ an
kp,cos@=(eEyl)——cosb , (15)
krp
and where E| is the electric field set up by the back-
ground 7, and / is the bulk mean free path. Here kj,cos6
is the effective Fermi wave vector in the x direction for
channel a. The form of Au, is the shifted Fermi-sphere
distribution. We point out that in the background-7 case
the number of incident electrons in the higher subbands
is smaller and this will somewhat offset the effect of the
weighting factor |¢,(z)|? for the higher subband contri-
butions.

The third situation we consider is a random distribu-
tion of parallel semiclassical barriers. In this model,
coherent multiple scattering between barriers is neglect-
ed. We expect that this model is a reasonable first ap-
proximation for weak-scattering grain boundaries in the
absence of appreciable background scattering.!* The
electron distribution for the transport problem in this
system has been considered by Landauer,"® and the cor-
responding distribution can be written as pu; ,=pu+Ap,
and pg,=u—Au, where Au, is given by

_ edV
“ 2R (kp,cos@) ’
with 8V being the total voltage across the sample divided

by the number of barriers. Substituting Eq. (16) into Egs.
(10) and (13), we find

Therefore in the case of a random distribution of parallel
semiclassical barriers, 8 Vgpy does equal 8V 1.

We now present the results of numerical calculations
for the reservoir case and the background-r case. The
film is chosen to be an aluminum film, where k5 =0.927
a.u. and U, /Epz=1.36, which we obtain from the work
function for aluminum. For the grain boundary we
choose f =0.2 and A=4 a.u. The distance d of the STM
tip to the film surface is chosen to be 9.5 a.u. To calcu-
late 8Vgpy by Eq. (10) we require the electronic wave
function ¢,(z,) outside the film. For our confining po-
tential, given in Eq. (1), we find that

—1
1, WA+E 'sing)
Ly for odd
B 2cos¥£/2) } orosan

e,zﬁd[1+ W(1—& 'sin

Ap (16)

e —2Bd

|¢n(zo)|2:

-1
) for even n
B 2sin?(£/2)

an
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FIG. 2. 8Vsrm and 8V g across a grain boundary in an
aluminum film plotted as a function of W, the film thickness, for
the reservoir case. The vertical axis is in units of —Au and the
horizontal axis is in atomic units (Bohr radii).

where d =z, — W /2 is the distance of the STM tip from
the film surface, B=[2m*(U,—E,)/#*]'/?, and
E=WQ2m*E, /#)"2.

In Fig. 2 we present a plot of Vg and 8V g versus
the width W of the film for the reservoir case. Both
graphs exhibit sharp oscillations which are attributed to
the quantum size effects due to the subband electronic
structure in the film. Note that the quantum size effect is
larger in the 8Vgqy plot. The ratio of 8Vgrm/8Vitr
versus W, as shown in Fig. 3, starts at unity in the
ultrathin-film regime and approaches 2.16 in the thick-
film limit, which we have obtained by taking W 2 2000

FIG. 3. 8Vstm/8Virr plotted as a function of W for the
reservoir case. For large W (W > 2000 a.u.), the oscillation am-
plitude is less than 1% of the asymptotic value indicated by the
dashed line.
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a.u. The oscillations die out gradually as the thickness W
is increased. In the thick-film limit when W 22000 a.u.,
the oscillation amplitude is less than 1%. We point out
that the upward peaks in the oscillations are associated
with the condition that the Fermi surface is at a subband
bottom. This is because the highest occupied subband
will contribute the most to both 8§ Vgpy and 8V 1 due to
large reflection probability from the grain boundary.

In Fig. 4 we present a plot of § Vgry and 8V g versus
W for the case of background 7 in the film. Quantum size
effects can be seen in both graphs with greater oscilla-
tions in the 8Vgry plot. The ratio of 8§V /8VitE
versus W, as shown in Fig. 5 starts at unity in the
ultrathin-film regime and approaches 1.2 in the thick-film
limit (W %2000 a.u.) where the oscillation amplitude is
less than 1%. We point out that the downward dips in
the oscillations occur when the Fermi surface is very near
a subband bottom. This is because at a subband bottom
Ap, [see Eq. (15)] is zero for the highest subband, and
Ap, appears in the numerators of Egs. (10) and (13),
while the denominators jump abruptly at a subband bot-
tom.

The quantum-size-effect structure in Figs. 2 and 4 is as-
sociated with the discontinuities in the electronic density
of states as a function of film thickness. These discon-
tinuities are somewhat smoothed out by departures of the
film surface from perfect flatness and by finite-
temperature effects. As a first approximation, the long-
range irregularities of the film surface are expected to
lead to an averaging of the density of states versus W re-
lation over a small window of W values which is on the
order of the amplitude of the surface irregularity. This
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FIG. 4. 8Vsry and 8V g across a grain boundary in an
aluminum film plotted as functions of W for the case of back-
ground 7 in the film. The vertical axis is in units of eE/ and the
horizontal axis is in atomic units.
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FIG. 5. 8Vstm /8V 1k plotted as a function of W for the case
of background 7 in the film. For large W (W > 2000 a.u.), the
oscillation amplitude is less than 1% of the asymptotic value in-
dicated by the dashed line.

would result in a slight smoothing of the curves in Figs.
2-5 over that window of W values. The underlying oscil-
lations, however, would still persist. Additional smooth-
ing of the curves due to finite-temperature effects can be
expected when kT is on the order of the intersubband en-
ergy difference around the Fermi level. This implies that
at room temperature the oscillations would remain visible
for W <100 a.u.

As far as the spatial variation of the local-transport-
field voltage V;rr and the local STM voltage Vg is
concerned, we point out that both quantities are expected
to exhibit similar spatial variation, though in general they
are not of equal magnitude. Specifically, beyond a dis-
tance on the order of a screening length from a grain
boundary, both Vgr\ and Vi 1y essentially track the local
chemical potential, after averaging over a spatial region
on the order of a few wavelengths so as to remove the
Friedel oscillations common to both Vg and Vgpy.
The major difference between Virg and Vg is that
Vitr measures the electron probability in all occupied
channels, i.e., the local electron density, whereas Fgry
preferentially weights those occupied channels having
large values of transverse momentum (i.e., more rapid os-
cillations along the z direction within the film). In the
case of more general scatterers than the planar grain-
boundary model considered here, we can also expect to
find evanescent electronic wave functions decaying away
from the scatterer. In that case, both Vi and Vgpym
will pick up the variations occurring within a distance on
the order of the electronic-wave-function decay length
from the scatterer. However, Vg will show a greater
response than Vg to these wave functions because
evanescent waves have larger values of transverse
momentum associated with them for a given k, value.

In conclusion, we find that in general Vg is not
equal to 8V g, but they are of the same order of magni-
tude. There are cases where the STM does measure
OVyitr, and these are the ultrathin-film case when only
one subband is occupied and the case of a random distri-
bution of parallel semiclassical barriers. The fact that
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8Vsrm and 8V rg are of the same order of magnitude is a
rather surprising result which allows the STM to probe
the LTF, at least qualitatively. We have also found that
in the reservoir case and the background-r case 8V g1y
exhibits larger quantum size effects than 8§V 1, and this

suggests that the STM can be an effective probe of quan-
tum size effects.
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