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The conductance G of narrow channels has been observed recently to be quantized in integer mul-

tiples of 2e /h. We have calculated 6 for the case that an impurity is present in the channel. The
channel is modeled as an electron waveguide, and the impurity is assumed to be an isotropic (s-1ike)

scatterer. An analytic expression for 6 is obtained. We find that G is reduced below the unper-
turbed plateau values, and that for very strong scatterers the plateaus disappear. However, G exhib-
its two interesting features: First, 6 is pinned such that whenever the Fermi level is at the band bot-
tom of the (n +1)th transverse subband 6 =n (2e /h). Second, for attractive impurity potentials
that have phase shift 50~ 30', the conductance is found to have a deep downward dip between adja-
cent conductance plateaus. We attribute these features to multiple scattering between the impurity
and the waveguide walls.

I. INTRODUCTION

Electron transport in mesoscopic systems has recently
attracted a great deal of attention' due to technological
advances in the fabrication and characterization of sub-
micrometer electron devices. The dimensions of these
mesoscopic systems are smaller than the inelastic {in-
coherent) mean free path at sufficiently low temperatures,
and as a consequence the electron wave functions can ex-
tend coherently over the entire system. Quantization
effects will then occur when the dimensions of the system
are comparable to the Fermi wavelength of the electrons.
For purer systems, when the dimensions are smaller than
the elastic {coherent) mean free path, the electron trans-
port is in the ballistic regime and there is no scattering of
any kind within the system.

The quantization effect in ballistic transport of elec-
trons through mesoscopic systems has been studied in
two recent experiments ' using the split-gate technique.
The split gates form short constrictions that connect two
larger areas of the two-dimensional electron gas {2DEG)
in high-mobility GaAs-Al Ga, As heterostructures.
These constrictions are also known as Sharvin point con-
tacts. As the constriction width was made to increase
by tuning the gate voltage, the measured conductance of
the point contact was found to increase in integer multi-
ples of 2e /h. This novel quantized conductance
phenomenon has since prompted a series of experimen-
tal ' and theoretical ' investigations. An early ex-
planation was suggested based upon electron transport
through long and narrow channels, in which quantized
conductance arises from the quantized transverse
momentum inside the constriction. But the experimental
situation involves only constrictions of finite length.
Hence, questions still remain about the dependence of the
conductance quantization on the geometry of the con-
striction, on the length and width of the constriction, on
the effect of magnetic field, and on the disorder and tem-

perature in the constriction. In this paper, we shall focus
our attention on the effects of disorder on the quantized
conductance of narrow constrictions.

Theoretical studies have established some important
features of the point-contact quantized conductance in
the absence of disorder. We will now briefly mention
these, restricting our attention to the case of zero mag-
netic field. For constrictions having abrupt openings,
plateau features in the curve of conductance versus width
occur for all constriction lengths, but these features be-
come more obvious for longer constriction length and for
smaller constriction width. ' ' There are, in addition,
resonance structures superposed on the plateaus in the
conductance. ' ' The origin of these resonance struc-
tures is the multiple scattering between the two ends of
the constriction, and it occurs when the wave vector k of
the electrons in one of the occupied subbands satisfies the
condition kI. is a multiple of m, where L is the constric-
tion length. These resonances are artifacts of the as-
sumed sharp edges at the end of the constrictions. A
rounding of the constriction openings' sharp edges, with
radius of curvature much greater than A,F, results in re-
moving the resonances. Since the experimental results
do not exhibit these resonances, the more appropriate
theoretical model appears to be one in which the con-
striction openings are taken to be rounded, or gently
Aared, ' ""' ' rather than abrupt. Numerical calcula-
tions of the potential profile of the constriction also sup-
port this view. ' "

We therefore adopt the Qared-horn aperture
model ' "for the constriction openings, where the ra-
dius of curvature is assumed to be much greater than A,F.
In this model, according to Glazman et al. and
Landauer, ' "the transmission of the electrons through
the constriction is adiabatic, i.e., the transverse energy
level of the incident electron in the region far from the
constriction evolves continuously into the transverse en-
ergy level of the transmitting wave function inside the
constriction, with a one-to-one correspondence. If the
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corresponding transverse energy level inside the constric-
tion is lower than the electron energy, the electron will be
almost completely transmitted through the constriction;
otherwise, the electron will suffer nearly total reAection.
Therefore, the left (right) going electron in the constric-
tion is defined by the electrochemical potential deep in-
side the electron reservoir at the right- (left-) hand side of
the constriction. The constriction region can then be
modeled as an electron waveguide with well-defined in-
cident electron distributions inside both ends of the
waveguides.

In this paper, we study the effect of disorder on the
quantized conductance by considering an impurity to be
present inside the waveguide. Since in the actual experi-
mental situation the electron mean free path is greater
than the dimensions of the narrow channel, weak-
disorder considerations are sufficient. The present model
for an impurity in a narrow channel is similar to our re-
cent model for an impurity in a thin film. ' In our previ-
ous study the thin film was modeled as a planar
waveguide; in the present study the narrow channel is
modeled as a waveguide of finite cross section. Previous-
ly, we found that the residual resistivity due to an impuri-
ty in a thin film exhibits interesting features due to the
multiple scattering of electrons between the impurity and
the surfaces of the thin film. These features include reso-
nancelike structures and a "transparency effect, " which
refers to a vanishing scattering cross section for the im-
purity. The transparency efFect was found to occur when
the film thickness is such that the Fermi level coincides

with a subband minimum. By analogy, we expect similar
effects to occur in narrow constrictions. This expectation
is, in fact, borne out by the present work.

In our model, we take the cross section of the electron
waveguide to be rectangular. The confined electrons
have quantized transverse energy levels. To make con-
tact with the 2DEG experimental systems, we consider
the thickness of the waveguide to be so small that only
the corresponding lowest quantized level plays a role. As
the width of the waveguide is varied, the number of
transverse levels below the Fermi level varies, leading to
interesting structures in the conductance. We shall ob-
tain the transmission matrix for our system by solving ex-
actly the quantum-mechanical multiple scattering be-
tween the impurity and the electron waveguide, and we
then relate the transmission matrix to the conductance.

The outline of this paper is as follows. In Sec. II we set
up the quantum-mechanical multiple-scattering problem
for an impurity inside the electron waveguide. Following
Buttiker's approach' ' we derive the analytic expression
for 6, assuming a many-channel two-probe arrangement.
The many channels in this case are the many occupied
transverse subbands of the electron waveguide. In Sec.
III we present some numerical examples to illustrate the
variations of 6 with respect to the width of the electron
waveguide. Finally, Sec. IV presents a discussion.

II. QUANTIZED CONDUCTANCE IN AN EI.ECTRON
%AVEGUIDE

We consider an electron waveguide of rectangular
cross section. Following Landauer's approach to conduc-

tance, ' we connect the electron waveguide to electron16, 18

reservoirs at each end. The electrochemical potential of
the reservoir at the left- (right-) hand end is pi (pz). To
set up the transport of electrons within the waveguide,
the electrochemical potentials p, and pz are shifted rela-
tively in order to create a slight imbalance in the electron
influx from both reservoirs. We then define p, =p +Ap
and pz=p, where Ap) 0. To find the transport current
in the waveguide, we only have to consider those elec-
trons which have energies E that are in the range
p &E &p+Ap. These are the electrons that are incident
from the left-hand side of the electron waveguide. For
linear response Ap «p, and p is the Fermi energy EF of
the electrons. In this section, we first study the scattering
of each of these electrons within the waveguide in the
presence of an impurity. We then find the total current
in the waveguide, from which the conductance 6 is de-
rived.

We choose a coordinate system for the electron
waveguide such that the electrons are confined within the
rectangular region 0 ~ x ~ d and 0 y 8, where d is the
thickness and 8' the width. The electrons are free to
move along 1., the length of the waveguide, and the origin
is located inside L, . We let the excess incident electrons
move along the z direction. The unperturbed electron
states g „k in the waveguide have the form

m~x . n~y
sin e'',

where m, n are positive integers signifying subband solu-
tions, k =( m2l)/L for integer l, and Q=dWL is the
waveguide volume. The electron states of Eq. (l) can be
written as a superposition of four plane waves:

2 0
iK+„r iK „+.r—e ' —e

(2a)

where a, P=(+) and

(2b)

The energy of state g „k is E „k =(A' E /2m*), whereE:—
~ Kg ~, and m" is the effective mass of the electrons.

Since we are interested only in the scattering of electrons
at the Fermi energy EF, the momentum k for an occupied
subband (m, n) becomes kF „,which satisfies the relation

A KF

2m 2m

2 ' 2
771 7T + n 7T

Fmn

and IC becomes E~. A subband (m, n) is occupied when
&F ) (mn/d) +(nor/W)2.

In this paper, we assume that d « F' and the Fermi
level is sufficiently low that only subbands with m = 1 can
be occupied. From now on, we simply let m = 1. An im-
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purity is taken to lie within the waveguide and at the po-
sition Rp=(d/2)x+by C. oncerning the x position of the
impurity, we do not expect that the scattering is sensitive
to the impurity position because the corresponding elec-
tron motion is frozen to the lowest subband. Further-
more, the choice that the impurity is located at the mid-
dle of the smallest confining dimension (thickness)
simplifies the problem. The impurity potential is as-
sumed to be spherically symmetric and confined within a
small muon-tin radius such that the impurity potential
does not overlap with the waveguide's confining poten-
tial. The solution for the incident wave function scat-
tered by the impurity in the electron waveguide is
effectively the same as the solution for the four super-
posed propagating waves, as in Eq. (2a), incident upon a
two-dimensional image-potential lattice in otherwise
empty space. Of course, we use the image-problem solu-
tions only within the region of the waveguide. The loca-
tions of the image potentials are given by

R„= pd +—x+ (2jW +vb)y, (4)

where p, j are integers labeling the unit cells of the
image-potential plane, and v=+1 denotes the two image
potentials in a unit cell (see Fig. 1). A similar image-
potential treatment has been applied to a thin-film
geometry. ' We remark that even though the electron
motion along x is taken to be frozen to the lowest sub-
band, we allow, in our image potential treatment, the in-
termediate scattering processes of the electron to include
virtual transitions to higher subbands. Our results thus
contain the effect of finite thickness d. We now go on to
outline the quantum-mechanical scattering problem.

A. Quantum-mechanical scattering problem

In this section, we consider the scattering of an in-
cident electron state g, „k by the image-potential lattice

Fln

0IO

plane. Steps to obtain the scattering state PI+„k' are out-
Fln

lined. The method is similar to standard techniques in
low-energy electron difFraction (LEED) theory. ' ' Since
the image potential is spherically symmetric, it is con-
venient to expand the wave in spherical harmonics. To
simplify notation we shall write g&„I, , 1(II„+k', and kF, „Fl n Fln
as P„, g'„+', and kF„, respectively. From Eq. (2a), the ex-
pansion of the incident waves f„with respect to R~j„ is
given by

g'„(r)= g al.'M(p, v)jl. (I Flr R„.—l)
L, M

X 1'L~[Q(r —R~ )],
where

a' ' (p v) = — —i (
—1) y aPi ~e2K .

LM
o,P

X ELM[K „~] .

We note that aL'M(p, v) is independent ofj and it depends
on p through the factor ( —lP. From symmetry argu-
ments, we deduce that after multiple scattering between
the image potentials, the renormalized incident ampli-
tude al~(p, v) is still independent ofj and it also depends
on p through the ( —1)i' factor. We then define
aLM(p, v)=aLM(v)( —1) . The renormalized incident am-
plitude al M(v) satisfies a self-consistency condition

alM(v) =aL~(v)+& y ( 1)

E'6~,
X g sin5L. e aI M(v')

L', M'

X GL'M', Lie(Roo +pj ')

(7)

where 5L are the impurity scattering phase shifts. The
prime. on the summation indicates that the term which
corresponds to R00 Rpj is not included. From now
on, we assume that the impurity scatters electrons iso-
tropically (s-like scattering only). Using the fact that'

OIO

Q ' Q'Q
I I

0 , OIO
————

I
————r ———a0 I OIO

I II~l bl~
w

0 -
I

0 0
IL
I0IO

0 0
OIQ

I Q

IO

I

0
r ——
IQ
I Q
I

0 I 0

d

Gpp, oo(RDDv Rpjv') hp (KF IRoo

Eq. (7) is simplified to

app(v) =aIID'(v)+i g (
—1 psin5pe 'apo(v')

PJ&

xhp (KFlRDD R l)

where h0" is the spherical Hankel function of the first
kind. The second term on the right-hand side of Eq. (8)
is the wave incident upon one image potential due to the
scattered waves from all other image potentials. The ex-
pression for a op'(v) from Eq. (6) is given by

FIG. 1. Schematic diagram of an electron waveguide of rec-
tangular cross section, an impurity inside the waveguide, and
the two-dimensional image-potential lattice. The thickness of
the waveguide is d, and its width is 8'.

a' '(1)=4V'm/csin = —a' '( —1) .00 8

Equation (8) is a matrix equation of order two and app(v)
is solved to give
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4&r) /csin nab
W

aoo( I)=
1 —i sin5oe [g(1,1)—g(1, 1)]

aoo( 1)
where

y(1, 1)= g ( —1))'h()"(EpIRooi &~—J iI)

and

(10)

(1 la)

yscatt( r )

i6o
i sin6oe

aoo v
4~ PsJ

X ( —1)~h ()"(EF I
r —

R~J I ) .

(12)

Again the sum in Eq. (11a) does not include the term
which corresponds to Roo, =Rpj

The total scattered wave P'„""is given by

y(1, —1)= g (
—1) hI)" (ICFIROO, —R . )I) . (lib) Using the Poisson sum formula, ' ' ' we convert the lat-

tice sum in Eq. (12) into a convenient form:

g( —1))'ho" (KFIr —R . I)= g sin sin
O F I'Jv ~~Fd, ), 2 d

(odd)

exp i EF—
2

2

2 1/2

2 1/2

Izf

i (n'~/W)(vI —y) (13)

where the square root takes on the branch &—Ix =i&IxI. There are exponentially decaying factors in the sum of Eq.
(13) for terms that correspond to KF ((In/d) +(n'm/W) In thi.s case we have assumed m/d (It:F (2n/d, and if we
are interested only in regions IzI )d, we can therefore neglect all the l ) 1 terms in Eq. (13). The total scattered wave is
then simplified to

scatt

&n

n~b, ~x
sin sin

8 KFd

0i sin6oe

1 —i sin5oe [g(1, 1)—y(1, —1)]

2

2exp i K
d

2

2 7TK
d

n'm

2 1/2

2 1/2
n'~b

sin 8'
n '~y

sin (14)

The scattering state is given by

q(+ )(r) qo (r) +yscatt(r)

B. Conductance in electron waveguides

In this section we first find the transmitted current in the electron waveguide for an incident state g„. Then, using
the Landauer picture' ' in which the incident electron distribution is specified by the two reservoirs connected to the
waveguide, we find the total transmitted current. The potential difterence, measured between two points deep inside
both reservoirs, is essentially the electrochemical potential diA'erence between the reservoirs. Hence we derive the con-
ductance 6, which is the ratio of the total transmitted current to the potential difference.

The transmission matrix t„„.is defined as follows:

g'„+'(r)= g t„„,g„.(r),
n'~ 1

in the region z & 0, and kF, , the e8'ective Fermi wave vector for subband (1,n'), is given by

(16)
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2
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2 1/2
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d

2

From Eqs. (1), (14), (15), and (16), we obtain the expression for t„„.which is given by

nn

Sm.

WSCFd

n m.b
sin sin

kF„.

n'mb
8' —i50

t sln5O
—y(1, 1)+y(1,—1) (17)

The first term on the right-hand side of Eq. (17) is the
channel-mixing term that allows the electrons to scatter
from one subband to other subbands. Perfect waveguide
results are obtained by dropping this channel-mixing
term.

Corresponding to the incident state t/t„, the transmitted
current along the waveguide is

i sin5p
—y(1, 1)+y(1,—1)

2 (21)

apparent. Substituting the expression of t„„ into Eq. (20),
we obtain

l n Idled Re —q'+'*

eUFn kFn'
nn' nn' kn'=1 Fn

where

8~
WX,d „~,

2 n 7T.b
sin

kFn

where X is the total number of occupied subbands, e is
the magnitude of the electron charge, and
vF„=(fikF„/m") is the effective Fermi velocity for sub-
band (l, n). The total transmitted current I„,„ is given
by

ax
ltran X tn

g
(Pl P2)

n=1 n
BF

(19)

where

n =1 n'=1 Fn
(20)

l

which is the many-channel expression for two-probe con-
ductance. As we have pointed out earlier, the vanish-
ing of the channel-mixing feature in the transmission ma-
trix leads via Eq. (20) to G =(¹/7rfi) which is the result
for a perfect electron waveguide. This limit obviously
can be achieved by letting 5p go to zero. However, even
for finite 5p, it is still possible for the channel-mixing term
to vanish. This turns out to be a consequence of the mul-
tiple scattering between the impurity and the electron
waveguide. In the following we rewrite Eq. (20) into a
form such that the aforementioned feature of 6 becomes

BN
B6' „ ITAUF

is the density of states for subband (l, n) including only
states of positive z momentum and both spin states. The
potential difFerence 5V for two points deep inside both
reservoirs is p, ,

—@2=—e5V. Therefore, the conductance
6 is given by

Furthermore, the real part of the lattice sums in y(1, 1)
and y(1, —1) can be simplified (see Appendix) to give the
following identity:

e
Re

L Sln5p
—y(1, 1)+y(1,—1) = —

/3 . (23)

The imaginary part of the lattice sums in y(1, 1) and
y(1, —1) can be converted from double sum to single
sum; the expressions are given in the Appendix also. Fi-
nally, the conductance G given by Eq. (21) can be written
in the form

2 p26=
/3 + I cot5o+ Im[g(1, 1)—g(1, —1)] I

cot5O+Im[y(1, 1)—y(1, —1)]=0

(24)

The first term in Eq. (24) is the conductance of a per-
fect electron waveguide, whereas the second term is the
correction due to the presence of an impurity. %'e note,
from the analysis in the Appendix, that if the Fermi level
is just below the (N + 1)th subband, the expression
Im[g(1, 1)—y(1, —1)] becomes very large and negative.
Hence the correction term due to the impurity is very
small and G=(¹/mfi) in this case. The i.mpurity has
no efFect on the conductance under this particular condi-
tion. Evidently, this interesting transparency efFect is a
consequence of multiple scattering between the impurity
and the waveguide walls. We also note, from Eq. (24),
that when the condition
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2

G = [N —(I35O) ] .
m.A

(25)

Equation (25) gives an unphysical result that G tends to
very large negative values when the Fermi level is above
and close to a subband bottom. Therefore multiple-
scattering considerations are necessary even for weak
scatterers.

III. NUMERICAL RESULTS

%"e wi11 demonstrate here numerically the features of 6
that we have mentioned in the last section. The physical
parameters we choose are characteristic of the high-
mobility GaAs-Al Ga& As heterostructure that has
been used for the quantized conductance experiments. '

The thickness d of the two-dimensional electron gas layer
is chosen to be 100 A. The electron density is chosen to
be 2. 51 X 10"/cm . Hence the corresponding two-
dimensional Fermi wave vector k~ is 500 A and remains
fixed at this value as we allow the width 8' of the con-

is satisfied, the conductance 6 will exhibit a downward
dip structure and the conductance at the dip position will
be G = [(N —1)e /mA']. In contrast with the above
features, we compare the Born approximation limit of
Eq. (24), given by

striction to vary. For definiteness we take the y coordi-
nate of the impurity to be at a distance of 50 A from the
center of the channel. 23

In Fig, 2 we present a plot of the conductance G versus
the width W for the phase shift 60=30'. This curve
shows the features of G for the case of a weak scatterer.
The features of G for the case of a strong scatterer are
shown in Fig. 3 where 50 is chosen to be 60' and 90'.
Repulsive potential results are shown in Fig. 4, where
6 = —30 and —60' conductance curves are plotted. For0
the purpose of comparison, the perfect-constriction result
is also plotted in all the three figures and is indicated by
the dashed curve. From these curves we observe that the
conductance is, in general, lowered due to the presence of
an impurity. In the case of the weak scatterer (505 30'),
the plateau structures are essentially intact even though
the plateaus are reduced below the unperturbed values.
However, in the case of the strong scatterer, the plateaus
disappear. The two novel features which we have previ-
ously mentioned are visible in our figures. First, G is
pinned such that whenever the Fermi level is at the band
bottom of the (n+1)th transverse subband,
G =n(2e Imari). This feature does not depend on the
strength of the scatterer. Second, for attractive impurity
potentials that are not too strong (0(50& 30'), the con-

24ductance G exhibits a downward dip between plateaus.
The weaker the scatterer, the sharper will be the down-
ward dip and the closer the dip position will be to 8'

6

l

5
Q

0 4—
CO

g 3

U

0
CO

g

U

I I

4 5

2V/A
0 4 5

2W/A

FIG. 2. Conductance G for an electron waveguide plotted as
a function of the width 8' of the channel. The curve is for an
attractive weak-scattering impurity with phase shift 5O =30 .
The perfect waveguide result is indicated by the dashed steps.

FIG. 3. Conductance G vs 8'for attractive strong-scattering
impurities. The phase shifts are 5O =60 and 5O =90 . The per-
fect waveguide result is indicated by the dashed steps.
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O 4-
6 = -30'

O

= -60.
0

0

2V/A

FIG. 4. Conductance 6 vs 8' for repulsive impurities. The
phase shifts are 5o= —30' and 5o= —60'. The perfect
waveguide result is indicated by the dashed steps.

y(1, 1) and g(l, —1). In solving the multiple scattering
between the impurity and all of its image potentials, the
lattice sums appear in the denominator of the subband
mixing terms in the conductance. The divergences of
these sums lead to the vanishing of the subband mixing
term and hence to the pinned feature of G. Similarly we
expect, in the case of more than one impurity, that the
lattice sums would also enter a determinant which would
form the denominator of the subband mixing term.
Therefore we expect the pinned feature of G to be valid
even for many s scatterers inside the constriction.

We have assumed, in this study, that the impurity is an
s-like scatterer. It is, therefore, relevant to ask whether
our results can hold beyond this assumption. An analysis
for an impurity which is both an s and p scatter is being
carried out, and we find that when the Fermi level is at
the (n+1)th subband bottom and the phase shift
5, & 30', the conductance 6 =(n —b, )(2e /h), where

0. 10. This implies that the pinned feature of G is not
completely lost beyond s-scatterer analysis. It also seems
that this feature of G can allow us to see how dominant is
the s component in the scattering properties of the im-
purity. Since the physical dimensions of the constriction
used in our numerical examples are within present experi-
mental attainability, it is hoped that our work will en-
courage further experimental effort on the effects of im-
purities on the quantized conductance of a narrow con-
stnction.
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y(1, 1)= g'( —1) h,"'(Italpl)

+g'g ( —1) ho" (IC+p'd'+4j 'W'),
J P

(Al)

where K:—KF, and the primes signify that the summation
index is not zero. The first term in the right-hand side of
Eq. (Al) becomes

Q ( 1) ho (Ecdlpl)—:—.(~o Bo),1

l
(A2)

where

2/E dj
(A3)

oo 2iKdlj 1/21e

2I~&, =~„ Ij —I /21
(A4)

The sum Ao can be performed analytically, and the re-
sult is

In this Appendix we briefly outline the calculation of
the lattice sums g(l, l) and y(1, —1). The lattice sum

g(1, 1) in Eq. (1 la) can be written in the form
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Ao = ln +i(m —x)1 1

2kd 2 1 —cosx
(A5)

where g=2W't/K —(n/d) and 2' & g & 2(N + 1)m.
Here C is the Euler constant.

For the lattice sum y(l, —1) in Eq. (11b), we have
where x =2' —2~I and I is the largest integer smaller
than (Kd/~). Similarly, the sum Bo can be shown to be
of the form

y(1, —1)= g (
—1)~h(o" [K)/P d +(2jW+2b) ],
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which can be written in the form

+ 1+2 g cos(mv)2' (A6)

We note that in this paper we are in the regime
1 & (Kd /m) & 2 and so I is simply equal to one.

The second term in the right-hand side of Eq. (Al) can
be written as

+ g Jo[2j W't/K (n. /d) ]-
j=l

+i g No[2j W')/K (vr/d) ] . —
Ed .

(A7)

We note that the real part of the right-hand side in Eq.
(A7) is the exact real part of the lattice sum y(1, 1). The
two sums in Eq. (A7) can be converted to the form

and
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g' g Ho( '[2WI j )/K (vr/1—) (2l —1) ],
j 1

where the sum over p is replaced by a sum over l using
the Poisson sum formula. ' Both p and l are integers.
But in this paper, we are in the small-d regime so that the
terms other than I =0, 1 in the above sum are exponen-
tially small and can be neglected. Therefore we have

y(1, 1)= —.( Ao —Bo )
1

using again the Poisson formula. ' Within our small-d
regime, we only need to keep the j =0 term in Eq. (A10)
when l ~ 3. We apply the Poisson sum formula to sum-
mation over j and obtain

QO

y(1, —1)= — g [KoV'2b(~l/d)~ K']-ed, ,
(odd 1)

2' i2bmm/W
+ «W .&K' (~/d)—' (m~/—W)'

(Al 1)

Again, we note that the real part of g(1, —1) in Eq. (Al 1)
is the exact result. Putting together Eqs. (A7), (A5), (A6),
(A8), (A9), and (All), we can establish the identity

—I'. 60

Re e
' »»0

—y(1, 1)+y(1,—1) = —f3 . (A12)

The behavior of the lattice sums y(1, 1) and y(1, —1) is
more apparent in Eqs. (A7) and (All). If the Fermi level
is just above a subband bottom, 2n(N + 1)) g ~ 2nN, and
the real parts of g(1, 1) and y(1, —1) become very large.
On the other hand, if the Fermi level is just below a sub-
band bottom 2m(N+l)~g&2mN, and the imaginary
parts of y(1, 1) and y(1, —1) become very large. From
our numerical calculations we also find that
Im[y(1, 1)—y(1, —1)] becomes large and negative as the
Fermi level is approaching the subband bottom of an
unoccupied subband.

y(1, —1)= g g Ho" [ l2jW+2blzd,
(odd I)

&& +K —(~l/d) ], (A10)
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